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Object tracking is a fundamental task in computer vision. Recent years,

most of the tracking algorithms are based on deep networks. Trackers

with deeper backbones are computationally expensive and can hardly meet

the real-time requirements on edge platforms. Lightweight networks are

widely used to tackle this issue, but the features extracted by a lightweight

backbone are inadequate for discriminating the object from the background

in complex scenarios, especially for small objects tracking task. In this paper,

we adopted a lightweight backbone and extracted features from multiple

levels. A hierarchical feature fusion transformer (HFFT) was designed to mine

the interdependencies of multi-level features in a novel model—SiamHFFT.

Therefore, our tracker can exploit comprehensive feature representations in

an end-to-end manner, and the proposed model is capable of handling

small target tracking in complex scenarios on a CPU at a rate of 29 FPS.

Comprehensive experimental results on UAV123, UAV123@10fps, LaSOT,

VOT2020, and GOT-10k benchmarks with multiple trackers demonstrate

the e�ectiveness and e�ciency of SiamHFFT. In particular, our SiamHFFT

achieves good performance both in accuracy and speed, which has practical

implications in terms of improving small object tracking performance in the

real world.
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Introduction

Visual tracking is an important task in computer vision that provides underlying

technical support for more complex tasks; and is an essential procedure for advanced

computer vision applications. Additionally, visual tracking has been widely used in

various fields such as unmanned aerial vehicles (UAVs) (Cao et al., 2021), autonomous

driving (Zhang and Processing, 2021), and video surveillance (Zhang G. et al., 2021).

However, several challenges remain that hamper tracking performance, including edge

computing devices and difficult external environments with occlusion, illumination

variation, and background clutter.
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Over the past few years, visual object tracking has

made significant advancements based on the development of

convolutional neural networks due to the breakthroughs that

have been made to generate more powerful backbones, such

as deeper networks (He et al., 2016; Chen B. et al., 2022),

efficient network structure (Howard et al., 2017), attention

mechanism (Hu et al., 2018). Inspired by the way of the human

brain process the overload information (Wolfe and Horowitz,

2004), the attention mechanism is utilized to enhance the vital

features and surpass the unnecessary information of the input

feature. Due to the powerful feature representation ability,

the attention mechanism becomes an important means to

enhance the input features, such as channel attention (Hu et al.,

2018), spatial attention (Wang F. et al., 2017; Wang N. et al.,

2018), temporal attention (Hou et al., 2020), global attention

(Zhang et al., 2020a), and self-attention mechanism (Wang

et al., 2018). Among them, the self-attention based models,

the transformer was initially designed for natural language

processing (NLP) (Vaswani et al., 2017) task, where the attention

mechanism is utilized to perform the machine translation tasks

and achieved great improvements. Later, the pre-training model

BERT (Devlin et al., 2018) achieve breakthrough progress in

NLP tasks, further advance the development of the Transformer

model. Since then, both academia and industry have set off a

boom in the research and application of pre-trained models

based on Transformer, and gradually extended from NLP to

CV. For example, Vision Transformer (ViT) (Dosovitskiy et al.,

2020), DETR (Carion et al., 2020), have surpassed previous

SOTA in the fields of image classification, inspection, and video,

respectively. Various variant models based on Transformer

structure have been proposed, multi-task indicators in various

fields have been continuously refreshed, and the deep learning

community has entered a new era. Meanwhile, muti-level

features fusion can effectively alleviate the deficiency of the

transformer in handling the tracking of small objects.

Although transformer models provide enhancements in

feature representation and result in promotion in terms of

accuracy and robustness, trackers based on transformers have

high computational costs that hinder them from meeting

the real-time demands of tracking tasks on edge hardware

devices, providing a disadvantage for the landing of the

application. Therefore, how to balance the efficiency and

efficacy of object trackers remains a significant challenge.

Generally, discriminative feature representation is essential for

tracking. Therefore, deeper backbones and online updaters

are utilized in tracking frameworks, however these methods

are computationally expensive leading to increased run time

and budget. Typically, the lightweight backbone is also

limited as it typically provides inadequate feature extraction,

rendering the tracking model less robust for small objects or

complex scenarios.

In this study, we employed a lightweight backbone network

to avoid the efficiency loss caused by the computations of deep

networks. To address the insufficient feature representations

extracted by shallow networks, we extracted features from

multiple levels of the backbone to enrich the feature

representations. Furthermore, to leverage the advantages

of transformers in global relationship modeling, we designed

a hierarchical feature fusion module to integrate multi-

level features comprehensively using multi-head attention

mechanisms. The proposed Siamese hierarchical feature fusion

transformer (SiamHFFT) tracker achieved robust performance

in complex scenarios while maintaining real-time tracking

speed on a CPU and it can be deployed on consumer CPUs.

The main contributions of this study can be summarized

as follows:

(1) We proposed a novel type of tracking network based on a

Siamese architecture, which consisting of feature extraction,

reshape module, Transformer-like feature fusion module,

and head prediction modules.

(2) We designed a feature fusion transformer to exploit the

hierarchical features in the Siamese tracking framework

in an end-to-end manner, which is capable of advancing

discriminability for small object tracking task.

(3) Comprehensive evaluations on five challenging benchmarks

demonstrate the proposed tracker achieved promising

results among state-of-the-art trackers. Besides, our tracker

can run at a real-time speed. This efficient method can be

deployed on resource-limited platforms.

The remainder of this paper is organized as follows. Section

Related work describes related work on tracking networks

and transformers. Section Method introduces the methodology

used for implementing the proposed HFFT and network

model. Section Experiments presents the results of experiments

conducted to verify the proposed model. Finally, Section

Conclusion contains our concluding remarks.

Related work

Siamese tracking

In recent years, Siamese-based networks have become a

ubiquitous framework in the visual tracking field (Javed et al.,

2021). Tracking an arbitrary object can be considered as

learning similarity measure function learning problems. SiamFC

(Bertinetto et al., 2016) introduced a correlation layer as a

fusion tensor into the tracking framework for the first time,

which pioneered the Siamese tracking procedure. Instead of

directly estimating the target position according to the response

map, SiamRPN (Li B. et al., 2018) attaches a region proposal

extraction subnetwork (RPN) to the Siamese network and

formulates the tracking as a one-shot detection task. Based on

the results of classification and regression branches, SiamRPN

achieves enhanced tracking accuracy. DaSiamRPN (Zhu et al.,
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2018) uses a distractor-aware module to solve the problem of

inaccurate tracking caused by the imbalance of positive and

negative samples of the training set. C-RPN (Fan and Ling,

2019) and Cract (Fan and Ling, 2020) incorporate multiple

stages into the Siamese tracking architecture to improve tracking

accuracy. To address unreliable predicted fixed-ratio bounding

boxes when a tracker drifts rapidly, an anchor-free mechanism

was also introduced into the tracking task. To rectify the

inaccurate bounding box estimation strategy of the anchor-

based mechanism, Ocean (Zhang et al., 2020b) directly regresses

the location of each point located in the ground truth. SiamBAN

(Chen et al., 2020) adopts box adaptive heads to handle the

classification and regression problem parallelly. SiamFC++ (Xu

et al., 2020) and SiamCAR (Guo et al., 2020) draw on the

FCOS architecture and add a branch to measure the accuracy of

the classification results. Compared with anchor-based trackers,

anchor-free-based trackers utilize fewer parameters and do not

need prior information for the bounding box, these anchor-free-

based trackers can achieve a real-time speed.

As feature representation plays a vital role in the tracking

process (Marvasti-Zadeh et al., 2021), several works delicate to

obtain discriminative features from different perspectives, such

as adopting deeper or wider backbones, and using attention

mechanisms to advance the feature representation. In the

recent 3 years, the Transformer is capable of using global

context information and preservingmore semantic information.

The introduction of the Transformer model in the tracking

community boots the tracking accuracy to a great extent (Chen

X. et al., 2021; Lin et al., 2021; Liu et al., 2021; Chen et al., 2022b;

Mayer et al., 2022). However, the promotion of the accuracy

of these trackers’ increasingly complex models relies heavily on

powerful GPUs, leading to the inability to deploy such models

on edge devices, which hinders the further practical application

of the models.

In this study, to optimize the trade-off between tracking

accuracy and speed, we designed an efficient algorithm that

employs a concise model consisting of a lightweight backbone

network, a feature reshaping model, a feature fusion module,

and a prediction head. Our model is capable of handling

complex scenarios, and the proposed tracker can also achieve

real-time speed on a CPU.

Transformer in vision tasks

As a new type of neural network, transformer shows

superior performance in the field of AI applications (Han

et al., 2022). Unlike the structure of CNNs and RNNs,

Transformer adopts the self-attention mechanism, which has

been proved to have strong feature representation ability

and better parallel computing capability, making it more

advantageous in several tasks.

The transformer model was first proposed by Vaswani

et al. (2017) for application to natural language processing

(NLP) tasks. In contrast to convolutional neural networks

(CNNs) and recurrent neural networks (RNNs), self-attention

facilitates both parallel computation and short maximum

path lengths. Unlike earlier self-attention models based on

RNNs for input representations (Lin Z. et al., 2017; Paulus

et al., 2017), the attention mechanisms in transformer model

are implemented with attention-based encoders and decoders

instead of convolutional or recurrent layers.

Because transformers were originally designed for sequence-

to-sequence learning on textual data and have exhibited good

performance, their ability to integrate global information has

been gradually unveiled and transformers have been extended

to other modern deep learning applications such as image

classification (Liu et al., 2020; Chen C. -F. R. et al., 2021; He

et al., 2021), reinforcement learning (Parisotto et al., 2020; Chen

L. et al., 2021), face alignment (Ning et al., 2020), object detection

(Beal et al., 2020; Carion et al., 2020), image recognition

(Dosovitskiy et al., 2020) and object tracking (Yan et al., 2019,

2021a; Cao et al., 2021; Lin et al., 2021; Zhang J. et al., 2021; Chen

B. et al., 2022; Chen et al., 2022b; Mayer et al., 2022). Based on

CNNs and transformers, the DERT (Carion et al., 2020) applies a

transformer to object detection tasks. To improve upon previous

CNN models, DERT eliminates post-processing steps that rely

on manual priors such as non-maximum suppression (NMS)

and anchor generators; and constructs a complete end-to-end

detection framework. ViT (Dosovitskiy et al., 2020) mainly

converts images into serialized data through token processing

and introduces the concept of patches, where input images

are divided into smaller patches and each patch is converted

into a bidirectional encoder representation from transformers-

like structure. Similar to the concept of patches in ViT, Swin

Transformer (Liu et al., 2021) uses the concept of windows,

but the calculations of different windows do not interfere with

each other, hence, the computational complexity of the Swin

Transformer is significantly reduced.

In the tracking community, transformers have achieved

remarkable performance. STARK (Yan et al., 2021a) utilizes

an end-to-end transformer tracking architecture based on

spatiotemporal information. SwinTrack (Lin et al., 2021)

incorporates a general position-encoding solution for feature

extraction and feature fusion, enabling full interaction between

the target object and search region during tracking process. TrTr

(Zhao et al., 2021) used the transformer architecture to perform

target classification and bounding box regression and designed

a plug-in online update module for classification to further

improve tracking performance. DTT (Yu et al., 2021) also feed

these architectures to predict the location and the bounding

box of the target. Cao et al. (2021) proposed an efficient

and effective hierarchical feature transformer (HiFT) for aerial

tracking. HCAT (Chen et al., 2022b) utilizes a novel feature

sparsification module to reduce computational complexity and
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a hierarchical cross-attention transformer that employs a full

cross-attention structure to improve efficiency and enhance

representation ability. The hierarchical-based methods, both

HiFT and HCAT show good tracking performance. However,

transformer-based trackers lack robustness in small objects. In

this paper, we propose a novel hierarchical feature fusionmodule

based on a transformer to enable a tracker to achieve real-time

speed while maintains good accuracy.

Feature aggregation network

Feature aggregation plays a vital role in the multi-

level feature process, and is used to improve cross-scale

feature interaction and multi-scale feature fusion, thereby

enhancing the representation of features and enhancing

network performance. Zhang G. et al. (2021) proposed

a hierarchical aggregation transformer (HAT) framework

consisting of transformer-based feature calibration (TFC) and

deeply supervised aggregation (DSA)modules. The TFCmodule

can merge and preserve semantic and detail information at

multiple levels, and the DSA module aggregates the hierarchical

features of the backbone with multi-granularity supervision.

Feature pyramid networks (FPN) (Lin T.-Y. et al., 2017)

introduce cross-scale feature interactions and achieve good

results through the fusion of multiple layers. Qingyun et al.

(2021) introduced a cross-modality fusion transformer, that

makes full use of the complementarity between different

modalities to improve the performance of features. However, the

main challenge of a simple feature fusion strategy is how to fuse

high-level semantic information and low-level detailed features.

To address these issues, we propose an aggregation structure

based on hierarchical transformers, which can fully mine the

coherence among multi-level features at different scales, and

achieve discriminative feature representation ability.

Method

Overview

In this section, we describe the proposed SiamHFFT model.

As can be seen in Figure 1, our model follows a Siamese

tracking framework. There are four key components in our

model, namely the feature extraction module, reshape module,

feature fusion module, and prediction head. During tracking,

the feature extraction module extracts feature from the template

and search region. The features of the two branches from the

last three layers of the backbone are correlated separately, and

the outputs are denoted as M2, M3, and M4 in order. We

then feed the correlated features into the reshaping module,

which can transform the channel dimensions of the backbone

features and flatten features in the spatial dimension. The

feature fusion module is implemented by fusing features using

our hierarchical feature fusion transformer (HFFT) and a self-

attention module. Finally, we used the prediction head module

to perform bounding box regression and binary classification on

the enhanced features to generate tracking results.

Feature extraction and reshaping

Similar to most Siamese tracking networks, the proposed

method uses template frame patch (Z ∈ R
3×80×80) and search

frame patch (X ∈ R
3×320×320) as inputs. For the backbone,

our method can use an arbitrary deep CNN such as ResNet,

MobileNet (Sandler et al., 2018), AlexNet, or ShuffleNet V2 (Ma

et al., 2018). In this study, because a deeper network is unsuitable

for deployment with limited computing resources, we adopted

ShuffleNetV2 as a backbone network. This network is utilized

for both template and search branch feature extraction.

To obtain robust and discriminative feature representations,

we incorporate detailed structural information into our visual

representations by extracting hierarchical features with different

scales and semantic information in stage two, three and four of

feature extraction. We denote feature tokens from the template

branch as Fi(Z) and those from the search branch as Fi(X),

where i represents the stage number of feature extraction and i ∈
{2, 3, 4}.

Next, a convolution operation is performed on the feature

maps from the multi stages correlation, which is defined as:

Mi = Fi(Z) ∗ Fi(X), i = 2, 3, 4, (1)

where Mi ∈ R
Ci×Hi×Wi , and C, H, and W denote the channel,

width, and height of the feature map respectively. Additionally,

Ci ∈ {116, 232, 464} and ∗ denotes the cross-correlation

operator. Next, we use the reshaping module which consists of

1 × 1 convolutional kernels, to change the channel dimensions

of the features from Equation (1). We then flatten the features

in the spatial dimension because a unified channel can not

only effectively reduce computing resource requirements, but is

also an essential component for improving the performance of

feature fusion. After these operations, we can obtain a reshaped

feature mapMi
′ ∈ R

WiHi×C , where C = 192.

Feature fusion and prediction head

As illustrated in Figure 1, following the convolution and

flattening operations in the reshaping module, the correlation

features from different stages are unified in the channel

dimension. To explore the interdependencies among multi-

level features fully, we designed the HFFT, which is detailed in

this section.

Multi-Head Attention (Vaswani et al., 2017): Generally,

transformers have been successfully applied to enhance feature

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1082346
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Dai et al. 10.3389/fnbot.2022.1082346

FIGURE 1

Architecture of the proposed SiamHFFT tracking framework. This framework contains four fundamental components: a feature extraction

network, reshaping module, feature fusion module, and prediction head. The backbone network is used to extract hierarchical features. The

reshaping module is designed to perform convolution operations and flatten features. The feature fusion transformer consists of the proposed

HFFT module and a self-attention module (SAM). Finally, bounding boxes are estimated based on the regression and classification results.

representations in various bi-modal vision tasks. In the proposed

feature fusion module, the attention mechanism is also a

fundamental component. It is implemented using an attention

function and operated on queries Q, keys K and values V using

the scale dot-production method, which is defined as:

Attention(Q,K,V) = softmax(
QK⊤
√
C

)V (2)

where C is the key dimensionality for normalizing the attention,

and
√
C is a scaling factor to avoid gradient vanishing in the loss

function. Specifically,Q = [q1, . . . , qN ]
T ∈ R

N×C is the q input

in Figure 2B, which denotes a collection of N features; similarly,

K and V are the k and v inputs, respectively, which represent

a collection of Mfeatures (i.e., K,V ∈ R
M×C). Notably, Q, K,

V represent the mathematical implementation of the attention

function and do not have practical meaning.

According to Vaswani et al. (2017), extending the attention

function in Equation (2) to multiple heads is beneficial for

enabling the mechanism to learn various attention distributions

and enhancing its feature representation ability. This extension

can be formulated as follows:

MultiHead(Q,K,V) = Concat(head1, . . . headh)W
o (3)

headi = Attention(QW
Q
i ,KW

K
i ,VW

V
i ), i = 1, . . . h (4)

where W
Q
i , W

K
i and WV

i ∈ R
C×dh , and Wo ∈ R

C×C . Here, h

is the number of attention heads, which is defined as dh = C
h
. In

this study, we adopted and h = 6 as default values.

Application to Dual-Input Tasks: The structure of a

dual-input task is presented in Figure 2A, where Q, K, and

V for normal NLP/vision tasks (Nguyen et al., 2020) share

the same modality. In recent years, this mechanism has

been extended to dual-inputs and applied to vision tasks

(Chen X. et al., 2021; Chen et al., 2022a,b). However, the

original attention mechanism cannot distinguish between the

position information of different input feature sequences. The

original mechanism only considers the absolute position and

adds absolute positional encodings to inputs. It considers the

attention from a source feature φ to a target feature θ as:

Aφ(θ) = MultiHead(θ + Pθ ,φ + Pφ ,φ) (5)

where Pθ and Pφ are the spatial positional encodings of features

θ and φ, respectively. Spatial positional encoding is generated

using a sine function. Equation (5) can be used not only as

a single-direction attention enhancement, but also as a co-

attention mechanism in which both directions are considered.

Furthermore, self-attention from a feature to itself is also defined

as a special case:

Aθ (θ) = MultiHead(θ + Pθ , θ + Pθ , θ) (6)

As shown in Figure 2A, following Equations (5) and (6),

the designed transformer blocks are processed independently.
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FIGURE 2

(A) Structure of a dual-input tasks; (B) Structure of a multi-input tasks. Unlike the original dual-input tasks, multi-input tasks can be used to learn

the interdependencies of multi-level features and enhance the feature representation of the model in an end-to-end manner.

Therefore, the two modules can be used sequentially or in

parallel. Additionally, a multilayer perceptron (MLP) module is

used to enhance the fitting ability of themodel. TheMLPmodule

is a fully connected network consisting of two linear projections

with a Gaussian error linear unit (GELU) activation function

between them, which can be denoted as:

MLP(θ ′) = FC2(GELU(FC1(θ
′))) (7)

Application to Multi-Input Tasks: To extend the attention

mechanism to multiple inputs that are capable of handling

multimodal vision tasks, pyramid structures, etc., we denote the

total input number as S. The structure of a multi-input task is

presented in Figure 2B. If we consider each possibility, there are

a total of S(S − 1) source-target cases and S self-attention cases.

Now, we denote the multiple inputs as
{

θ ,φ1, . . . ,φS−1
}

, where

the target θ ∈ R
N×C and source φi ∈ R

M×C . Notably, θ and φi

must have the same size as C. We then compute all the source-

target cases as
{

Aφ1 (θ), . . . ,AφS−1 (θ)
}

. Next, we concatenate all

source-to-target attention cases with self-attention Aθ (θ), which

can be formulated as:

θconcat = [Aθ (θ),Aφ1 (θ), . . . ,AφS−1 (θ)] (8)

where θconcat ∈ R
N×SC . After concatenation, the dimensions

of the enhanced features in the channel change to match the

size SC of the original feature. To accelerate these calculations

further, we apply a fully connected layer to reduce the channel

dimensions to:

θconcat
′ = Linear[θconcat] (9)

where θconcat
′ ∈ R

N×C . Through this process, we can obtain

more discriminative features efficiently by aggregating features

from different attention mechanisms.

HFFT: As is shown in Figure 2B, in our model, we make full

use of the hierarchical features Mi
′ ∈ R

WiHi×C (i ∈ {2, 3, 4})
and generate tracking-tailored features. To integrate low-level

spatial information with high-level semantic information, we

feed the reshaped features from the output of Equation (1),

namely M2
′, M3

′, and M4
′, into the HFFT module, where

M3
′ is used for target feature, M2

′ and M4
′ represent source

features. The importance of different aspects feature information

is assigned by applying the cross-attention operator to M2
′

and M4
′, which is beneficial for obtaining more discriminative

features. We apply self-attention to M3
′, which can preserve

the details of target information during tracking. Furthermore,
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positional information is encoded during the calculation process

to enhance spatial information during the tracking process. The

attention mechanisms are implemented using the operation of

K, Q, V. Then, comprehensive features can be obtained by

concatenating the outputs. Due to the complexity of a model

increases with its input size, a fully connected layer is utilized

to resize outputs. We also adopt residual connections around

each sub-layer. Additionally, we use an MLP module to enhance

the fitting ability of the model, and layer normalization (LN) is

performed before the MLP and final output steps. The entire

process of the HFFT can be expressed as:

Mconcat = [AM3
′ (M3

′),AM2
′ (M3

′),AM4
′ (M3

′)],

Mconcat
′ = Linear[Mconcat],

Mout = LN(Mconcat
′ +M3

′),

Xout = LN(Mout +MLP(Mout)) (10)

SAM: The SAM is a feature enhancement module. The

structure of the SAM is presented in Figure 3. The SAM

adaptively integrates information from different feature maps

using multi-head self-attention in the residual form. In the

proposed model, the SAM take the out of Equation (10)

Xout as input. The mathematical process of the SAM can be

summarized as:

Xout2 = LN(MultiHead(Xout + PX ,Xout + PX ,Xout)+ Xout),

XSAM = LN(MLP(Xout2)+ Xout2) (11)

Prediction Head: The enhanced features are reshaped back

to the original feature size before being fed into the prediction

head. The head network consists of two branches: a classification

branch and bounding box regression branch. Each branch

consists of a three-layer perceptron. The former is utilized to

distinguish the target from the background, and the latter is used

for estimating the location of the target by using a bounding box.

Overall, the model is trained using a combination loss function

formulated as:

L = λclsLcls + λgiouLgiou + λlocLloc (12)

where Lcls, Lgiou, and Lloc represent the binary cross-entropy,

GIOU loss, and L1-norm loss, respectively. λcls, λgiou, and

λloc are coefficients that balance the contributions of each type

of losses.

FIGURE 3

Architecture of the proposed SAM.

Experiments

This section presents the details of the experimental

implementation of the proposed model. To validate the

performance of the proposed tracker, we compared our method

to state-of-the-art methods on four popular benchmarks.

Additionally, ablation studies were conducted to analyse the

effectiveness of key modules.

Implementation details

The tracking algorithm was implemented in Python based

on PyTorch. The proposed model was trained on a PC with

an Intel i7-11700k, 3.6 GHz CPU, 64 GB of RAM, and an

NVIDIA 3080Ti RTX GPUs. The training splits of LaSOT (Fan

et al., 2019), GOT-10k (Huang et al., 2019), COCO (Lin et al.,

2014), and TrackingNet (Muller et al., 2018) were used to train

the model. We randomly selected two image pairs from the

same video sequences with a maximum gap of 100 frames to

generate the search patches and template patches. The sizes of

search patches were set to 320 × 320 × 3 and template patches

were resized to sizes of 80 × 80 × 3. The parameters for the
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backbone network were initialized using ShuffleNetV2, which

was pretrained on ImageNet. All models were trained for 150

epochs with a batch size of 32. Each epoch contained 60,000

sampling pairs. The coefficient parameters in Equation (12) were

set to λcls = 2, λgiou = 2, and λloc = 5. In the offline training

phrase, the parameters of the model are optimized by ADAMW

optimizer. The learning rates of the backbone network were set

to le-5, and le-4 for the remaining parts.

Comparisions to state-of-the-art
methods

We compared SiamHFFT to state-of-the-art trackers on

four benchmarks: LaSOT, UAV123 (Mueller et al., 2016),

UAV123@10fps, and VOT2020 (Kristan et al., 2020). The

evaluation results are presented in the following paragraphs. It is

worthy note that the performance (accuracy and success scores)

of the comparision methods on these compared benchmarks are

obtained by the public tracking results files, which are released

by their authors.

Evaluation on LaSOT: LaSOT is a large-scale long-term

tracking benchmark consisting of 1,400 sequences. We used

test splits and the one pass evaluation (OPE) to evaluate the

performances of the compared trackers. That is, initialize the

tracking algorithm according to the target position given in the

first frame of the video sequence, and then run the prediction

of the target position and size in the whole video to obtain the

tracking accuracy or success rate.

Figures 4, 5 report the plots of the precision and success

scores of the comparision trackers, respectively. The precision

score measures the center location error (CLE), which calculates

the average Euclidean distance between the estimated bounding

box and the ground truth. The CLE is calculated as follows:

CLE =

√

(

xa − xb
)2 +

(

xa − xb
)2

(13)

As the CLEs of frame are obtained, the precision plots

(Figure 4) show the percentage of frames in which the estimated

CLE is lower than a certain threshold (usually set to 20 pixels) in

the total frames of the video sequence.

The Success curve (Figure 5) refers to the percentage of the

number of frames whose predicted overlap rate between the

estimated bounding box and the ground truth is higher than the

given threshold (usually set to 0.5) to the total number of frames

in the video sequence. The overlap rate is calculated as follows:

S =
∣

∣bt ∩ bg
∣

∣

∣

∣bt ∪ bt
∣

∣

(14)

where bt denotes the estimated bounding box, bg represents the

ground truth bounding box, ∩ refers to intersection operator, ∪

stands for union operator, and || denotes the number of pixels in

the resulted region.

The curves of the proposed SiamHFFT are depicted in

green. Overall, our tracker ranks the third in precision, and

achieves the second-best score in success, with 61% at the

precision score and 62% success score. Compared with the

trackers with deeper backbones, such as SiamCAR, SiamBAN,

and SiamRPN++ (Li B. et al., 2019), our tracker exhibits

competitive performance with a lighter structure. The DiMP

achieves the best performance both in precision and success. Our

SiamHFFT tracker outperforms other Siamese-based trackers,

even with deeper backbones and dedicated-designed structures.

Evaluation on UAV123: UAV123 is an aerial tracking

benchmark consisting of 123 videos containing small objects,

target occlusions, out of view, and distractors. To validate the

performance of our tracker, we evaluated the performances

of our trackers and other state-of-the-art trackers, including

SiamFC, ECO (Danelljan et al., 2017), ATOM (Danelljan et al.,

2019), SiamAttn (Yu et al., 2020), SiamRPN++, SiamCAR,

DiMP (Bhat et al., 2019), SiamBAN, and HiFT. Table 1 lists

the results in terms of success, precision, and speed on GPU.

Additionally, the backbones of the trackers are also reported

for an intuitive comparision. The best performance for each

criterion is indicated in red.

Among the trackers, those with deeper backbones, such as

DiMP, ATOM, and SiamBAN, achieve better performance in

term of both precision and success rate. SiamFC, HiFT, and

the proposed SiamHFFT utilize lightweight backbone. SiamFC

achieves the best performance in speed, but this naive network

structure does not achieve satisfactory results in terms of

precision and success rate. HiFT adopts a feature transformer

to enhance feature representations. Compared to HiFT, our

tracker exhibits a clear advantage in term of precision (82.8 vs.

78.7%) and success rate (62.5 vs. 58.9%), which validates the

effectiveness of the proposed tracker. According to the last row

in Table 1, all compared trackers can run in real-time on a GPU

at an average speed of 68 FPS, proving that SiamHFFTmaintains

a suitable balance between performance and efficiency.

Figure 6 depicts the qualitative results by multiple

algorithms on a subset of sequences in UAV123 benchmarks.

We choose three sets of the challenging video sequences:

Car18_1, Person21_1, and Group3_4_1. All of the three video

sequences are shot by the camera of the UAV, the video frames

undergo multiple challenges, for example scale variation,

changes of different viewpoint, and so on. Generally, the

given target appears in small size during the tracking process.

The bounding boxes estimated by the trackers are marked in

different colors to give an intuitive contrast. The bounding box

of our SiamHFFT is shown in red, and it is obvious that our

tracker can handle these complex scenarios well, especially for

the small object tracking task.

UAV123@10fps: UAV123@10fps is a subset of UAV123

obtained by down-sampling the original videos with an image
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FIGURE 4

Precision scores of compared trackers on LaSOT.

FIGURE 5

Success scores of compared trackers on LaSOT.
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TABLE 1 Quantitative evaluation on UAV123 in term of precision (Prec.), success (Succ.) and GPU speed (FPS).

SiamFC ECO ATOM SiamAttn SiamRPN++ SiamCAR DiMP SiamBAN HiFT SiamHFFT

Feat. Alex VGG R18 R50 R50 R50 R50 R50 Alex ShuffleNet

Prec. 72.5 75.2 83.7 84.5 76.9 76 84.9 83.3 78.7 82.9

Succ. 49.4 52.8 64.2 65 57.9 61.4 65.4 63.1 58.9 62.6

FPS 130 45 46 45 35 52 45 40 / 68

The best performance are shown in red.

FIGURE 6

Qualitative experimental results in several challenging sequences on UAV123 dataset. (A) Video sequences of the Car, (B) video sequences of the

Person, and (C) video sequences of the Group.

rate of 10 FPS. We use SiamFC, AutoTrack (Li et al.,

2020), TADT (Li X. et al., 2019), MCCT (Wang et al.,

2018), SiamRPN++, DeepSTRCF (Li F. et al., 2018), CCOT

(Danelljan et al., 2016), ECO, and HIFT as comparisions.

Among these trackers, AutoTrack, TADT, MCCT, CCOT, ECO

and DeepSTRCF are correlation filter based trackers, which has

a lightweight structure and less parameters than deep learning

based trackers, and the model can be deployed on limited

source device. Compared with UAV 123 benchmark, challenge

in UAV123@10fps dataset are more abrupt and severe. The

experimental results are listed in Table 2. Compared with the

correlation filter based trackers, the deep trackers, HiFT and

SiamRPN++ achieve higher precision and success scores, the

performance of SiamFC is closer to these correlation based

trackers, SiamFC utilize the AlexNet as the backbone, but the

model does not further enhance the feature representation.

Our SiamHFFT model yields the best precision (76.5%) and

success rate (59.5%), which has an advantage over HiFT

by 1.1, 2.1%, demonstrating the effectiveness of the HFFT

module, and superior robustness capacity compared to other

prevalent trackers.

Evaluation on VOT2020: We also test SiamHFFT on the

VOT2020 benchmark against HCAT, LightTrack (Yan et al.,

2021b), ATOM and DiMP. VOT2020 consists of 60 videos

with mask annotations and adopts the expected average overlap

(EAO) as the metric for evaluating the performance of the

trackers, which is calculated by:

φ̄NS =
1

NS

∑NS

i=1
φNS (15)
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TABLE 2 Overall evaluation on UAV123@10fps.

SiamFC AutoTrack TADT MCCT SiamRPN++ DeepSTRCF CCOT ECO HiFT SiamHFFT

Prec. 67.8 67.6 68.4 68.1 74.0 68.0 70.4 70.9 75.4 76.5

Succ. 47.2 48.1 50.7 49.2 55.5 49.9 50.2 51.9 57.4 59.6

The best performance are shown in red.

TABLE 3 Evaluation on VOT2020.

HCAT LightTrack ATOM DiMP SiamHFFT

EAO 0.276 0.242 0.271 0.274 0.231

Accuracy 0.455 0.422 0.462 0.457 0.459

Robustness 0.747 0.689 0.734 0.740 0.646

The best performance are shown in red.

where NS denotes the length of the video sequences, φNS

denotes the average accuracy of a video sequence whose length

is NS. Finally, the EAO value can be obtained by calculating the

average value of the video sequences of NS length.

The experimental results are presented in Table 3. Our

tracker achieves an EAO value of 0.231, robustness of 0.646, and

accuracy of 0.459. The performance of SiamHFFT is comparable

to that of the state-of-the-art models for each criterion.

Speed, FLOPs and params

To verify the efficiency of our tracker, we conducted a set

of experiments on the GOT-10k benchmark, which is a large-

scale tracking dataset consisting of more than 10,000 videos,

covering a wide range of 560 types of common moving objects.

Following the test protocols of GOT-10k, all of the evaluated

trackers are trained with the same training data, and are tested

with the same test data. We evaluated the performance of

SiamHFFT against TransT, STARK, DiMP, SiamRPN++, ECO,

ATOM, and LightTrack. Our SiamHFFT is conducted on PC

while the data of other trackers on GOT-10k is obtained from

Chen et al. (2022b). Both average overlap (AO) and speed

were considered to evaluate the performance of the trackers.

We visualize the AO performance with respect to the frames-

per-seconds (FPS) tracking speed. The comparision results are

presented in Figure 7. Each tracker is represented by a circle, and

the radius of the circle r is calculated as follows:

r = k
speed/Average(speed)

AO
(16)

where k denotes a scale factor, we set k=10. The higher value

of r indicates the better performance. All trackers were tested

on CPU platform, and real-time line (26 fps) performance is

represented by a dotted line to measure the real-time capacity

of the trackers, trackers locate on the right side of the line

are considered to achieve the real-time performance. According

FIGURE 7

Speed and performance comparisions on GOT-10k. The

horizontal axis represents model speed on a CPU and the

vertical axis represents the AO score.

to Figure 7, only SiamHFFT and LightTrack can meet the

real-time requirement on the CPU. Among these comparision

trackers, TransT utilized a modified ResNet50 as backbone and

a transformer-based network to obtain discriminative features,

and achieve the highest AO score, but it sacrifices the speed

which runs a low speed on CPU. Similarly, STARK, DiMP,

prDiMP, SiamRPN++ can only obtain satisfactory AO scores

at the expense of speed. The correlation filter-based tracker,

ECO, also adopts the deep features which does not achieve a

satisfactory speed on CPU. Our tracker exhibits an average speed

of 28 FPS on the CPU, not only reach the real-time requirement,

but the area of the circle representing our method is the second

large of all the trackers.

To validate the lightness of our model, we compared the

floating-point operations (FLOPs) and Params of themodel with

STARK-S50 and SiamRPN++. FLOPs represent the theoretical
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TABLE 4 Comparision about the FLOPs and params.

Trackers FLOPs (G) Params (M)

STARK-S50 10.5 23.3

SiamRPN++ 48.9 54

SiamHFFT 0.6 4.4

FIGURE 8

Visualization of the confidence maps of three trackers on several

sequences from the UAV123 dataset. The response visualization

results are an intuitive reflection of tracker performance.

calculation volume of the model, which means the number

of calculations required for the inference. Params refer to

the amount of the parameters in the model, which directly

determines the size of the model and also directly affects the

memory consumption when a model making inferences. The

comparison results are illustrated in Table 4. It is worth note

that our SiamHFFT tracker achieve a promising result over other

trackers. The FLOPs and Parameters are 16× and 5× less than

those of STARK-S50. This shows that our method can use fewer

parameters and lower memory consumption, making it possible

for deployments in the edge hardware environments.

Ablation studies

This section presents ablation studies conducted to verify the

effectiveness of our framework. We selected several challenging

frames from the UAV123 dataset and visualized the tracking

results using heatmaps, as shown in Figure 8. The first column

presents the given target which is highlighted with a red box,

and the remaining columns present the visualized results of the

predicted target prior to the current frame.

The second column presents the visualization results of the

baseline, which only adopts ShuffleNetV2 as backbone with the

reshaping module and the prediction head. The response area of

TABLE 5 Experimental results on UAV 123 benchmark with di�erent

backbones.

Baseline Baseline+HFFT SiamHFFT

AlexNet 73.6 77.2 78.9

ShuffleNetV2 74.1 81.6 82.8

the baseline is much larger than the original target size and has

obscure edges affected by distractors in the frames.

The third column presents the visualization results of the

baseline with the HFFT module. Compared with the baseline

alone, the response area is smaller and clearer because the HFFT

module enhances the critical semantic and spatial features of

the target, enabling the model to generate more discriminative

response maps. With the HFFT module, our tracker achieves

significant improvement in tracking accuracy, which validates

the effectiveness of the HFFTmodule for handling small objects.

The last column presents the response map generated by

the proposed SiamHFFT, which adopts the entire operation

module, backbone, reshaping module, HFFT module and the

SAM, where the classification and regression head are utilized to

estimate the location of a target. According to the visualization

results of the response maps, our SiamHFFT model has clear

advantages over other modified versions. The response areas are

more precise and discriminative relative to the distractors.

We also test the performance on UAV123 benchmark with

different backbones, we use the accuracy score to measure the

performance variation. Experimental result is shown in Table 5,

we choose two lightweight networks, AlexNet and ShuffleNetV2,

to make a comparision. Similar to Figure 8, the effectiveness of

the HFFT module is measured in a quantitative manner. The

model adopts ShuffleNetV2 as backbone has better performance

on all of the three criteria. The experiment results of Table 4 also

demonstrate the effectiveness of the HFFT module.

Conclusion

In this paper, an HFFT tracking method based on a

Siamese network was proposed. To integrate and optimize

multi-level features, we designed a novel feature fusion

transformer that can reinforce semantic information and

spatial details during the tracking process. Additionally, based

on our lightweight backbone, excessive computation for

feature extraction is avoided, which accelerates object tracking

speed. To validate the effectiveness of our trackers, extensive

experiments were conducted on five benchmarks. Our method

achieves excellent results on small target datasets such as

UVA123 and UAV123@10fps, and also shows good performance

on genetic public visual tracking datasets, such as LaSOT,

VOT2020, and GOT-10k. Our method can potentially inspire
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further research on small object tracking, particularly for

UAV tracking.
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