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To keep the global search capability and robustness for unmanned surface

vessel (USV) path planning, an improved di�erential evolution particle swarm

optimization algorithm (DePSO) is proposed in this paper. In the optimization

process, approach to optimal value in particle swarm optimization algorithm

(PSO) and mutation, hybridization, selection operation in di�erential evolution

algorithm (DE) are combined, and themutation factor is self-adjusted. First, the

particle population is initialized and the optimization objective is determined,

the individual and global optimal values are updated. Then di�erential variation

is conducted to produces new variables and cross over with the current

individual, the scaling factor is adjusted adaptively with the number of iterations

in the mutation process, particle population is updated according to the

hybridization results. Finally, the convergence of the algorithm is determined

according to the decision standard. Numerical simulation results show that,

compared with conventional PSO and DE, the proposed algorithm can

e�ectively reduce the path intersection points, and thus greatly shorten the

overall path length.

KEYWORDS

di�erential evolution algorithm, hybridization,mutation, particle swarmoptimization,
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1. Introduction

With the increasing demands of marine monitoring and exploration, the unmanned

surface vessel (USV) becomes widely used in water area environmental inspection. The

main research direction in the application of the USV is flight path planning. The

purpose of path planning is to obtain a scientific, safe, and concise path in a specific

environment. As the USV navigation environment deteriorates, the problems needed to

be solved in USV path planning are becoming harsher, and the amount of calculation is

also increasing, so the path planning problem gets trickier. In recent years, many studies

has have been done for USV flight path planning and swarm intelligence algorithm has

been popularly used, including particle swarm optimization (PSO) (Xin et al., 2019;
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Krell et al., 2022), artificial fish swarm algorithm (Zhao et al.,

2022), ant colony algorithm (Wang et al., 2022), genetic

algorithm (GA) (Park et al., 2021), and etc. Among these

intelligent algorithms, particle swarm optimization is the most

widely used in the field of automatic control because of its

simple principle, fewer parameters, fast optimization speed,

small amount of calculation and other advantages (Khayati et al.,

2019). At present, the application of particle swarm optimization

algorithm in robot path planning is very active (Chen and Sun,

2021; Wu et al., 2022; Xiao et al., 2022), but the research on

USV flight path planning is still a frontier field. In practical

application, due to the irregular, complex and uncertain USV

navigation environment, the algorithm is easy to fall into local

extreme values, resulting in poor quality of generated paths,

waste of time and resources. Therefore, improving the global

search ability and robustness of the algorithm becomes a key

content in USV flight path planning. The most popular use

of PSO for global path planning is genetic particle swarm

optimization (GaPSO), which combines the advantages of the

genetic algorithm (GA) and the particle swarm optimization

algorithm. In Pehlivanoglu (2012), an improved PSO for robot

path planning is presented. In Zhang and Xing (2019), GA is

combined with the voronoi diagram to generate the optimal

path for autonomous unmanned aerial vehicles (UAVs). The

applying of GaPSO can reduce the probability of falling into

local optimal solutions, however, the global search capability

needs to be enhanced. Differential evolution algorithm (DE)

has been used in many fields such as intelligent machines,

robots, equipments and so on Yang et al. (2011) and Yildiz

(2013). Because of its strong global searching ability and high

robustness, DE can be used to solve multiobjective, constrained

and complex optimization problems.

Compared with genetic algorithms, the global exploration

ability of DE is more obvious. However, the accuracy of

the optimal solution and convergence speed are affected by

the parameter settings and the mutation operations. To get

a compromise between the optimal solution accuracy and

optimization speed, many studies have been done on the values

of the control parameters, including the population size NP,

the crossover probability CR, and the scaling factor F. It is

well known that the size of the population increases, the

probability of finding the optimal solution is higher, however

the amount of calculation and computation time may also

increase. The value of F has a great influence on the speed

of optimization. For a larger F value, the population is more

abundant, but the amount of calculation is larger and the

computation time is longer. With a smaller F, the optimal

solution can be found faster, but the diversity of the population

can’t be guaranteed, so the algorithm will easily fall into a

local optimum value. To obtain appropriate parameters, a

lot of studies have been done. In Yildiz (2013), the authors

pointed out that F should be set to 0.5. In Li et al. (2019),

the authors suggested that F should between [0.4, 0.95]. The

FIGURE 1

USV path planning process diagram.

values of these parameters are difficult to select to obtain a

better performance.

In order to get a better flight path with fast optimization

speed and less computation, this paper proposed a discrete

particle swarm optimization algorithm with differential

evolution algorithm (DeDSO) for USV flight path planning.

This algorithm combines the advantages of the conventional

particle swarm optimization algorithm and the differential

evolution algorithm, so as to enhance the global search ability

and improve the path planning efficiency and stability. In

order to ensure both high search speed and high precision

solution, the scaling factor F in DE is self-adaptive with

the iteration.

The remainder of this paper is organized as follows.

Section 2 gives the mathematical model of USV automatic

inspection problem. Section 3 introduces the working principle

of conventional PSO, DE, and the improved DePSO. Section

4 gives the framework and implementation procedure of the

DePSO. Section 5 describes the numerical simulation results and

comparison. Finally, section 6 gives a short conclusion.

2. Mathematical model of USV
automatic inspection problem

Flight path planning is a global optimization problem aims

to search the optimal flight path for USVs. When USV is

applied in water environment inspection, it is necessary to

generate a sailing path. The path planning process of the USV

is shown in Figure 1. Firstly, a feasible global path is drawn

according to the regional map information by identifying the

surrounding environment and the status information of the

USVs. Then the ship navigates according to the specified path.

During the navigation, the sensors monitor the surrounding

environment, and the local path planning is used to avoid

obstacles, and then the ship continues to travel according to the

original path.

The problem to be solved in this paper is to plan a global

path for USVs applied in water area automatic inspection.
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In a certain water area, several sampling points are spread,

which will be automatically inspected and sampled by the

USVs. The purpose of flight path planning is to generate a

route between the starting point and the destination, which

ensures that all sampling points are inspected only once

except the starting point, and the path formed should meet

specific optimization objectives, which is equivalent to the

traveling salesman problem (TSP) (Laporte, 2010; Zheng et al.,

2022). The TSP model has been mainly used for single

vehicle operating situations as described in this paper, and

the main idea is to search the optimal path to visit all

sampling points.

min f =

n−1
∑

i=1

D(i, i+ 1)+ D(1, n) (1)

The objective function is the key point of an optimization

problem. In our design, the optimization objective is

demonstrated as function f , and the mathematical model

corresponding to n sampling points is defined as Equation

(1). Where D(i, i + 1) respects the distance between sampling

point “i” and sampling point “i + 1.” In this paper, the

USV sampling problem is corresponding to symmetry

TSP problem, which satisfies D(i, j) = D(j, i), where i, j

∈ (1, 2, . . . , n).

3. Improved particle swarm
optimization model

3.1. Particle swarm optimization
algorithm

In particle swarm optimization, the updating of population

tends to be closer to the optimal value. The optimization process

of PSO is shown in Figure 2. Particles adjust their speed and

direction of motion according to their own historical optimal

value Pbest and global optimal value Gbest, and measure the

merits of particles by optimizing the fitness value determined by

the target, so as to drive the particles to the optimal value (Wu

et al., 2017; Rauf et al., 2020).

The next generation particle position Xid(t+1) and velocity

Vid(t) are calculated through Equations (2) and (3) respectively.

In which, Xid(t) is the tth generation particle position; ω is

the inertia weight, which determines the optimization speed

of the algorithm; c1 and c2 decide the speed for the particle

approaching Pbest and Gpest respectively; R1 and R2 are random

numbers, and their values range from 0 to 1; In this paper, the

fitness represents the length of the USV navigation route, the

calculation formula is (4), in which (xi, yi) are the coordinates of

the i th and the i+ 1 th sampling point, respectively. The pseudo

code of PSO is presented in Table 1.

FIGURE 2

The optimization process of PSO.

TABLE 1 Algorithm I: Conventional PSO.

Conventional particle swarm optimization

1. Set fitness function f , set population size N, acceleration coefficients

c1 , c2 , R1 , R2 , inertia weight ω, and maximum iteration number Tmax

2. Generate the initial population

3. For t from 1 to Tmax do

4. For i from 1 to N do

5. Initialize velocity and position

6. Evaluate initial fitness value

7. Record initial Ppest and Gpest

8. end

9. Refresh velocity and position from Equations (1) and (2)

10. Refresh the fitness of each particle

11. Update Ppest and Gpest

12. If t =Tmax or minimum error criteria is achieved do

13. Output the particle with best fitness value

14. end if

15. end

Xid (t + 1) = Xid (t) + Vid (t + 1) (2)

vid (t + 1) = ωvid (t) + c1R1
(

Pbest − Xid
)

+c2R2
(

Gbest − Xid
)

(3)

f (x) =

n−1
∑

i=1

√

(

yi+1 − yi
)2

+
(

xi+1 − xi
)2

(4)
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FIGURE 3

The optimization process of DE.

3.2. Di�erential evolution algorithm

Differential evolution algorithm is a bionic intelligent

calculation method which simulates the natural evolutionary

law to find the global optimal value. The optimization process

of DE is shown in Figure 3. The main body of the algorithm

generally includes three steps: mutation, crossover and selection

(Yi et al., 2016; Bilal et al., 2020). The pseudo code of DE

is presented in Table 2. Three different individual vectors

are randomly selected to get a difference vector, denoted

as Xr1, Xr2, and Xr3, and the mutation vector Vi was

calculated according to Equation (5). The scaling factor F

is set to control the influence of difference vector (Xr2-

Xr3) on the evolution speed, and the value of F is generally

between [0,1].

Vi = Xr1 + F (Xr2 − Xr3) (5)

The function of crossover operation is to hybridize the

current individuals of the population with the mutation vector

TABLE 2 Algorithm II: Conventional DE.

Conventional differential evolution algorithm

1. Set fitness function, population size PN, scaling factor F, and cross-

over probability CR

2. Generate the initial population

3. For t from 1 to Tmax do

4. For i from 1 to NP do

5. Mutation: select Xr1 , Xr2 and Xr3 randomly

6. Create the mutation vector Vi from Equation (5)

7. Crossover: the crossover operation is executed between a

parent individual and mutation vector from Equation (6)

8. Selection from Equation (7)

9. Refresh fitness value

10. end

11. If t =Tmax or minimum error criteria is achieved do

12. Output the particle with best fitness value

13. end if

14. end

generated by the mutation, and generate new individuals

randomly according to a certain probability, as shown in

Equation (6). CR is the crossover probability, which determines

the size of the hybridization probability, and its value is a real

constant between [0,1].

uij(t + 1) =















Vij(t + 1), if r and (0, 1) ≤ CR,

or j = j and

Xij(t), else

(6)

The selection operation is based on the individual

optimization objective to select one of the next generation

individuals between the new vector generated by the crossover

and the current vector. If the individual optimization objective

of the new vector is better than the current vector, the

new vector will be retained. Otherwise, the current vector

individual will be inherited to the next generation. The

selection formula is shown in Equation (7). In which, Xi(t)

is the particle position before the t th iteration, Ui(t) is the

new particle position after the differential evolution mutation

operation of the t th iteration. Xi(t + 1) is the particle

position after the t th iteration. f (Xi(t)) is the fitness value for

particle position Xi(t), f (Ui(t)) is the fitness value for particle

position Ui(t).

Xi(t + 1) =

{

ui(t), if f (ui(t)) < f (Xi(t))

Xi(t), if f (ui(t)) ≥ f (Xi(t))
(7)
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3.3. Di�erential evolution particle swarm
optimization

In the process of population updating, the DePSO iterates

from the formula of the particle swarm optimization algorithm

to get a new generation of individuals, and then hybridizes

them from the formula of the differential evolution algorithm.

The object of hybridization is the individual optimal value Pbest
and the global optimal value Gbest, the selection formula after

crossing is shown in Equations (8) and (9).

In order to find a better balance between optimal solution

accuracy and convergence speed, the zoom factor F is adjusted

adaptively with the number of iterations. The improved formula

is demonstrated in Equation (10), in which Fmax and Fmin are

the maximum and minimum values of the zoom factor, Tmax is

the maximum number of iterations, and t is the current number

of iterations.

Xi(t + 1) =

{

ui(t), if f (ui(t)) < f (Pbest)

Xi(t), if f (ui(t)) ≥ f (Pbest)
(8)

Xi(t + 1) =

{

ui(t), if f (ui(t)) < f (Gbest)

Xi(t), if f (ui(t)) ≥ f (Gbest)
(9)

F =
(Fmax − Fmin)

2
(1+

Tmax − t

Tmax
) (10)

4. USV path planning problem

4.1. PSO applying in TSP problems

In the TSP issue corresponding to automatic inspection

and sampling of unmanned pollution detection vessel, a huge

number of paths will be generated during flight path planning,

and the number of paths will increase factorially with the

number of sampling points. A path is equivalent to a particle

in PSO, the position of the particle is represented by the

path sequence composed of the distribution of sampling

points, and the velocity of the particle is represented by the

commutator. The calculation process of optimization is realized

by exchanging the position of sampling points.

Exchange operator: for two path sequences Xi = (Xi1,

Xi2, ..., Xn) and Xj = (Xj1, Xj2, ..., Xjn), if the two sequences have

different value at the same position, that is Xia 6=Xja, thus Vij =

(Xia, Xja) is called the exchange operator for the path sequence,

as shown in Figure 4A.

Exchange sequence: a sequence composed by the exchange

operators, such as V= (V1,V2...,Vn), in which n is the number

of locations corresponding to two cities with the same sequence

but different values.

FIGURE 4

(A) Exchange operator. (B) Addition of position and velocity.

Position of the particle: the position of the particle is

determined by the sequence of cities X= (X1,X2...,Xm), in which

m is the number of the cities.

Velocity of the particle: the velocity of the particles is given

by the exchange sequence V= (V1a,V2b...,Vmn), in which Vmn

is the exchange operator.

Addition of position and velocity: in TSP, we form a new

path sequence by the addition of position and velocity to the

parent individual, as shown in Equation (11). On the basis of

the original path sequence, the new path sequence is obtained by

exchanging the city position according to the exchange operator,

as shown in Figure 4B.

X =
(

X1,X2, · · ·,Xi, · · ·Xj, ...,Xn
)

+ Vij
(

Xi,Xj
)

=
(

X1,X2, · · ·,Xj, · · ·,Xi, · · ·,Xn
)

(11)

Subtraction between positions: the subtraction from a

position to another position forms an exchange sequence that

generates a new velocity. To form Vij = Xi − Xj, where Xi

and Xj are the number of the cities. First we find the city in

the 2th sequence which is the same to the 1st element in the 1st

sequence, and form an exchange operator V(1,i). Then conduct

this exchange operator to the first sequence and get a new 1st

sequence. Later, find the first position in the 2st sequence with

the same element in the new 1st sequence, and get an exchange

operator V(2,i), this course will continue sequentially until the

exchange sequence of two city sequences is obtained, as is shown
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in Equation (12).

X1(4, 3, 6, 2, 1, 5, 7, 8, 9, 0)− X2(3, 4, 6, 2, 1, 5, 7, 8, 9, 0)

= V (v (1, 5) + v (2, 6) + v (3, 6) + v (4, 6) + v (5, 6))
(12)

Scalar multiplication of velocity: the scalar multiplication

of velocity has a probabilistic meaning. For example, when

Vim=cVja, the selection formula is shown in (13), in which c is a

constant. During the calculation course, a random number rand

is generated for each operator of Vja, compare c and rand, the

value of Vim is determined by the comparison result.

Vim =

{

Vja, if r and < c

0, else
(13)

4.2. DePSO applied in USV path planning

The improved differential evolution particle swarm

optimization algorithm is applied to the automatic inspection

sampling path planning process of USV. The initial particles

are chosen randomly from the possible paths generated at the

beginning, and the optimal path is found by the approach

of optimal value of DePSO. In the updating and iteration

process of each generation of particle population, the idea PSO

and DE are combined. The specific implementation steps of

the algorithm are shown in Figure 5, and the pseudo code is

presented in Table 3.

Step 1: Modeling the environment according to the map

model and the distribution of sampling points.

Step 2: Randomly select a certain number of path sequences

as the initial particle population, and set the parameter

values used in the algorithm.

Step 3: Refresh the population and calculate the fitness

value of the particles;

Step 4: Find the individual optimal path Pbest and the

population optimal path Gbest;

Step 5: Generate mutation vector according to mutation

formula of differential evolution algorithm, and cross with

Pbest and Gbest, respectively to get new path sequence.

The fitness of the newly generated path sequence is

calculated and compared with the fitness of Pbest andGbest,

respectively. If the path becomes shorter, the new particle

position is retained, otherwise it is discarded. Update Pbest
and Gbest while retaining the position of the new particle.

Step 6: Judge whether the optimal decision is reached;

There are two judgment conditions: First, the minimum

error criteria of fitness reaches the set accuracy; Second,

reach the maximum number of iterations. If the one

of the judgment conditions is met, the optimization

ends. Otherwise, go back to the second step and the

iteration continues.

FIGURE 5

The optimization process of DePSO.

5. Numerical simulation results and
analysis

In order to verify the flight path planning effect of the

improved DePSO for USV, numerically simulation is done to

imitation the path planning process. The hardware platform

and software environment applied in this experiment is

demonstrated in Table 4.

In this paper, a 500 × 500 m sea environment shown in

Figure 6 is chosen as the inspection map model. The simulation

environment is set to be ideal. Assuming there are no obstacles

in the sea area. The USV is set as a particle without considering

the factors such as its volume and position. The environmental

factors such as wind and waves are also not considered. Firstly,

the USV navigation environment is modeled according to the

water environment map and the sampling points distribution.

Secondly the improved particle swarm optimization algorithm

is applied for global path planning. For comparison, the path

planning process of PSO, DE and DePSO were simulated,

respectively. The coordinate settings of the 30 sampling points is

shown in Figure 7A. The particle population size was selected as

200. The parameter c1 and c2 are set to 1, and the inertia weight

ω is set to 1. For conventional DE, CR and the zoom factor F are
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TABLE 3 Algorithm III: DePSO.

Improved particle swarm optimization

1. Set fitness function, population size NP, acceleration coefficients

c1 , c2 and inertia weight ω. Set scaling factor Fmax , Fmin , and

crossover probability CR

2. Generate the initial population

3. For t from 1 to Tmax do

4. For i from 1 to NP do

5. Evaluate initial fitness value

6. end

7. Record initial Pbest and Gbest

8. For i from 1 to NP do

9. Refresh the velocity and position from Equations (1) and (2)

10. Refresh fitness value

11. Update Pbest and Gbest

12. end

13. For Pbest and Gbest do

14. Mutation: select Xr1 , Xr2 and Xr3 randomly

15. Create the mutation vector Vi from Equation (5)

16. Crossover: the crossover operation is executed between

Pbest or Gbest and mutation vector from Eq. 6

17. Selection from Equations (8) or (9)

18. Refresh fitness value

19. end

20. If t =Tmax or minimum error criteria is achieved do

21. Output the particle with best fitness value

22. end if

23. end

TABLE 4 Experimental hardware and software environment.

Project Environmental set

CPU Intelcore (TM) i7-10510U

Graphics Card Intel UHD Graphics

Memory 16G

Operational System Windows 10

Software Version Matlab 2016R

set to 1. For DePSO, the maximum value of zoom factor Fmax is

set to 1 and the minimum value Fmin is set to 0. Figures 7B–D

give the comparison of the final results of route planning with

conventional PSO, conventional DE, and DePSO, respectively,

under the same map environment with 30 sampling points.

Figure 7E gives the path length iterative process comparison for

the three methods.

The coordinate settings of the 50 sampling points is shown

in Figure 8A. Figures 8B–D demonstrate the comparison of the

path planning results applying conventional PSO, conventional

FIGURE 6

The sea environment map.

DE, and DePSO, respectively, under the same map environment

with 50 sampling points, and Figure 8E gives the path length

iterative process comparison.

As the number of sampling points increases, the number

of iterations needed to find the optimal path will also increase

gradually. In Figure 7, the maximum number of iterations is

1,000. In Figure 8, the maximum number of iterations is 3,000.

As can be seen from the figures, compared with the

conventional PSO and DE, by applying the proposed DePSO,

the number of overlaps of the final paths is significantly reduced

and the total path length is significantly shortened. Because

of the combination of the two algorithms, the computation

amount for an iteration is increased, so that the computation

time is slightly increased. But this increasing time is negligible

when comparing with speed enhancement brought by the

algorithm improvement.

Table 5 lists the path planning results applying conventional

PSO, conventional DE, and DePSO proposed in this paper when

the sampling points are 20, 30, 40, 50, and 60, respectively. For

each algorithm, 5 times of simulation are done, among which

the best, average and worst path length are listed. Applying the

conventional PSO and DE algorithms, there are many crossings

in the path and the total length of the path lengths are long.

Applying the DePSO proposed in this paper, the path complexity

is greatly reduced and the path lengths are significantly shorter.

Table 6 lists the path planning results applying the proposed

DePSO with different population size when the sampling point

number is 50. For each population size of 100, 200, 300, 400,

and 500, 10 times of simulation are done, and the best, average

and worst calculation time and path lengths are listed in Table 6.

From this table we can get that, when population size rises,

the optimization time becomes longer and the path lengths

becomes shorter.

Table 7 lists the path planning results applying the proposed

DePSO with different F ranges, when the population size is

200 and the sampling point number is 30. For each F range of

[0,1], [0.05,0.95], [0.1,0.9], [0.15,0.85], and [0.2,0.8], 10 times
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FIGURE 7

Path planning results for 30 sampling points: (A) Distribution of 30 sampling points. (B) Path planning result with conventional PSO. (C) Path

planning result with conventional DE. (D) Path planning result with DePSO. (E) Path length iterative process comparison.
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FIGURE 8

Path planning results for 50 sampling points: (A) Distribution of 50 sampling points. (B) Path planning result with conventional PSO. (C) Path

planning result with conventional DE. (D) Path planning result with DePSO. (E) Path length iterative process comparison.
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TABLE 5 Comparison of path lengths with PSO, DE, and DePSO.

Number of sample points Conventional PSO Conventional DE DePSO

Best Average Worst Best Average Worst Best Average Worst

20 2,021 2126.4 2,215 2,413 2531.8 2,628 1,874 1911.6 1,939

30 2,769 2879.4 2,978 3,877 3,949 4,023 2,038 2096.8 2,207

40 3,670 3877.8 4,000 5,621 5736.8 5,837 2,391 2401.2 2,408

50 4,020 4102.6 4,195 6,705 6783.8 6,823 2,548 2655.2 2,760

60 4,761 4659.6 4,575 5,464 5,607 5,696 3,022 3086.2 3,186

TABLE 6 Path planning results with di�erent population sizes.

Population size Path length (m) Computation time (s)

Best Average Worst Best Average Worst

100 2,656 2866.6 3,167 56.88 58.95 59.95

200 2,525 2734.6 2,954 101.09 103.25 112.31

300 2534 2713.0 2903 146.10 150.86 155.32

400 2,529 2642.9 2,876 176.87 181.48 202.03

500 2,453 2629.4 2,742 221.68 243.81 259.94

TABLE 7 Path planning results with di�erent F range.

F range Path length (m) Computation time (s)

Best Average Worst Best Average Worst

[0,1] 2,038 2074.8 2,150 88.71 89.63 93.88

[0.05,0.95] 2,038 2235.1 2,283 86.75 87.89 90.69

[0.1,0.9] 2,550 2695.2 2,884 83.34 84.08 87.78

[0.15,0.85] 2,893 3,178.8 3,328 83.07 83.43 83.99

[0.2,0.8] 3,537 3772.4 3,905 79.85 81.92 83.94

of simulation are done, the best, average and worst calculation

time and path lengths are listed. From Table 7 we can get that,

the optimization result is also affected by the value range of

zoom factor F. With small F range, the optimization course is

fast, but the route length is longer. With the larger F value, the

optimization time becomes longer and the path length is shorter.

6. Conclusion

Particle swarm optimization algorithm is an effective

optimization method for USV global path planning. However,

conventional PSO approaches cannot always find the global

optima, particularly for complex scenes. DE algorithm has

the strong global search ability and good robustness. The

combination of PSO and DE can enhance their advantages

thus enhance the global search ability of the algorithm. In

this paper, an improved particle swarm optimization algorithm

(DePSO) was used for global flight path planning of automatic

inspection path of USVs. In the optimization process of

DePSO, the current vector is differentially crossed with the

local optimal value and the global optimal value, which can

further enrich the population. In order to further balance

the optimal solution accuracy and optimization speed, the

mutation factor is adjusted adaptively with the number of

iterations. The numerical simulation results show that the

proposed DePSO can realize the global path planning of

the USV and achieved shorter path length than conventional

PSO and DE. Compared with the existing methods, the

method proposed in this paper is more suitable for the

flight path planning of USV applying in water environment

automatic inspection.
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