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Semantic segmentation can address the perceived needs of autonomous

driving and micro-robots and is one of the challenging tasks in computer

vision. From the application point of view, the difficulty faced by semantic

segmentation is how to satisfy inference speed, network parameters, and

segmentation accuracy at the same time. This paper proposes a lightweight

multi-dimensional dynamic convolutional network (LMDCNet) for real-

time semantic segmentation to address this problem. At the core of our

architecture is Multidimensional Dynamic Convolution (MDy-Conv), which

uses an attention mechanism and factorial convolution to remain efficient

while maintaining remarkable accuracy. Specifically, LMDCNet belongs to an

asymmetric network architecture. Therefore, we design an encoder module

containing MDy-Conv convolution: MS-DAB. The success of this module is

attributed to the use of MDy-Conv convolution, which increases the utilization

of local and contextual information of features. Furthermore, we design a

decoder module containing a feature pyramid and attention: SC-FP, which

performs a multi-scale fusion of features accompanied by feature selection.

On the Cityscapes and CamVid datasets, LMDCNet achieves accuracies of

73.8 mIoU and 69.6 mIoU at 71.2 FPS and 92.4 FPS, respectively, without pre-

training or post-processing. Our designed LMDCNet is trained and inferred

only on one 1080Ti GPU. Our experiments show that LMDCNet achieves a

good balance between segmentation accuracy and network parameters with

only 1.05 M.
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1 Introduction

Semantic segmentation, widely used in the real world,
classifies every pixel of a visual image. Semantic segmentation
visualization uses different colors to distinguish different classes
of objects effectively. Semantic segmentation is mainly used in
scene analysis, including medical imaging, autonomous driving,
and satellite maps. Semantic segmentation has become one of
the most critical tasks in computer vision.

Fully convolutional networks (FCN) (Long et al., 2015)
pioneered the end-to-end training of neural networks, and
many semantic segmentation networks use a full convolution
approach to network construction. U-Net (Ronneberger et al.,
2015) adopts a symmetric network structure and fuses high-
level and low-level semantic information in decoding. SegNet
(Badrinarayanan et al., 2017) introduces a pooling operation
with pixel indices to optimize segmentation details at the
decoder stage. In order to achieve higher segmentation
accuracy, high-precision networks such as DeepLab series (Chen
et al., 2017a,b, 2018), APCNet (He et al., 2019), and CANet
(Zhang et al., 2019) have been proposed one after another.
In practical application scenarios, slow inference speed and
many parameters are the main reasons semantic segmentation
cannot be applied. On the Cityscape dataset (Cordts et al.,
2016), networks that meet the 80% accuracy requirement have
inference speeds below 10 FPS or model parameters over
100 M. Lightweight real-time semantic segmentation research
is imminent.

Lightweight real-time semantic segmentation requires a
neural network that perfectly balances segmentation accuracy
and parameter quantity. Typical lightweight real-time semantic
segmentation networks are SegNet, ENet (Paszke et al., 2016),
ICNet (Zhao et al., 2018), ERFNet (Romera Carmena et al.,
2018), CGNet (Wu et al., 2020), BiSeNet (Yu et al., 2018),
EDANet (Mehta et al., 2018), ESPNetV2 (Mehta et al., 2019),
ESNet (Wang et al., 2019b), DABNet (Li G. et al., 2019), LEDNet
(Wang et al., 2019a), DFANet (Li H. et al., 2019), FDDWNet
(Liu et al., 2020), LRNNet (Jiang et al., 2020), LRDNet (Zhuang
et al., 2021), JPANet (Hu et al., 2022), LEANet (Zhang et al.,
2022) and our LMDCNet, As shown in Figure 1. When applying
semantic segmentation, our first consideration is segmentation
accuracy. PSPNet (Lv et al., 2021) pursues the fusion of multi-
scale information, and SFNet (Lo et al., 2019) performs scale
alignment of different features. The accuracy of these networks
meets practical requirements, but the device’s computing power
is too demanding. To overcome the memory requirement of
the algorithm, ESPNetV2 proposes dilated convolutions for
semantic segmentation, mainly to increase the receptive field.
BiSeNetV2 adds a spatial branch to compensate for the loss of
details in semantic segmentation. STDC-Seg designs the coding
backbone network to reduce the number of parameters. These
algorithms are less demanding on equipment but have poor
segmentation accuracy.

FIGURE 1

Accuracy of segmentation (mIoU) and network parameters (M)
derived from Cityscapes test set. Clearly, our LMDCNet achieves
the optimal balance between segmentation accuracy and
parameters.

This paper proposes a lightweight multi-dimensional
dynamic convolutional network (LMDCNet) to solve the
problem of unbalanced accuracy and parameters. The network
adopts an asymmetric structure; the relevant details are
shown in Figure 2. We design a new multi-dimensional
dynamic convolution (MDy-Conv), which uses an attention
mechanism for convolution and linearly combines multiple
factorial convolutions to find a convolution kernel suitable for
the current feature. Specifically, the operation flow is shown
in Figure 3. We design the MS-DAB module to include MDy-
Conv, residual connections, and channel shuffling operations.
The encoder structure performs channel separation to reduce
computational complexity. MDy-Conv is used to improve
the coding performance, and channel shuffling improves the
robustness of the network. Residual connections are used to
reuse features and reduce the difficulty of training. The overall
structure of the encoder is designed to achieve a perfect balance
of encoding performance and parameters. We design a decoder
with a feature pyramid structure, spatial attention, and channel
attention: SC-FP. Feature Pyramid Module (FP) obtains multi-
scale contextual information of features. Combining spatial
and channel attention for efficient feature selection improves
computational efficiency. To improve segmentation accuracy,
SC-FP achieves a good balance between feature space details and
computational network cost.

In brief, we have the following contributions:

1. A multi-dimensional dynamic convolution (MDy-Conv)
is proposed. It adopts an attention mechanism for
convolution and linearly combines multiple convolution
kernels to find the best convolution kernel that conforms
to the current feature encoding, thereby improving the
encoding ability;

2. We propose a depth-asymmetric bottleneck module with
multi-dimensional dynamic convolution and shuffling
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FIGURE 2

Overview architecture of the proposed LMDCNet.

operations (MS-DAB module). It can effectively extract
local and contextual information about features and fuse
them. The MS-DAB module is far superior to similar
modules in segmentation accuracy and parameters;

3. A feature pyramid (SC-FP module) with spatial and
channel attention is proposed. The simplified feature
pyramid incorporates multi-scale contextual information
and uses spatial and channel attention for feature selection.
Combining the two algorithms can extract more effective
information during decoding and improve segmentation
accuracy;

4. Using MS-DAB and SC-FP modules, create a Lightweight
Multi-dimensional Dynamic Convolutional Network
(LMDCNet). Evaluation results on the Cityscape
dataset show that LMDCNet outperforms state-of-
the-art networks, achieving the best balance between
segmentation accuracy and parameters. On the CamVid
dataset, the segmentation accuracy surpasses the current
algorithms and reaches the top level.

2 Related work

In this section, we introduce algorithms related to
lightweight real-time semantic segmentation, including the
following: Dilated convolution, Attention mechanism, and
Lightweight semantic segmentation network.

2.1 Dilated convolution

Dilated convolution is one of the standard methods for
lightweight real-time semantic segmentation to reduce the
number of parameters. This convolution has an additional
hyper-parameter, called dilated rate, to represent the number of
intervals in the kernel (e.g., the standard convolution is dilated
rate 1). Yu and Koltun (2015) first applied dilated convolution
to semantic segmentation algorithms. Later, the DeepLab series
and DABNet, among others, borrowed the method further to
improve the segmentation accuracy of semantic segmentation
networks. Dilated convolution increases the convolutional
receptive field and acquires contextual information. However,
the dilated convolution produces grid effects due to adding
0 elements. Wang et al. (2018) proposed a hybrid dilated
convolution that uses different dilated rates for each layer of the
network so that the receptive field covers the entire region.

2.2 Attention mechanism

The role of the attention mechanism is to select features,
highlight important information, and suppress unnecessary
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information. In order to make full use of limited visual
information processing resources, attention is required to select
features during information processing. SENet (Hu et al.,
2018) (Squeeze and Excitation Network) is typical channel
attention, and its purpose is to select feature channels. ECANet
(Wang et al., 2020) is an enhanced version of SENet with a
detailed explanation of channel attention. Convolutional block
attention module (CBAM) (Woo et al., 2018) connects channel
attention and spatial attention to form a hybrid attention
mechanism.

2.3 Lightweight semantic
segmentation network

Lightweight semantic segmentation network can
accomplish on-device semantic segmentation tasks. Low
computation, real-time reasoning, and accurate segmentation
require lightweight semantic segmentation for practical
tasks. At this stage, the devices that implement lightweight
semantic segmentation are 1080Ti, 2080Ti, Titan, and 3080.
Their processing power is 1080Ti < 2080Ti < Titan < 3080.
We summarize three principles for designing lightweight
semantic segmentation at this stage: (1) Improvement of
the existing lightweight network backbone. For example,
DFANet aims to use a lightweight classification network to
encode semantic segmentation. Shuffle-Seg is an application
of the lightweight classification network ShuffleNet in the
direction of semantic segmentation. (2) Create a lightweight
coding module as the coding base. For example, LEDNet
uses only decomposed convolutional methods to design
coding units. (3) Reduce the loss of segmentation details and
increase the network coding branch. For example, BiSeNet
designed a semantic segmentation network with spatial and
context branches.

3 Materials and methods

In this section, we propose the LMDCNet network
to balance the accuracy and the number of parameters
for semantic segmentation. In Section “3.1 Multi-dimension
dynamic convolution,” we propose multi-dimension dynamic
convolution (MDy-Conv). We propose a depth-asymmetric
bottleneck module with multi-dimension dynamic convolution
and shuffling operations (MS-DAB module) and describe it in
detail in Section “3.2 MS-DAB module.” In Section “3.3 SC-
FP module,” we propose a feature pyramid module with spatial
and channel attention (SC-FP module). Finally, we design the
architecture of the whole network in Section “3.4 Network
architecture”.

3.1 Multi-dimension dynamic
convolution

Dynamic convolution has become the focus of attention
in recent years. The output y of ordinary convolution is equal
to the convolution operation performed by the convolution
kernel conv and the input x, and ∗ represents the convolution
operation, as shown in Equation 1. Dynamic convolution
is a convolution obtained by linearly combining multiple
convolution kernels. The current feature obtains the weight
in the combination process through correlation processing.
As the input features change, the combined weight of the
convolution also changes, so it is a dynamic convolution.
CondConv (Yang et al., 2019) and DyConv (Chen et al.,
2020) are typical dynamic convolutions whose structure is
shown in Figure 3B. CondConv and DyConv use a modified
SE (Squeeze-and-Excitation) attention structure to calculate
convolution weights. The convolution kernel obtained by
multiplying the weight with multiple convolutions and then
adding them is dynamic convolution. The specific operation
process is shown in Figure 3B. Then the output of a
typical dynamic convolution follows Equation 2, where �
represents the multiply add operation, and aC represents
the convolution combination weight vector obtained by
processing in the channel-wise direction. Conv represents the
list of convolution kernels. The combined weight of this
dynamic convolution is derived from the channel direction
of the feature, the information obtained is limited, the
convolution kernel cannot be linearly combined, and the
generated dynamic convolution could be more optimal.

y = conv ∗ x (1)

y = (αC � Conv) ∗ x (2)

y = ({αW + αH + αC} � Conv) ∗ x (3)

As shown in Figure 3A, the feature map contains three
dimensions, namely height (H), width (W), and channel
(C). Locating a point in the feature map requires three
dimensions to work together, and a single dimension cannot
lock a point. Similarly, a single feature channel direction
cannot determine the optimal convolution combination (i.e.,
weight), and three directions must work together. Based on
the above arguments, we design a multi-dimensional dynamic
convolution (MDy-Conv), and the detailed operation flow is
shown in Figure 3C. The dynamic convolution we designed
contains the information on the feature map’s three directions
(H, W, and C), and the resulting convolution kernel combined
weight is optimal. The specific description of the dynamic
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FIGURE 3

(A) Shows the feature map, (B) shows the typical dynamic convolution structure, (C) shows the multi-dimensional dynamic convolution
structure (MDy-Conv).

convolution generated by the feature x is as follows: (1)
Perform global average pooling (GAP) on the three directions
(height, width, and channel) of the feature x to obtain three
tensors (c × 1 × 1, h × 1 × 1, w × 1 × 1),
where

(
c,w, h

)
represent the channel, width, and height values,

respectively; (2) They are sent to 3 fully connected layers
(FC) and softmax, respectively, to obtain the exact size tensor
(r × 1 × 1), where the size of r represents the number
of convolutions participating in the calculation; (3) Add the
three tensors to get the final convolution weight, and its
size is also (r × 1 × 1); and (4) Multi-dimensional dynamic
convolution (MDy-Conv) that performs multiplication and
addition operations on r convolutions and convolution weights.
The mathematical expression of multi-dimensional dynamic
convolution is shown in Equation 3, (aC, aH, aW) represents the
tensor obtained by feature x after global average pooling, fully
connected layer, and softmax.

As shown in Figure 3, the differences between our multi-
dimensional dynamic convolution and others are: First, we
entirely use the information in the feature map to find
the optimal solution for the combination of convolutions.
In contrast, ordinary dynamic convolution only considers
channel direction. Second, we use a single-layer fully connected
layer, traditional dynamic convolution uses two layers, and
we have fewer parameters. Third, the performance of our
designed dynamic convolutional encoding is stronger than
other dynamic convolutions, which we verified in comparative
experiments.

3.2 MS-DAB module

The coding module of the lightweight real-time semantic
segmentation network design pays more attention to the coding
ability and the number of parameters. Most of the encoding
modules adopt the structure of ResNet’s residual module.
As shown in Figure 4, ERFNet designs a non-bottleneck-1D
module using decomposed convolutions. ShuffleNet designs a
lightweight real-time encoding model using group and depth-
wise separable convolution. The DAB module uses asymmetric
depth-wise separable convolution and asymmetric depth-wise
dilated separable convolution.

Based on the above observations, our MS-DAB module
design is shown in Figure 4D. First, we use a channel separation
technique to segment the input features in the channel
direction, thereby reducing the computational complexity.
The depth-wise separable dilated convolution and dynamic
convolution can improve the expressiveness of the model
without increasing the network width and depth. Therefore,
we replace the 3 × 3 convolutions in the first branch
with 3 × 1 convolutions and 1 × 3 convolutions. We
replace the standard 3 × 3 convolution in the second branch
with 3 × 1 and 1 × 3 depth-wise multi-dimensional
dynamic convolution. In order to achieve a better encoding
effect, the feature maps of the two branches are spliced
together, and 1 × 1 convolution is used to perform
information fusion between feature map channels. In order
to increase the receptive field of the module and obtain the
contextual information of the feature, we add a 3 × 1 and

Frontiers in Neurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1075520
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-16-1075520 December 9, 2022 Time: 14:30 # 6

Zhang et al. 10.3389/fnbot.2022.1075520

FIGURE 4

(A) Non-bottleneck-1D module. (B) ShuffleNet module. (C) DAB module. (D) Our MS-DAB module. W denotes the number of input channels. d
denotes dilated convolution. DDy denotes depth-separable dynamic convolution. Dy denotes dilated dynamic convolution. For brevity, the
batch normalization and activation functions are not marked.

a 1 × 3 multi-dimensional dilated dynamic convolution.
Afterward, residual connections are used to improve feature
utilization and simplify training. Finally, we use the shuffle
operation in Figure 4B to enhance the robustness of the
encoder.

Compared with the residual module of the same type,
our MS-DAB module has the following advantages: First,
we introduce MDy-Conv convolution in the residual
module, which improves the encoding ability of the module;
Second, the module adopts feature channel separation. The
operation is separated from the convolution depth to reduce
the computational complexity; Thirdly, the hollow multi-
dimensional dynamic convolution is introduced to increase the
receptive field of the encoder and improve the segmentation
accuracy; Finally, channel shuffling and residual connection
are used to improve the robustness of the network, reduce the
difficulty of training.

3.3 SC-FP module

The image segmentation scene is complex and changeable,
and simple upsampling will lose details. Moreover, most
lightweight real-time semantic segmentation adopts three
coding stages, resulting in a too-small receptive field.
Lightweight real-time semantic segmentation requires
the decoding part to increase the receptive field, improve
multi-scale information fusion, and reduce the loss of details.
Therefore, we design a decoding module feature pyramid with
spatial and channel attention (SC-FP module) that includes
feature pyramid structure, spatial attention, and channel
attention mechanisms. Feature pyramid structure can fuse

multi-scale context information while increasing the receptive
field of the network and reducing the loss of details. FPN
proposes a feature pyramid structure, as shown in Figure 5A.
FPN works well for multi-scale object recognition. However,
too many layers exist in each encoding stage, resulting in an
enormous computational burden. Channel Attention (CA) and
Spatial Attention (SA) can perform feature selection on both
channels and spaces, and the specific structures are shown in
Figures 5B, C.

Based on the above observations, we designed the SC-FP
module, as shown in Figure 5D. It integrates feature pyramid,
channel attention, and spatial attention, effectively enhancing
the ability to capture multi-scale contextual information and
reducing the loss of image details. The decoder contains four
branches: feature pyramid branch, channel attention branch,
spatial attention branch, and channel compression branch.
The feature pyramid branch comprises 3 × 3, 5 × 5,
and 7 × 7 convolutions. Due to the smaller resolution of
the features, using larger convolution kernels brings little
computational burden. To further improve the performance,
a channel attention branch is introduced. Channel attention
consists of global max-pooling, global average-pooling, and
two fully connected layers. Unlike other channel attention,
we adopt a double pooling operation, which can obtain
more channel information. The third branch is the feature
channel compression branch, where the 1 × 1 convolution
fuses the information between different channels to make the
output channel equal to the segmentation category. Considering
that the loss of details in lightweight real-time semantic
segmentation seriously affects the segmentation accuracy, a
spatial attention branch is introduced to integrate the global
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FIGURE 5

(A) Feature pyramid network (FPN). (B) Channel attention (CA). (C) Spatial attention (SA). (D) Our SC-FP module. For brevity, the batch
normalization and activation functions are not marked.

context. Spatial attention includes global average-pooling, global
max-pooling, and 7 × 7 convolutions. Channel attention
performs channel selection on the result of the 1 × 1
convolution, while spatial attention acts on the output of the
pyramid to highlight detailed information. Finally, the two
results are added point by point to generate the decoded
feature map.

Our SC-FP module has the following advantages: First, it
adopts a feature pyramid structure to increase the receptive field
of the network, capture multi-scale context information, reduce
the loss of details, and improve network performance. Second,
it introduces a dual attention mechanism to integrate context
information further, increase attention to detail information,
and improve segmentation accuracy; Third, to reduce the
computational burden, point-by-point multiplication or
addition is used for feature fusion. Although a larger
convolution kernel is used, the feature map resolution is
lower and does not increase the computational complexity.

3.4 Network architecture

Our main objective in this work is to create a compact model
that can strike the best balance between segmentation accuracy
and network parameters. We propose the LMDCNet depicted in
Figure 2 utilizing the SC-FP and MS-DAB modules to achieve
this. The specific architecture of our LMDCNet, which has an
asymmetric encoder-decoder, is displayed in Table 1.

In the encoder section of LMDCNet, we created three
downsampling blocks and three encoder stages. The initial
block in ENet, a cascaded output of 3 × 3 convolution with
step 2 and a 2 × 2 pooling, serves as the downsampling

TABLE 1 The detailed architecture of lightweight multi-dimensional
dynamic convolutional network (LMDCNet).

Stage Type Channel Output size

Encoder Downsampling 32 512× 256

MS-DAB× 3 32 512× 256

Downsampling 64 256× 128

MS-DAB× 2 64 256× 128

Downsampling 128 128× 64

MS-DAB (r = 1) 128 128× 64

MS-DAB (r = 2) 128 128× 64

MS-DAB (r = 5) 128 128× 64

MS-DAB (r = 2) 128 128× 64

MS-DAB (r = 5) 128 128× 64

MS-DAB (r = 9) 128 128× 64

MS-DAB (r = 17) 128 128× 64

Decoder SC-FP C 128× 64

Upsampling C 1024× 512

“Channel” denotes the number of output feature maps, and “C” is the number of classes.
“Output size” denotes the output size with an input size of 1024× 512.

block. The downsampling operation produces thumbnails
of the corresponding images, enabling deeper networks to
gather more contextual data while requiring less computational
work. Downsampling, however, lowers spatial resolution, which
typically results in a loss of spatial information and impacts the
predictions’ outcomes. Therefore, to maintain a good balance,
only three downsampling operations—for a total downsampling
rate of eight—are carried out in our LMDCNet. The three,
two, and seven MS-DAB modules comprise LMDCNet’s three
encoder stages. We introduce dilated convolution in the MS-
DAB module. To solve the grid problem, we follow the design
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concept of HDC (hybrid dilated convolution) when designing
the dilation rates: First, the adjacent dilation rates cannot be
greater than the common divisor of 1; Second, the dilation rates
can be designed as a zigzag structure, such as (1, 2, 5, 2, 5,
7); Third, the final dilation rates should cover the maximum
segmentation target. The specific design of the network is as
follows: the dilation rates of the first stage and the second stage
are set to 1, and the dilation rates of the third stage is set to (1, 2,
5, 2, 5, 9, 17).

Many lightweight real-time networks remove the decoder
part, and proper decoding can improve network accuracy.
The decoder includes the SC-FP module and the upsampling
module; obviously, our network architecture is asymmetric. The
SC-FP module contains feature pyramids and attention, which
can refine the detailed information on segmentation and the
selection of features. The feature map size does not match
the input image size, and a bilinear interpolation algorithm is
needed to recover the feature map resolution. The parameters
of the decoder part are few but can effectively improve the
segmentation accuracy. Our network has no complicated data
processing links in the training process, and the number of
parameters is only 1.05 M.

4 Experiments

In this section, we evaluate the performance of our
designed LMDCNet on two challenging public datasets, the
Cityscapes, and CamVid datasets. We first introduce the two
datasets used in the experiments and the implementation
details. The effectiveness of each LMDCNet component is then
demonstrated using a series of ablation experiments on the
Cityscapes validation set. Finally, we present evaluation results
on the CamVid and Cityscapes test sets and comparisons with
other lightweight real-time semantic segmentation networks.

4.1 Datasets

4.1.1 Cityscape dataset
Cityscape dataset is a large dataset for semantic

segmentation for training. The dataset contains 5000 finely
labeled images and 20,000 coarsely labeled images. Usually,
fine-labeled images are used for network training, and coarse
images are used for network migration for pre-training. The
resolution of the images is 1024 × 2048, and the default
classification label is 19 classes. We compressed the image
resolution to 512 × 1024 to improve the inference speed.

4.1.2 CamVid dataset
CamVid dataset uses street scenes from video sequences as

semantic segmentation training data. The dataset has 701 high-
quality training images, of which 367 are the training set, 101 are

the validation set, and 233 are the test set. The dataset contains
32 semantic categories, and the categories commonly used for
network training are 11 categories. The resolution of the images
is 720 × 960, and 360 × 480 is used in our training process.

4.2 Implementation details

4.2.1 Environment configuration
The model creation and training were based on the Pytorch

platform with CUDA 9.0 and cuDNN 7, and all experiments
were conducted on a machine outfitted with an Intel i7-10700K
CPU and a single NVIDIA GTX 1080Ti GPU (11G).

4.2.2 Network training configuration
We did not employ any additional datasets as network

preprocessing. We used small batch stochastic gradient descent
(SGD) during the training process as the optimization function
with a weight decay of 2e-4 and a momentum of 0.9. The
batch processing size is 8 for the Cityscapes dataset and 16
for the CamVid dataset. The cross-entropy loss function is
used for the loss function. The initial learning rate for the
Cityscapes dataset is 4.5e-2, and the CamVid dataset is 1e-3
using the “poly” learning rate technique. The current epoch
learning rate is lr = init_lr ×

(
1− epoch/max_epoch

)power ,
where power is 0.9.

4.2.3 Data augmentation
Data augmentation reduces the risk of training overfitting.

Our experiments used the following methods for data
augmentation: average subtraction, random level flipping, and
random scaling. The scales of random scaling during training
are 0.75, 1.0, 1.25, 1.5, 1.75, and 2.0.

4.2.4 Evaluating indicator
The evaluation metrics of semantic segmentation include

three aspects: segmentation accuracy, inference speed, and
model size. Segmentation accuracy is measured by mean
Intersection over Union (mIoU); inference speed is measured
by the number of frames per second (FPS) processed in the
image, and model size is measured by the number of statistically
learnable parameters (M).

4.2.5 Network performance balance indicator
We designed an optimal balance index to evaluate the

accuracy and parameter amount of lightweight real-time
semantic segmentation, and it is named as increment rate (IR).
The most critical indicators of lightweight real-time semantic
segmentation are segmentation accuracy, parameter amount
and inference speed. Because the inference speed is related to
the verification platform, the speed of comparing lightweight
real-time semantic segmentation must be on a unified platform.
The standard for evaluating the quality of a lightweight real-time
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TABLE 2 Ablation study results of depth-asymmetric bottleneck module with multi-dimensional dynamic convolution and shuffling operations
(MS-DAB module).

Type Model mIoU (%) FPS Params (M)

Baseline LMDCNet 73.8 71.2 1.05

Ablation for residual module LMDCNet-Non-bottleneck-1D 68.4 74.3 1.90

LMDCNet-DAB 69.7 84.1 0.90

LMDCNet-ShuffleNet 66.8 97.3 0.56

Ablation for dilation rates 4,4,4,4,4,4,4 72.3 70.8 1.05

2,2,5,5,9,9,17 72.9 70.8 1.05

2,2,4,4,8,8,16 73.2 70.9 1.05

Ablation for actiation function Relu 73.4 70.9 1.05

Ablation for convolution 1D 70.2 73.2 1.01

Cond-Conv 71.6 71.0 1.08

Dy-Conv 72.8 71.5 1.04

TABLE 3 Ablation study results of feature pyramid with spatial and channel attention (SC-FP module).

Type Model mIoU (%) FPS Params (M)

Baseline LMDCNet 73.8 71.2 1.05

Ablation for decoder depth LMDCNet-1× 1 72.0 76.4 1.04

Ablation for attention LMDCNet-CA 73.3 72.9 1.05

LMDCNet-SA 73.1 73.2 1.05

Ablation for FP kernel size LMDCNet-K333 73.1 73.2 1.05

LMDCNet-K235 73.4 72.7 1.05

LMDCNet-K135 72.8 72.9 1.05

TABLE 4 Evaluation results of our lightweight multi-dimensional dynamic convolutional network (LMDCNet) and other state-of-the-art real-time
semantic segmentation models on the Cityscapes test set.

Model Input size Pretrain GPU mIoU (%) FPS Params (M) IR

SegNet 640× 360 ImageNet TitanX 57 16.7 29.5 0.69

ENet 640× 360 No TitanX 58.3 135.4 0.4 1.08

ICNet 1024× 2048 ImageNet TitanX 69.5 30.3 26.5 0.87

ERFNet 512× 1024 No TitanX 68 41.7 2.1 1.23

ESPNet 512× 1024 No TitanX 60.3 112 2.1 1.09

BiSeNet 768× 1536 ImageNet TitanX 68.4 72.3 5.8 1.16

Fast-SCNN 1024× 2408 ImageNet TitanX 68 123.5 1.11 1.25

ESPNetV2 512× 1024 No TitanX 66.2 67 1.25 1.21

DFANet 512× 1024 ImageNet TitanX 70.3 160 7.8 1.15

LEDNet 512× 1024 No 1080Ti 69.2 71 0.94 1.27

ESNet 512× 1024 No 1080Ti 69.1 63 1.66 1.25

DABNet 512× 1024 No 1080Ti 70.1 104 0.76 1.29

FDDWNet 512× 1024 No 2080Ti 71.5 60 0.8 1.32

BCPNet 512× 1024 No TitanX 68.4 250.4 0.61 1.27

DDPNet 768× 1536 No 1080Ti 74.0 85.4 2.52 1.32

LEANet 512× 1024 No 1080Ti 71.9 77.3 0.74 1.35

SFNet 1024× 2048 No 1080Ti 78.9 26 12.87 1.19

PIDNet-S 1024× 2048 No 3090 78.8 93.2 7.6 1.29

LMDCNet 512× 1024 No 1080Ti 73.8 72.1 1.05 1.36
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.8 semantic segmentation network is that the higher the accuracy,
the lower the parameters, and the better the network. It is
equivalent to an inverse relationship between the segmentation
accuracy and the number of parameters. We must divide the
accuracy by the number of parameters. Let us take a simple
example: the accuracy of ENet is 58.3, the parameters are 0.4,
the ratio of accuracy to parameters is 145.75, the accuracy
of DABNet is 70.1, and the parameters are 0.76, then the
accuracy and parameters ratio is 92.27. We know that DABNet
is recognized as a network with much better performance
than ENet. However, the ratio of accuracy to parameters is
higher than DABNet, which shows that the relationship between
accuracy and parameters is not y = a × x. There is an offset b
between them. The relationship is y = a ×

(
x+ b

)
. We have

sorted out the formula:

a = y/(x+ b) (4)

Among them, y represents the segmentation accuracy
(mIoU), x represents the parameters (M), b represents the
offset, and a represents the increment rate (IR). We bring the
accuracy of PIDNet-S, 78.8 mIoU and parameter 7.6 M, and
the accuracy of 70.1 mIoU and parameter 0.76 M of DABNet,
which are recognized as the best lightweight real-time semantic
segmentation at this stage, into the formula, and get b = 53.4.
In this article, we take b = 53.4. The calculation formula of the
IR is:

a = y/(x+ 53.4) (5)

4.3 Ablation study

4.3.1 Ablation study for MS-DAB module
4.3.1.1 Ablation for residual module

The encoder part of LMDCNet we designed uses the MS-
DAB module. To prove the effectiveness of our designed encoder
module, we compare the same type’s residual modules. We
replace the MS-DAB module with a non-bottleneck-1D module,
a ShuffleNet module, and a DAB module and test them on
the Cityscapes dataset. As seen in Table 2, the LMDCNet
network with ShuffleNet’s coding module has the lowest number
of parameters and the fastest inference speed but the lowest
segmentation accuracy. The combined consideration needs to
be more competent for the actual segmentation task. On the
other hand, the semantic segmentation network using MS-
DAB has 0.15 M higher parameters than that using DAB,
and the segmentation accuracy is improved by 4.1%, which
is a more reasonable performance. The MS-DAB module
we designed perfectly balances segmentation accuracy and
parameters.

4.3.1.2 Ablation for dynamic convolution

We gradually replaced the multi-dimension dynamic
convolution in MS-DAB with the factorial and dynamic
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FIGURE 6

Some visual comparisons on the Cityscapes validation set. From left to right are input images, ground truth, predicted results from DABNet,
FDDWNet, LEANet, and our LMDCNet.

convolution to confirm that the MDy-Conv we proposed has
better experimental results than other convolutions displayed in
Figure 3. Table 2 shows that the convolution with the fewest
parameters and the fastest inference speed when utilizing the
factorial convolution also has the least accurate segmentation.
Even though there were 0.01 M more parameters with the
MDy-Conv than with the Dynamic convolution module,
segmentation accuracy increased by 1.0%, demonstrating the
excellent efficiency of our MDy-Conv.

4.3.1.3 Ablation for dilation rates

The size of the perceptual field of the network affects the
segmentation accuracy of the network, and the lightweight real-
time network uses dilated convolution to improve the receptive
field of the network. A reasonable dilation rate can improve
the segmentation accuracy of the network while avoiding grid
problems. In order to verify whether the criterion for the
dilation rates we designed is correct, we designed four groups
of dilation rates for tuning. The dilation rates of the first
two stages of our coding part are set to 1, and the third
part is set to (4,4,4,4,4,4,4), (2,2,5,5,9,9,17), (2,2,4,4,8,8,16), and
(1,2,5,2,5,9,17), respectively. The results from Table 2 show that
the segmentation accuracy is the lowest when the dilation rate
is set to (2,2,4,4,8,8,16), and the segmentation accuracy is the
largest when it is set to (1,2,5,2,5,9,17). Experiments show that
the design requirements for the dilation rate of our network
should follow the HDC (hybrid dilated convolution) design
principle. We design the final dilation rate of the network as:
(1, 2, 5, 2, 5, 9, 17).

4.3.1.4 Ablation for activation function

The introduction of nonlinear functions in the network
can improve the network performance. The commonly used
nonlinear functions in semantic segmentation are Relu and
PRelu. We use PRelu in the baseline network and Relu in the

comparison network. From the experimental results in Table 2,
it is concluded that PRelu is more suitable for the LMDCNet
network.

4.3.2 Ablation study for SC-FP module
4.3.2.1 Ablation for decoder module

The SC-FP module is the main component of the decoder
in our LMDCNet, which is an integration of encoded features
to refine the segmentation categories. However, most real-time
semantic segmentation deletes the decoder to pursue inference
speed. We replaced the SC-FP module in LMDCNet with 1 × 1
point convolution to justify the design of the SC-FP decoder
module. Table 3 shows that 5.2 FPS improves the inference
speed of the LMDCNet network with 1 × 1 convolution with
0.01 M parameter reduction, but the segmentation accuracy
is decreased by 1.8%. In summary, our design of SC-FP is
reasonable.

4.3.2.2 Ablation for channel attention

In designing SC-FP, we utilized the channel attention
technique. To illustrate the appropriateness of choosing the
channel attention branch in our SC-FP module, we removed the
channel attention branch. Table 3 shows that the segmentation
accuracy obtained by the decoding module without channel
attention is 0.5% lower than that obtained using the SC-FP
module. This experiment shows that the channel attention
branch we designed can improve the segmentation accuracy of
the network.

4.3.2.3 Ablation for spatial attention

We introduce the spatial attention branch in SC-FP, and
spatial attention focuses more on the spatial information
of segmented targets to improve segmentation accuracy. To
demonstrate the role of spatial branching in the decoder,
we removed the spatial attention branch for comparison.
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TABLE 6 Evaluation results of our lightweight multi-dimensional dynamic convolutional network (LMDCNet) and other state-of-the-art real-time
semantic segmentation models on the CamVid test set.

Model Input size Pretrain GPU mIoU (%) FPS Params (M)

SegNet 360× 480 ImageNet TitanX 55.6 – 29.5

ENet 360× 480 No TitanX 51.3 – 0.4

ICNet 720× 960 ImageNet TitanX 67.1 27.8 26.5

CGNet 360× 480 No 2xV100 65.6 – 0.5

BiSeNet 720× 960 ImageNet TitanX 65.6 175 5.8

BiSeNetV2 720× 960 ImageNet TitanX 68.7 124.5 49.0

DFANet 720× 960 ImageNet TitanX 64.7 120 7.8

DABNet 360× 480 No 1080Ti 66.2 124.4 0.76

LRNNet 360× 480 No 1080Ti 67.6 83 0.67

DDPNet 360× 480 No 1080Ti 67.3 – 1.1

LEANet 360× 480 No 1080Ti 67.5 98.6 0.74

LMDCNet 360× 480 No 1080Ti 69.6 92.4 1.04

TABLE 7 Evaluation results of each class Intersection over Union (IoU) (%) and class mIoU (%) on the CamVid test set.

Mode Bu Tr Sk Ca Si Ro Pe Fe Po Si Bi Cl

SegNet 88.8 87.3 92.4 82.1 20.5 97.2 57.1 49.3 27.5 84.4 30.7 55.6

ENet 74.7 77.8 95.1 82.4 51.0 95.1 67.2 51.7 35.4 86.7 34.1 51.3

BiSeNet 82.2 74.4 91.9 80.8 42.8 93.3 53.8 49.7 25.4 77.3 50.0 65.6

BiSeNetV2 83.0 75.8 92.0 83.7 46.5 94.6 58.8 53.6 31.9 81.4 54.0 68.7

DABNet 80.8 73.3 91.0 81.0 40.0 94.8 59.5 56.6 29.8 80.3 41.7 66.2

LEANet 82.0 75.0 91.2 83.2 44.2 94.9 63.2 55.7 30.2 81.1 41.9 67.5

LMDCNet 82.7 76.3 91.7 83.5 46.6 94.5 59.0 53.9 32.4 81.7 53.9 69.6

Table 3 shows that the segmentation accuracy obtained
by the decoder module without spatial attention is 0.7%
lower than that obtained using the SC-FP module. This test
shows that our spatial attention branch can improve the
network’s ability.

4.3.2.4 Ablation for kernel size

We employ convolutions with kernel sizes of 3 × 3, 5 × 5,
and 7 × 7 to obtain various context information scales in the
SC-FP module’s feature pyramid structure. We use a 3 × 3
kernel (K333) to replace each of the SC-FP module’s three
convolutions to show how effective this method is. Table 3
displays the experimental results. Additionally, we set up two
convolution combinations with smaller kernel sizes: 1 × 1,
3 × 3, 5 × 5 (i.e., K135) and 2 × 2, 3 × 3, 5 × 5 (i.e.,
K235). Table 3 demonstrates that our SC-FP module performs
well when 3 × 3, 5 × 5, and 7 × 7 convolutions are used to
construct a feature pyramid structure.

4.4 Evaluation results on cityscapes

The parameters of our designed LMDCNet are 1.05 M,
the inference speed on a 1080Ti is 72.1FPS, the segmentation

accuracy is 73.8 mIoU, and the increase rate is 1.36. The
increment rate represents the balance between the accuracy and
parameters of lightweight real-time semantic segmentation, and
the larger the increment rate, the better the balance. As can
be seen from Table 4, our increase rate is the highest among
lightweight real-time semantic segmentation at this stage.
The current state-of-the-art lightweight semantic segmentation
network PIDNet-S has a growth rate of 1.29, which is smaller
than that of the semantic segmentation network we designed. It
can be seen that our designed network outperforms PIDNet-S
in the balance between accuracy and parameters. The speed of
our designed network is 46.1FPS faster than that of SFNet tested
on the same 1080Ti platform. The number of parameters is only
1/12 of SFNet. Among the semantic segmentation network with
an input resolution of 512 × 1024, our accuracy is the highest,
1.9 mIoU higher than LEANet.

We show the results for each class IoU (%) and class mIoU
(%) on the Cityscapes test set in Table 5. Overall, especially
in 5 categories, our LMDCNet achieves higher segmentation
accuracy, demonstrating the effectiveness of our LMDCNet.
Figure 6 shows a visual comparison of the Cityscapes validation
set. We can classify different objects more accurately using
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LMDCNet and produce more consistent visual outputs across
all categories. LMDCNet outperforms ERFNet, DABNet, and
FDDWNet in the segmentation of vehicles, riders, and traffic
signs.

4.5 Evaluation results on CamVid

Tables 6, 7 show the contrast between LMDCNet and
other real-time semantic segmentation models for the CamVid
dataset. Our LMDCNet produced effective segmentation results
on the CamVid dataset. Without any prior training, our
LMDCNet has a segmentation accuracy of 69.6 mIoU. Our
LMDCNet can process 360 × 480 images at 92.4 FPS using
a 1080Ti GPU for inference speed. In contrast to most real-
time semantic segmentation models, LMDCNet has several clear
advantages: fewer parameters, excellent segmentation accuracy,
and quick inference speed. Our LMDCNet’s performance on the
CamVid dataset is the best, illustrating its superior adaptability
and effectiveness.

5 Conclusion

We present a lightweight multi-dimension dynamic
convolutional network (LMDCNet) with an ideal trade-off
between model size, segmentation accuracy, and inference
speed for real-time semantic segmentation. A multi-dimension
dynamic convolution is what we suggest (MDy-Conv). In
order to improve convolution presentation and maintain
remarkable accuracy, it uses multi-convolutional kernel fusion.
Our encoder is a depth-wise asymmetric bottleneck module
with multi-dimension dynamic convolution and shuffling
operations (MS-DAB module). This module can collect local
and contextual information with fewer parameters and less
computation. We propose a feature pyramid module (SC-FP
module) based on spatial and channel attention for decoding.
With minimal computational overhead, this module aggregates
context data and generates pixel-level spatial and channel
attention to aid in feature selection. According to experiments,
our LMDCNet performs exceptionally well with the Cityscapes
and CamVid datasets, making it the best option for various road
scene interpretation applications.
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