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For upper limb amputees, wearing a myoelectric prosthetic hand is the only

way for them to continue normal life. Even until now, the proposal of a

high-precision and natural performance real-time control system based on

surface electromyography (sEMG) signals is still challenging. Researchers have

proposed many strategies for motion classification or regression prediction

tasks based on sEMG signals. However, most of them have been limited to

o	ine analysis only. There are even few papers on real-time control based

on deep learning models, almost all of which are about motion classification.

Rare studies tried to use deep learning-based regression models in real-time

control systems for multi-joint angle estimation via sEMG signals. This paper

proposed a CW-CNN regression model-based real-time control system for

virtual hand control. We designed an Adaptive Kalman Filter to smooth the

joint angles output before sending them as control commands to control

a virtual hand. Eight healthy participants were invited, and three sessions

experiments were conducted on two di�erent days for all of them. During

the real-time experiment, we analyzed the joint angles estimation accuracy

and computational latency. Moreover, target achievement control (TAC) test

was applied to emphasize motion regression in real-time. The experimental

results show that the proposed control system has high precision for 3-DOFs

motion regression in simultaneously, and the system remains stable and low

computational latency. In the future, the proposed real-time control system

can be applied to actual prosthetic hand.

KEYWORDS

channel-wise CNN (CW-CNN), real-time control system, regression model, surface

electromyography (SEMG), target achievement control (TAC), virtual hand control

1. Introduction

Upper limb amputations can be very cruel to a person and can cause inconvenience

to life and work. In the United States, approximately 1 of every 200 people living with

a limb loss; and according to a survey conducted in 2011, in Japan, approximately

0.0047% of the disabled population in Japan are upper limb amputees (Kato et al., 2016;

Frontera et al., 2019). After receiving treatment, it is critical that upper limb amputees

actively use prosthetic hands in order to return to work. According to a detailed postal
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questionnaire which asked amputees about the frequency and

satisfaction of wearing functional prostheses, 64% of them rated

their prosthetic devices as “fair” or “not acceptable,” and 56% of

them wore their limbs “once in a while” or “never” (Davidson,

2002). Upper limb amputees can rely on myoelectric prosthesis

controlled by surface electromyography (sEMG) signal. In

recent years, sEMG-based top-level commercial prostheses have

been released, such as the Michelangelo Hand, Softhand Pro

and the open-source 3D hand (Godfrey et al., 2018; Selvan

et al., 2021; Bayrak and Bekiroglu, 2022). However, the control

methods of such advanced prostheses are rudimentary, the

performance is far from natural control and complicated

training procedures are required (Atzori et al., 2014). The

control systems of the myoelectric prosthetic hand not only

limit the quality of amputees’ daily life, but also result in the

low acceptance. Therefore, it is crucial to investigate a real-time

control system with high-precision and natural performance

based entirely on sEMG signals.

Many researchers have proposed various real-time control

systems for prosthetic hands. For example, Synergy-based

(Furui et al., 2019) and Multilayer Perception classifier-based

(de Oliveira de Souza et al., 2021) prosthetic hand control

systems have been proposed in recent years. Nowadays, many

scientists have tried to use deep learning models to decode

sEMG signals and to apply these models for motion recognition.

However, although there are many recent papers on offline

analysis using deep learning methods for motion recognition

(Zia ur Rehman et al., 2018; Huang and Chen, 2019; Koch et al.,

2020; Bai et al., 2021), few papers discussed the application of

those deep learning models in real-time control system. Here are

some recent studies on real-time control systems for myoelectric

prostheses based on deep learning methods: Jafarzadeh et al.

(2019) developed a novel prosthetic hands control system using

a convolutional neural network (CNN) motion classifier with

99.98 and 91.26% training and validation accuracy, respectively,

however, the test accuracy was low (48.40%); Tam et al.

(2020) proposed a CNN-based real-time gesture recognition

system for multi-articulating hand prosthesis control with

real-time classification accuracy of 98.15% and classification

latency of 100–200 ms. However, unfortunately, neither of

these papers completed the demonstration results or videos

of applying the proposed control system to virtual hands

or real prosthetic hands. In addition, we can find very

few research results on this topic, almost all of them used

CNN for real-time motion classification, and none of them

tried to use deep learning-based regression model in real-

time control system for multi-joint angles estimation by

sEMG signal.

Our previous research (Qin et al., 2021) proposed a

channel wise CNN (CW-CNN) regression model for three

degrees of freedom (3-DOFs) joint angles estimation, and

we not only discussed the high accuracy of offline regression

performance, but also proved that the robustness of the

proposed model on different days can be maintained and

even improved by applying transfer learning. However,

even when offline performance looks good, it can exist

some significant real-time difference (Simon et al., 2011).

Transforming offline analysis into online decoding still

remains challenging. Thus, in this work, our goal is to

apply the CW-CNN regression model to the proposed real-

time control system and evaluate its real-time performance

(accuracy and latency) and demonstrate its usability in

virtual hand control.

In order to clearly distinguish the proposed method from

real-timemotion classificationmethods, we need to demonstrate

that the system is able to control the virtual hand to reach

some specified target positions and maintain for a period

of time in real-time environment. Therefore, it is necessary

to consider the method which can track estimated trajectory

and emphasize the motions in 3-DOFs simultaneously. Target

achivement control (TAC) test has proven to be a useful

and challenging method for testing real-time classification

performance (Simon et al., 2011; Gusman et al., 2017),

however, real-time regression will be more challenging than

classification during TAC test. Thus, we applied TAC test

on evaluating our real-time control system to emphasize the

regression motions.

In this study, we present a real-time control system for

virtual hand control that applies the CW-CNN regression model

to estimate 13 daily motions which represented by 3-DOFs

(Figure 1) joint angles in real-time. Our goal is to achieve

accurate regression prediction not only for single motions but

also for mixture motions in real-time, and to control a virtual

hand as real-time control demonstration. A sliding window

is used to process the sEMG signal received through the lab

streaming layer (LSL) in real time. The input of the system is

the normalized integrated EMG (IEMG) signal processed from

the raw sEMG signals in the sliding window. The estimated

joint angles were transmitted to an Adaptive Kalman Filter

to reduce oscillations so that prevent motor damage. The

smoothed outputs can be sent to a virtual hand as control

commands. Our system estimates complex daily motions in real-

time, any prosthetic/virtual hand can be used for demonstration.

In the real-time experiments, we collected the estimated joint

angles, the real joint angles and computational latency of the

proposed system via LSL, calculated the correlation coefficient,

and analyzed the stability of the computational latency of

the system using one-way analysis of variance (ANOVA). We

evaluated the reliability and validity of the proposed real-time

control system in eight healthy participants by conducting

three sessions of experiment on two different days. In addition,

we designed TAC test to investigate the real-time regression

effect of the control system, and the experimental results

demonstrated the good performance in real-time. In the future,

the proposed real-time control system can be applied to

prosthetic hand.
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FIGURE 1

Introduction of the three degrees of freedom used in this study. (A) DOF1 is the joint to perform wrist flexion and wrist extension, wrist flexion

angle is positive number, and wrist extension angle is negative number. (B) DOF2 is the joint to perform wrist pronation and wrist supination,

wrist pronation angle is positive number, and wrist supination angle is negative angle. (C) DOF3 is the joint to perform wrist grip or return to rest

motion, the angle hand grip shows positive number.

2. Materials and methods

2.1. Data acquisition devices

The two data acquisition devices are the same as

previous work (Qin et al., 2021), or readers can refer

to Supplementary Figure S1 for details. The bipolar

multi-array electrode (SMK Corp., SEIREN Co., Ltd.;

Supplementary Figure S1A) was used to collect raw sEMG

signals, the sampling rate of sEMG acquisition was set to

500 Hz due to limitation of signal transmission speed of

Bluetooth low energy. The Perception Neuron Motion Capture

System (Noitom Ltd., China; Supplementary Figure S1B) was

used to measure joint angles in 3-DOFs, and the sampling

rate was 120 Hz.

2.2. Real-time control system

The part of Figure 2 with the blue dashed box shows the

composition of the proposed real-time control system. The real-

time control tool is a graphical user interface (GUI) that receives

sEMG signals in real-time and converts them into the output

joint angles of 3-DOFs after internal calculations. The output

joint angles can be sent directly to the virtual hand as control

commands to control its 3-DOFs respectively. There are three

experiments in two different days, we named them as Exp.1,

Exp.2, and Exp.3, respectively. Since the results and effects of

Exp.1 and Exp.2 have been discussed in the previous paper (Qin

et al., 2021), this paper will only analyze the results and effects

of Exp.3 (blue dotted box), i.e., real-time joint angle estimation

and virtual hand control. We will explain the experiment details

in the later sections.

The real-time control system was built in a laptop

(MouseComputer, CO., LTD, Japan), the operation system was

Microsoft Windows 10 Home 64 bit, with NVIDIA GeForce

GTX 1660 Ti, the processor was Interl(R) Core(TM) i7-10750H

CPU@ 2.60GHz, RAM 32.0 GB. Moreover, the virtual hand was

made by Unity Engine (version 2021.3.2f1).

The real-time control GUI tool written in Python3 and

PyQt5 (PyPI, Python Software Foundation. https://pypi.org/

project/PyQt5/) by our team and a virtual hand model built

by Unity (Unity Technologies). The real-time control GUI

tool includes Data Processing Module, a regression predictor,

and an Adaptive Kalman Filter. The Data Processing Module

processes raw sEMG signal in real-time as input to the regression

model updated by transfer learning, which will calculate the 3-

DOFs joint angles as output. To prevent the oscillation of the

estimated joint angles from damaging the motors of prosthetic

hand, even though we controlled a virtual hand in this paper,

we consider to apply Adaptive Kalman Filter to smooth the

joint angles before sending it to the robotics or virtual hand.

Please refer to Supplementary Movie S1 for the usage of the

proposed real-time control GUI. The following sections will

explain each module in detail.

2.3. Data processing module

In real time, sEMG signals are processed as normalized

integrated EMG (IEMG) signals and used as input to our

proposed regression model to estimate the 3-DOFs joint angles.

The window size of each sEMG acquisition is 120 ms, i.e., the

raw sEMG size of each acquisition is [60 × 32] in each time, 32

is channel numbers, and 60 = 500 Hz × 0.12 s. The real-time

control GUI always obtains the latest sEMG signal as input to
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FIGURE 2

Illustration of the proposed real-time control system. The real-time control consists of three sessions, where Exp.1 and Exp.2 show the model

training procedures before real-time control (Exp.3). The Exp.3 (part in the blue dashed box) shows the structure of the real-time control system,

consists of four parts: Data Processing Module, trained CW-CNN regression model, Adaptive Kalman Filter, and a Virtual Hand model program.

the Data ProcessingModule after processing the previous sEMG

signal to prevent signal delay.

Before starting the real-time experiment, we need to

collect maximum voluntary contraction (MVC) data from the

participant for the day for signal normalization afterwards.

Firstly, the low-pass finite impulse response (FIR) filter proposed

in a previous paper from our laboratory (Koike and Kawato,

1995) is applied to filter the rectified sEMG signals in each

channel, which we call them IEMG signals. Then, IEMG signals

in each channel are normalized from 0 to 1 via the maximum

and minimum value of MVC in each channel. This progress can

be described as the following equations:

IEMGi = filter(abs(EMGi)) (1)

IMVCi = filter(abs(MVCi)) (2)

IEMGi
norm =

IEMGi −min(IMVCi)

max(IMVCi)−min(IMVCi)
(3)

where i is channel, i = 1, 2, ..., 32. IMVC is integrated

MVC, means to process MVC signals in the same way

as IEMG signal, IEMGnorm is the normalized IEMG

signal. The abs() function means to calculate the absolute

value of input series, so that obtain rectified sEMG

signals; the filter() is the FIR filter which proposed in

Koike and Kawato (1995). The size of normalized IEMG

data is also [60 × 32], and is fed into the following

regression model as input. In real-time experiment,

one of the sEMG data processing results is shown

in Supplementary Figure S2.
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2.4. CW-CNN regression model

In our previous research (Qin et al., 2021), we proposed a

CNN-based regression model for the estimation of 3-DOFs joint

angles, and obtained very high-performance accuracy in offline

analysis. We considered the use of channel wise filters in the

convolutional layer, which is the reason to name it CW-CNN

(Sakhavi et al., 2018).

In this paper, we applied the proposed CW-CNN regression

model to our real-time control system to achieve the desired

virtual hand control. The model has two layers, a convolutional

layer and a fully connected layer. The input to this model

is a [60 × 32] matrix, with six [60 × 1] channel wise

filters compressing the time dimension to obtain six [1 × 32]

feature maps (force pattern). The fully connected layer connects

the six force patterns from end to end into a [1 × 192]

vector, which is calculated as a 3-DOFs joint angles output by

different sets of three parameters (weight and bias) of the fully

connected layer, respectively.

In Exp.1, model was initially trained for each participant

by 10-fold cross validation on 10-trial datasets. In Exp.2,

model of each participant was updated on different days

using 5-trial new datasets via transfer learning for 5-fold cross

validation. After transfer learning, the updated model was

applied to the real-time control GUI for joint angles estimation

directly in Exp.3. The training and application steps of the

above model can be reflected according to Figure 2, and the

color of each convolutional layer or fully connected layer

indicates whether the layer parameters were updated by training.

The detail information about model training is shown in

Supplementary Table S1. The training procedure was conducted

in different PC, using PyTorch 1.3.1, GeForce RTX 2080 GPU

and CUDA10.1. The convolutional layer is denoted as Conv.

layer and the fully connected layer is FC layer. LRmeans learning

rate, and CV is abbreviation of cross-validation.

2.5. Adaptive Kalman filter

In engineering, Kalman filter is often used to estimate

the unknown variables more precisely using a series of data

(Kalman, 1960; Li et al., 2015), which is an iterative process. Each

time a new observation is obtained, system state (x) and error

covariance (P) are updated. Since each iteration uses only the

result of the previous iteration and the new measurements, the

filter occupies very few computational resources. The filtering

process of Kalman Filter can be iterated by the following three

formulas:

K(k) =
P(k− 1)

P(k− 1)+ R
(4)

x(k) = x(k− 1)+ K(k) · (z(k)− x(k− 1)) (5)

P(k) = (1− K(k)) · (P(k− 1))+ Q (6)

Where, at time k, K(k), x(k), P(k), and z(k) are the

Kalman gain, the filtered value we expect, the filter deviation

matrix, and observation value, respectively. Q and R are

transition covariance matrix and observation covariance matrix,

respectively. However, we need to provide Q and R values

by ourselves. It is hard to say that the preset values are the

optimal solutions for our proposed system, therefore, we need

the Kalman Filter to have adaptive adjustment. To achieve the

Adaptive Kalman Filter (Mehra, 1970), Q and R need to be

updated after each iteration, and we designed the adjustment

procedure as the following formulas:

Q(k+ 1) = Q(k)+
1

k+ 1
(Q̂(k+ 1)− Q(k)) (7)

R(k+ 1) = R(k)+
1

k+ 1
(R̂(k+ 1)− R(k))) (8)

Where k + 1 denotes the next iteration time; Q(k + 1) and

R(k + 1) denote the updated values that will be used in next

iteration. Q(k) and R(k) are the parameters used in kth iteration;

Q̂(k + 1) and R̂(k + 1) are the variances estimates using the

previous Q and R, respectively.

2.6. Participants

We invited eight healthy participants (Sub.1–Sub.8) to

participate in the experiment on different days. They were

asked to read the participant information sheet and provide

written informed consent to participate in this study before

the experiments. Due to the limited size of the multi-array

electrode sleeves, the choice of the right or left hand depends

on whether the forearm size of the participant fits better

in the left- or right-hand sleeve. Data from the participants

were acquired at the Tokyo Institute of Technology, the study

protocol was approved by the ethics committee of the Tokyo

Institute of Technology and was conducted in accordance with

the Declaration of Helsinki. The participants’ details can be

found in Supplementary Table S2.

2.7. Experiment

The experiment in this study was divided into three sessions:

two offline sessions (Exp.1 and Exp.2) and real-time control

session (Exp.3). For each participant, the experiments were

conducted on two different days. Exp.1 aimed to collect data set

to train a new joint angle estimation model for each participant.

We designed Exp.2 and Exp.3 for each participant on other

days for real-time control of the virtual hand. Before the real-

time control, we collected small number of new datasets to
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FIGURE 3

Experiment scene for Exp.1 and Exp.2. (A) A participant (Sub.1) was wearing the electrode sleeve and Perception Neuron glove, seated in front

of a screen. The screen will show the next motion need to be performed. (B) Daily movements pictures (right hand), show the details of M0 M13

in Table 1. M1–M5 are single motions, M6–M9 are double-mixture motions, and M10–M13 are triple-mixture motions, M0 denotes the central

position.

update model parameters via transfer learning (Exp.2). Then,

the updated regression model was applied to the real-time

control system, so that participants were able to control the

virtual hand in real-time (Exp.3). Lab streaming layer (LSL,

https://github.com/sccn/labstreaminglayer) is a system for the

uniform collection of measurement time series in research

experiments. In all sessions of the experiment, LSL was used to

synchronize data for model training, result analysis, and control

command transmission.

After wearing the devices, the participants sat in front of

a screen during the experiment, and they were instructed to

perform the corresponding motions displayed on the screen

(Figure 3A). The motions were the common daily motions

(Figure 3B and Table 1), including five single motions (M1-M5),

four double-mixture motions (M6-M9) and four triple-mixture

motions (M10-M13), the pictures of each motion (right hand)

are given (Figure 3B).

2.7.1. Exp.1 and Exp.2: model initial training
and transfer learning

In Exp.1, there were 10 trials in total. In each trial,

participants were required to performmotions fromM1 toM13.

After each trail, participants rested for approximately 2 min to

prevent muscle fatigue.

TABLE 1 Specified daily motions that should be performed in the

experiment.

Motion ID Contents

M0 Rest

Single motions M1 Wrist flexion (WF)

M2 Wrist extension (WE)

M3 Wrist pronation (WP)

M4 Wrist supination (WS)

M5 Hand grip (HG)

Double-mixture M6 WF+HG

M7 WE+HG

M8 WP+HG

M9 WS+HG

Triple-mixture M10 WF+WP+HG

M11 WE+WP+HG

M12 WF+WS+HG

M13 WE+WS+HG

Exp.2 was conducted in different days, there were 5

trials in total. During the transfer learning, we fixed the

convolutional layer parameters and updated the fully connected
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layer parameters using the new dataset. This transfer learning

method is called layer transfer. Layer transfer (Yosinski et al.,

2014) is the process of fixing some layers of a model directly

into a new network, and then training the rest of the network

with only a small amount of new data. In our experiments,

we used 32 channels sleeves for sEMG signal acquisition, the

sleeve completely encased the entire forearm, and we did not

need to adjust the electrode location. Thus, we considered

the convolutional layer as the layer in direct contact with

the raw sEMG signal, which could acquire the same motion

pattern on different days, so we fixed the parameters of

convolutional layer and only updated the fully connected layer

to maintain the robustness of the model. More discussions

and comparison results about the proposed transfer learning

methods can be found from Qin et al. (2021). The training of

transfer learning process lasted about 2.5 min, so participants

did not need to wait too long before proceeding to the real-time

estimation experiment. The model training details can be found

in Supplementary Table S1.

For both Exp.1 and Exp.2, after measuring the sEMG signals

and joint angles, sEMG signals were processed as normalized

IEMG signals, and synchronized with joint angle data via time

stamps of LSL. However, the sampling rates of sEMG signal

and joint angles were different. Therefore, we up-sampled joint

angles data from 120 to 500 Hz to match EMG signals. Readers

can get more details about Exp.1 and Exp.2 in Qin et al. (2021).

2.7.2. Exp.3: Real-time experiment

After the transfer learning (Exp.2), we obtained an updated

regression model for real-time estimation and control. We ran

the proposed real-time control system, collected MVC of the

participant for signal normalization, loaded the trained model

into the system, then we could check the estimated 3-DOFs joint

angles in real-time on the GUI tool (Supplementary Movie S1).

Then, we connected the real-time system to Unity program, and

the system outputs were sent to control the virtual hand in real-

time. Participants needed to perform the motions in Table 1. We

designed three tasks (Figure 2) of this session: (1) Task 1: Joint

angle estimation; (2) Task 2: Computational latency analysis; (3)

Task 3: Virtual hand control demonstration;

For Task 1, participants needed to wear Perception Neuron

glove, the measured angles, raw sEMG signals, estimated

joint angle and the system outputs were acquired via LSL

for evaluation. Since this was a regression prediction task,

we chose Pearson correlation coefficient (CC) (Taylor, 1990;

Stapornchaisit et al., 2019; Qin et al., 2021; He et al., 2022) as

the metric to evaluate the prediction accuracy:

CC(X,Y) =
1

N − 1

N∑

i=1

(
Xi − µX

σX
)(
Yi − µY

σY
) (9)

Where N is series length, X and Y are the variables we need

to compare. µX and µY are mean value of variable X and Y ,

respectively; σX and σY are standard deviation of X and Y . CC

ranges from –1 to 1, with CC = 0 indicating no relationship

between the two variables; a positive CC indicates a positive

correlation, while a negative CC indicates negative correlation,

which is not expected. Therefore, we hope to demonstrate the

high regression accuracy of the real-time motion estimation by

increasing the CC value to get as close as possible to 1.

We measured the latency of each calculation process in Task

2 (see Section 4.3 and Pseudo Code in Supplementary material),

including the processing from sEMG signal to final system

output (after Adaptive Kalman Filter). For each participant, the

delays were saved as data streaming during the experiment.

Participants were instructed to continue doing any motions for

5 min, then computational latency data were saved as a 5-min

stream for statistical analysis.

We designed TAC test for analyzing the real-time regression

effect, which will be introduced in Section 2.9.

2.8. One-Way ANOVA

One-way ANOVA is an appropriate method for more than

two groups comparison (Kim, 2014). For each participant,

computational latencies were series data in 5 min and divided

into five groups, each group representing a sequence of latencies

per minute, then we used anova1() function in MATLAB (The

MathWorks, Inc., USA) to obtain p-value and the box plot of

data by group. We set the significance level of the ANOVA

tests at 0.5 (Ganesh et al., 2018) to evaluate the computational

latencies of the five groups and the eight participants: (1)

Comparison between minutes: if the system is unstable, the

delay also becomes more pronounced over time, this step is to

demonstrate the stability of the proposed system during use;

(2) Comparison between participants: participants joined the

experiments in different days, thus, this step is to demonstrate

the stability of the system in different days. If the p > 0.5,

it can be demonstrated that there is no significant difference

between the compared items, namely, the computational latency

of the proposed real-time control system was stable, did not

vary with time.

2.9. TAC test

It is important to provide more proofs of real-time

motion regression in this study. Simon et al. (2011) proposed

the TAC test to simulate the possible myoelectric prosthetic

hand performance in real life. During the TAC test, the

participants needed to control the virtual hand in multi-DOFs

to touch the target postures, and stayed for a period of time

(dwell time). Participants might experience some unexpected
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FIGURE 4

Illustration of the target achievement control (TAC) test designed in this paper. Participants need to control the virtual hand with only EMG

electrode sleeve to complete the posture shown as target (gray hand), if the controlled hand is recognized as touching the target hand, it will

turn green. When the green color lasts for 0.5 s dwell time, the posture is completed and the target hand changes to the next posture. For each

TAC test, participants were required to achieve di�erent target postures (Target 1 and Target 2), and the starting and ending with the central

position (Central 1 and Central 2). Each participant was required to complete TAC-1, TAC-2, and TAC-3 test. For detailed TAC test parameters

and the 3-DOFs target joint angles for each group of TAC tests, please refer to the Table 2.

regression control feedback, and needed more time to adjust

the posture, and thus increased the TAC completion times

and decreased the completion rates. According to Simon et al.

(2011), we should pay more attention on parameters such

as target width (acceptance tolerance), dwell time and trial

time limits. Moreover, we used completion rates, completion

time and real-time trajectory of the virtual hand as evaluation

metrics to evaluate the effect of the proposed regression

control system.

In this study, four participants (Sub.3, Sub.4, Sub.5, and

Sub.8) were invited to conduct the experiment. The illustration

of the TAC test experiment can be found in Figure 4.

Participants needed to control the virtual hand with only

sEMG electrodes sleeve to touch the target posture. When

the target is achieved within acceptable target tolerance, the

virtual hand turns green. If the virtual hand achieves the target

and stays for the pre-set dwell time, the target posture is

completed and target changes to next posture. In order to

challenge the difficult task, for each target posture, the angle

was changed in all 3-DOFs simultaneously, we set the same

acceptance tolerance to ±5◦, which was the same as Simon

et al. (2011). Considering that real-time motion regression

is more difficult than motion classification, we reduced the

dwell time to 0.5 s and shortened the time limitation of

each trail to 30 s accordingly. We designed three trials TAC

tests: TAC-1, TAC-2, and TAC-3. For each trial, the target

posture started from the central position (denote as Central

1 in Figure 4) and ended with the central position (denote

as Central 2 in Figure 4) after all postures were completed in

this trial. We summarize the important TAC parameters and

the angular information of the 3-DOFs for each target posture

in each TAC-1, TAC-2, and TAC-3, respectively, please refer

to Table 2.

We used completion rate curve to evaluate the TAC

results. Within the 30 s time limit, we calculated the

completion rate at each time point by obtaining the

number of completed postures, and plotted as a completion

rate curve:

CR(t) =
Ncompleted(t)

Npostures
(10)

Where CR means completion rate, t is the time point. CR

will be calculated from the trial beginning until time limit.

Ncompleted(t) is the completed postures number at t. For all TAC-

1, TAC-2 and TAC-3. According to Figure 4 and Table 2 the

posture numbers Npostures = 4.
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TABLE 2 TAC test parameters and target motion details.

Parameters Setting

DOF number 3

Dwell time 0.5 s

Target tolerance ±5◦

Trial time limitation 30 s

TAC test Posture Joint angles

TAC-1 Central 1 DOF1: 0◦ ; DOF2: 0◦ ; DOF3: 0◦

Target 1 DOF1: 15◦ ; DOF2: 15◦ ; DOF3: 15◦

Target 2 DOF1: 30◦ ; DOF2: 30◦ ; DOF3: 30◦

Central 2 DOF1: 0◦ ; DOF2: 0◦ ; DOF3: 0◦

TAC-2 Central 1 DOF1: 0◦ ; DOF2: 0◦ ; DOF3: 0◦

Target 1 DOF1: -15◦ ; DOF2: 15◦ ; DOF3: 15◦

Target 2 DOF1: -30◦ ; DOF2: 30◦ ; DOF3: 30◦

Central 2 DOF1: 0◦ ; DOF2: 0◦ ; DOF3: 0◦

TAC-3 Central 1 DOF1: 0◦ ; DOF2: 0◦ ; DOF3: 0◦

Target 1 DOF1: 15◦ ; DOF2: -15◦ ; DOF3: 15◦

Target 2 DOF1: 30◦ ; DOF2: -30◦ ; DOF3: 30◦

Central 2 DOF1: 0◦ ; DOF2: 0◦ ; DOF3: 0◦

The actual motion performance of each posture for each trial can be checked in Figure 4.

3. Results

3.1. Joint angles estimation

According to Figure 2, in the Task 1 of Exp.3, we obtained

four experimental data: (1) Raw sEMG signal; (2) Estimated

joint angles by the CW-CNN regression model; (3) System

joint angles output (after Adaptive Kalman Filter); (4) Measured

joint angles from motion capture system. We calculated the CC

between the system joint angles output and the measured angles

for each of the 3-DOFs, respectively. And we analyzed CC not

only according to different DOFs, but also according to different

movement types (single, double-mixture, and triple mixture).

After we obtained the data through LSL, we corresponded

the data by time using LSL timestamp, and converted the raw

sEMG signal into normalized IEMG signal according to the

MVC of the real-time experiment for judging motions. The real-

time estimation result of Sub.1 is shown in Figure 5, CC value

of the 3-DOFs joint angles were 0.9406, 0.8030, and 0.9016,

respectively. The top figure shows the 32 channels normalized

IEMG signals, since the participants were asked to complete

the specified motions in order, the hand motions could be

corresponded to the order of M1–M13 according to the IEMG.

For joint angles curves, blue line indicates the measured true

angles, red line indicates the estimated angles using CW-CNN

regression model. We can see oscillations from the direct output

(red line), and if it is sent directly to the prosthetic hand, there

is a risk that the motors will be damaged due to the sudden

oscillations. Adaptive Kalman Filter was applied to smooth

the angular output of the real-time estimation (black line in

Figure 5). All Kalman parameters were updated in the real-time

iterations. We set the initial values of the Q and R to 0.05 and

0.4, respectively, and according to Equation (7) and (8), we

were able to observe the asymptomatic convergence of the two

hyperparameters (Figure 6).

Since our goal in this paper is to propose a real-time control

system, in this paper we only compared the CC between the

system output (Figure 5, black line) and the measured angles

(Figure 5, blue line) to evaluate the prediction accuracy of the

real-time control system.

Figure 7A shows the average CC results over the 3-DOFs

joint of the eight participants. The CC of DOF1 was 0.9016 ±

0.023, DOF2 was 0.7936 ± 0.0427, and DOF3 was 0.8650 ±

0.0401. We compared the average CC results for all participants

for single motions, double-mixture motions, triple-mixture

motions and all motions by segmenting the data, as shown in

Figure 7B. The average CC result for single motions was 0.8404

± 0.039, for double-mixture motions was 0.8574 ± 0.046, and

for triple-mixture motions was 0.8580 ± 0.036, average CC of

all motions for all participants was 0.8519 ± 0.036. The results

show that the proposed system is also suitable for estimating not

only single motions, but also mixture motions in real time.

3.2. System computational latency
analysis

The process of converting the raw sEMG signal to

IEMG signal and calculating the IEMG signal to joint

angle by CW-CNN model in the real-time control system

consumes computational time, which can cause some

latency in the real-time process. In order to analyze

the latency generated by the proposed system in real-

time control, we collected the time consumption series

during Exp.3.

In this paper, we obtained 5 min of computational

latency data from participants using LSL during real-

time experiment. We used one-way ANOVA to prove the

stability of the system latency, and set significance level

to 0.5 to indicate that there is no significant variability

between the computational latencies. We analyzed the

computational latency of the system in two steps: (1) For

each participant, we divided the latency data into five

groups, each group data indicates the system latency data

in each minute, then used ANOVA to calculate the p-value

of the five groups latency data; (2) For all participants, we

calculated the p-values of the eight participants’ computational
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FIGURE 5

Example real-time experimental results in Task 1 for 3-DOFs joint angles (Sub.1, left hand). The evaluated movements (M1-M13) correspond to

the normalized IEMG signals for each 32 channels and the 3-DOFs joint angles. For joint angels: Blue line represents the measured data

acquired from the Perception Neuron Motion Capture System; Red line is the estimated output from CW-CNN regression model; Black line

denotes the smoothed output via Adaptive Kalman Filter. The prediction CC between black line and blue line of each DOF is 0.9406 (DOF1),

0.8030 (DOF2), and 0.9016 (DOF3) respectively.

latencies via ANOVA. Figure 7C shows the analysis result of

computational latency.

3.3. Virtual hand control

In this paper, we used Unity engine to build a virtual hand

motion program that can perform the 3-DOF movements for

a demonstration of real-time control. The virtual hand can

receive the joint angles by recognizing the system outputs via

LSL in real-time. In order to record separate videos of the

left- and right-handed demonstrations, we programmed both

hands for control.

3.3.1. Real-time control demonstration results

Participants were asked to complete the 13

specified motions (M1-M13). Several demonstration

videos are available in the Supplementary material,

please refer to Supplementary Movie S2 (Sub.8, right
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FIGURE 6

Adaptive results of Kalman hyperparameters Q and R in real-time experiments.

hand), Supplementary Movie S3 (Sub.4, left hand) and

Supplementary Movie S4 (Sub.4, left hand; motion

order changed).

3.3.2. TAC test results

Demonstration videos of TAC test experiment are provided,

please refer to Supplementary Movies S5–S7. During TAC test,

all participants completed the trials for all TAC-1, TAC-2,

and TAC-3 within the time limit (30s, Table 2). Figure 8 is

the average completion rate curves result, solid line indicates

the performance during TAC1, dashed line indicates the

performance during TAC-2, and dotted line indicates the

performance during TAC-3. Moreover, we show the trajectory

plot of all TAC trials of the 3-DOFs for one of the participants

(Sub.4) as Figures 9A–C, the green area denotes the dwell

time duration, gray area denotes the adjustment duration,

and red lines are the upper and lower boundaries of the

acceptance tolerance (±5◦, Table 2) range of target posture.

We will discuss the regression effect based on these results

in Section 4.4.

4. Discussion

We proposed a real-time control system for virtual hand

control. We analyzed regression accuracy by calculating Pearson

CC between system angles output and measured joint angles.

We also analyzed the computational latency of the system by

collecting 5 min of latency data during real-time experiment of

each participant. Furthermore, participants controlled a virtual

hand using their sEMG signals to complete the 13 daily motions

and TAC test. In this paper, we proposed a real-time control

system, the good performances (accuracy and computational

latency) of the system are the main contributions of this paper.

When using the virtual hand as demonstration object, we can

focus on analyzing the proposed system. If we control a real

prosthetic hand, in addition to the computational latency, the
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FIGURE 7

Real-time experimental results of all participants for system evaluation. (A) Average CC results over the 3-DOFs joint of participants, error bar

indicates the standard error. (B) Average CC results for di�erent types of motions, the error bar indicates the standard error. (C) Computational

latency analysis result using ANOVA. The red mark of the box plot denotes the outliers of the data.

real-time performance will also relate to the data transmission

speed, hardware delay, etc., which should be other topics.

4.1. Real-time data processing

The IEMG signal was less noisy compared to the raw

sEMG signal and the signal due to muscle activity becomes

more pronounced after the normalization process based on

the MVC. Under real-time conditions, the sliding window

was always slid to the latest acquired raw sEMG signal to

prevent the delay caused by the signal transmission. One of the

examples of real-time sEMG processing results can be found in

Supplementary Figure S2.

4.2. Real-time regression accuracy and
e�ect of adaptive Kalman filter

The real-time joint angles estimation results in Figure 5

show that there are oscillations in the estimated joint angles

output (red line). The reason could be caused by the low

sampling rate of the estimated joint angles (about 7.5 Hz),

which could be caused by the calculation latency and the special
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FIGURE 8

Average completion rate curves for all TAC trials. Solid line indicates the performance during TAC-1; Dashed line indicates the performance

during TAC-2; Dotted line indicates the performance during TAC-3.

handling of the sliding window. The computational latency was

unavoidable, however, each sliding window took the latest batch

of sEMG signals for processing, and the system processed them

until the next data acquisition, while new sEMG signals were

still being generated continuously during the sliding window

processing, so there was a certain amount of signal loss during

the processing procedure from the previous processing to the

next processing. We think this should be the main reason for the

oscillations. Despite the oscillations occurred in the estimated

output, we could still see the expected estimated motions from

the curve, thus, we only need to smooth the output angle of

the model so that we can use the joint angles directly for safe

real-time control of the prosthetic hand. The Adaptive Kalman

Filter was applied to smooth the estimated joint angles. Before

using the Adaptive Kalman Filter, we tried to use a conventional

Kalman Filter to handle the output oscillations, we could only

adjust the hyperparameters Q and R manually. After many

attempts, we found that setting to Q = 0.05 and R = 0.4, the

Kalman Filter performed our expected results. However, this still

does not indicate that the artificially pre-set hyperparameters

are the optimal solution for the real-time situation. Therefore,

we considered the improvement of the conventional Kalman

Filter to a hyperparametric Adaptive Kalman filter. In our

expectation, the two hyperparameters should converge to their

optimal solutions, respectively as time increases. Finally, we

considered an update mechanism using variance estimate-based

method (Mehra, 1970) to predict the hyperparameters at the

next moment, achieving our expected results (Figure 6). Even

though we used the Adaptive Kalman filter, we still needed to

pre-set the initial hyperparameters, so we set the initial values of

the Q and R to 0.05 and 0.4, respectively. For all participants, Q

and R converged to near 0.002 and 0.02, respectively.

Figure 7A shows the CC results for different DOFs, we can

find that although we offline trained and estimated only single

motions (M1–M5) analyzed in Qin et al. (2021), we can still

see the expected real-time motions in the system estimation

results (Figure 5) even after addingmixture motions (M6–M13).

Figure 7B shows the CC results for single motions, double-

mixture motions, triple-mixture motions and all motions. We

can find that for mixture motions (double-mixture and triple-

mixture motions), the estimation average CCs were accurate

and nearly at the same level than that of the single motions.

Therefore, we can conclude that the proposed CW-CNN

based real-time control system can not only regress estimate
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FIGURE 9

Example real-time regression trajectory (Sub.4). C1 and C2 mean Central 1 and Central 2 posture, T1 and T2 mean the Target 1 and Target 2.

The 0.5s dwell duration is represented as green color, the gray areas denote the movement adjustment duration, the red lines indicate the upper

and lower boundaries of the acceptance tolerance range of the target posture. (A) Trajectory in TAC-1, trial ended at 9.9 s in this result. (B)

Trajectory in TAC-2, trial ended at 27.1 s in this result. (C) Trajectory in TAC-3, trial ended at 22.9 s in this result.

the 3-DOFs joint angles simultaneously, but also achieve a

good performance for mixture motions. This gave us a lot of

confidence to conduct the subsequent 3-DOFs TAC test.

4.3. Computational latency of the
proposed system

We define the duration which consumed by the following

process as the computational latency: (1) From raw sEMG

signal to normalized IEMG signal, (2) CW-CNN regression

model calculation, (3) Using Adaptive Kalman Filter to obtain

system output. We used PyQt5 to build the whole system

framework, and everything in the update() function was looped

regularly via QtCore.QTimer(). We used time.time() in Python3

to not only get the start time before each acquisition of the

latest sEMG signal through sliding window, but also get the

end time after using Adaptive Kalman Filter, and then the

time difference was calculated by subtraction and converted to

milliseconds (ms) units. Readers can refer to Pseudo Code S1
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in Section 2. From Figure 7C, firstly, we can focus on the result

for each participant during the whole real-time experiment.

Let us take Sub.1 as an example, the p-value for these 5 min

is 0.9589 (>0.5), indicating that the computational latency

of the control system is stable at 75 ± 45 ms during the

real-time experiment. Similarly, for Sub.2–Sub.8, all of the p-

values are higher than 0.5, and the average latency is 74–76

ms. Then we can focus on the computational latency for all

participants. The p = 0.8410 (>0.5) shown that the proposed

system maintains a stable computational latency during the

experiment even on different days. In the contraction of skeletal

muscle, there is a delay between electrical activity and force

detection, this delay in electromechanical coupling is about 30–

100 ms (Cavanagh and Komi, 1979), and by watching the videos

in Supplementary material, the computational latency of about

75 ms essentially restores the process of electrical signals to

muscle activity, and is acceptable. In addition, Considering that

the sliding window length is 120 ms in duration, and with the

75 ms latency still within the real-time control constraint of

about 300 ms (Tam et al., 2020). However, from Figure 7C, by

observing the latency box plots for a specific participant, it can

be seen that although the latency sequences are stable, latencies

still floating within a certain range, i.e., with a standard deviation

of ±44 ms. We consider that this was due to the uncontrollable

delay generated by this real-time control system using LSL to

receive the sEMG signal and continuously send the experimental

data at the same time (Figure 2). It might also be caused by the

system hardware of the PC used for the experiment.

4.4. TAC test and regerssion trajectory
emphasis in 3-DOFs

The purpose of designing the TAC test was to verify that

users could control the virtual hand using the proposed system

to reach the target motions within time limit in real-time, and to

emphasize the effect of simultaneous regression of 3-DOFs. The

real-time regression effect can be proved in this experiment, and

demonstration video of TAC-1, TAC-2, and TAC-3 are provided

in Supplementary Movies S5–S7.

Figure 8 indicates how the participants completed the target

postures within the trial time limit, we can find that all

participants completed all postures. In Figures 9A–C, the dwell

phases were shown as green areas based on these dwell duration

information. Take TAC-1 as an example, according to Table 2,

target angles of the four target postures were 0◦, 15◦, 30◦, and 0◦,

respectively, for all 3-DOFs, which means, with ±5◦ acceptance

tolerance, the ranges were [–5◦, 5◦], [10◦, 20◦], [25◦, 35◦], and

[–5◦, 5◦], respectively. The same analysis was applied to TAC-1,

TAC-2, and TAC-3 for all participants. We used bold red lines

to express the upper and lower boundaries of the acceptance

tolerance ranges in trajectory curves. According to the above

explanation, from trajectory curves, we found that participants

tracked the target postures, and joint angles were regression in

3-DOFs in real-time. Compared to Figure 5, in TAC test, the

angles stayed for dwell time at different intermediate angles

instead of changing from 0◦ to the maximum angles only, which

is the significant proof to distinguish real-time regression from

real-time classification. Moreover, we can check highly desirable

regression result in 3-DOFs simultaneously. Even though the

angles changed within the range during posture dwell time, we

consider this was due to slight muscle contraction and relaxation

during motion maintenance. To maintain a motion, we always

adjust our muscle force to stay, this is the difficulty of real-time

regression control compared to motion classification.

5. Limitations and future work

We conducted experiments for eight participants and

evaluated the proposed real-time control system through

analysis of regression accuracy (CC), computation latency

and virtual hand control demonstration. In addition, four of

the participants joined the TAC experiment to test the real-

time regression performance of the proposed real-time control

system. Due to some limitations of this study, we proposed the

following future work.

5.1. Apply the proposal to a practical
prosthetic hand control task

In this paper, we discussed the computational latency for

real-time joint angles estimation. If we use a real prosthetic hand,

besides the latency of system processing, the control latency

also depends on the hardware performance of the machine.

Moreover, in the future, if we want to control the prosthesis

directly, in addition to the computational latency, we also need

to consider the latency caused by the command transmission as

well as the performance of the prosthesis hardware.

5.2. Introduce force and tactile feedback
mechanism to real-time control system

In the future, when we use an actual prosthetic hand for

real-time control, it will be interesting to include experiments

on grasping objects based on high-precision estimation of

multi-joint angles. Thus, regression prediction of grip force

(Baldacchino et al., 2018; Chen et al., 2020) should also be

considered. For enhancing the ability of amputees to interact

with objects, tactile feedback is important (Navaraj et al., 2019),

integrated biomimetic tactile sensors (Liang et al., 2019; Abd

et al., 2020; Romeo et al., 2021) and a feedback actuation
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mechanism (Stephens-Fripp et al., 2018) should be designed in

the future.

5.3. Test on actual amputees

In this study, we only tested the real-time control system on

healthy participants. However, it is hard to prove the similar

level can be achieved for actual amputees or not. The real-

time performance of amputees will depend on the level of

muscle residuals. We regret that we were unable to invite actual

amputees to participate in the real-time experiments. In the

future, the task to apply the proposed real-time control system

to actual amputees based on the data acquisition methods in this

paper should be mentioned.

6. Conclusion

In this paper, we proposed a deep learning regression-based

real-time control system for virtual hand control based on CW-

CNN regression model. The system estimated 13 daily motions

(including single motions, double-mixture motions and triple-

mixture motions) in real time based on sEMG signal. We used

a virtual hand model as a demonstration of real-time control. In

real-time experiments, eight participants controlled the virtual

hand to complete the specified daily motions, and four of them

conducted TAC test. The experimental results show that: (1) The

proposed real-time control system has the good prediction effect

for not only single motions but also mixture motions; (2) The

system has a stable (p > 0.5) computational latency (average 74–

75 ms), and this latency is acceptable in real-time control; (3)

The proposed control system can complete the specified TAC

test, providingmore proof of motion regression accuracy in real-

time processes. The usability of this control system has been

verified by a demonstration of controlling a virtual hand.
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