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Wheel-legged robots have fast and stable motion characteristics on flat roads,

but there are the problems of poor balance ability and low movement level

in special terrains such as rough roads. In this paper, a new type of wheel-

legged robot with parallel four-bar mechanism is proposed, and the linear

quadratic regulator (LQR) controller and fuzzy proportion differentiation (PD)

jumping controller are designed and developed to achieve stable motion so

that the robot has the ability to jump over obstacles and adapt to rough

terrain. The amount of energy released by the parallel four-bar linkage

mechanism changes with the change of the link angle, and the height of

the jump trajectory changes accordingly, which improves the robot’s ability to

overcome obstacles facing vertical obstacles. Simulations and real scene tests

are performed in different terrain environments to verify obstacle crossing

capabilities. The simulation results show that, in the pothole terrain, the

maximum height error of the two hip joint motors is 2 mm for the obstacle

surmounting method of the adaptive retractable wheel-legs; in the process

of single leg obstacle surmounting, the maximum height error of the hip joint

motors is only 6.6 mm. The comparison of simulation data and real scene

experimental results shows that the robot has better robustness in moving

under complex terrains.

KEYWORDS

complex terrain environment, wheel-legged robot, dynamic analysis, adaptive
obstacle crossing, motion analysis

Introduction

With the continuous development of robot technology, the application scope of
mobile robots is constantly expanding, and the diversification of application scenarios
leads to the increase of robots facing complex terrain environments (Zhang et al., 2014;
Gao et al., 2020). Wheeled robots have the advantages of high efficiency and high energy
utilization on flat roads (Wu, 2020; Xin et al., 2020), but they have poor adaptability to
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complex terrain. When the height of obstacles is greater
than the radius of the wheels, they cannot effectively cross
obstacles (Ding and Zhang, 2022). Legged robots have excellent
adaptability when moving on the uneven and rough roads,
but slow moving speed and low movement energy efficiency
have always been technical problems that are difficult to break
through (Xin et al., 2019; Xin and Vijayakumar, 2020). To solve
this problem, the researchers turned their attention to wheel-
legged robots. Wheel-legged robots combine the advantages of
wheeled robots and legged robots. Double wheels can maximize
energy utilization efficiency and maneuverability, and the leg
structure makes the robot more adaptable to complex terrain
environments.

At present, scholars have carried out a lot of research on
the stability and high obstacle crossing ability of wheel-legged
robots in unstructured terrain and have achieved a series of
results: Liu et al. (2019, 2022) and Zhang et al. (2019) proposed
a bipedal wheeled robot SR600 for logistics in scenarios such
as distribution and home services, it can change height while
maintaining dynamic balance. The size design of the human
body can make it better interact with people. Kim et al. (2014)
developed the Wheel Transformer, a variable-diameter wheel-
legged robot. When encountering an obstacle, the wheels are
transformed into two three-legged wheels to complete the action
of crossing over the obstacle. It can overcome obstacles that 3.25
times higher than the wheel radius, but there is also the problem
of low efficiency of crossing obstacles. In nature, animals jump
over obstacles and avoid enemies attack by jumping (Fei et al.,
2012; Cheng, 2021). Inspired by this, the bionic jumping theory
was applied to the wheel-legged robot, and the jumping obstacle
was realized by the wheel-legged robot (Zhuang et al., 2021;
Hao et al., 2022). Chen et al. (2021) studied the jumping
of a bipedal wheel-legged robot, proposed a W-SLIP model
to characterize the jumping process dynamics, and verified
the robot’s jumping performance through V-REP simulation.
Bipedal wheel-legged robot Ascento produced by ETH Zurich
that adopted a compact design structure and can jump over
obstacles while keeping the robot flexible and compact (Klemm
et al., 2019; Klemm et al., 2020). The quadruped wheel-legged
robot ANYmal (Bjelonic et al., 2019) of ETH Zurich also
reflected the advantages of the combination of legged robots and
wheeled robots to a large extent. The typical wheel-legged robot
Handle developed by Boston Dynamics Ltd (2017). Achieved
self-balancing through a dynamic control center, and used a
hydraulic drive to jump to a height of 1.2 m (Zhang et al., 2018).
At present, wheel-legged robots are still mainly used in simple
application scenarios such as logistics handling, while wheel-
legged robots suitable for complex terrain environments have
been rarely reported.

Aiming at the problems that the wheel-legged robot is
not stable in the complex terrain environment, a jumping
wheel-legged robot is proposed in this paper, and an adaptive
retractable wheel-leg mechanism is designed to keep the

body parallel to the ground to achieve smooth obstacle-
surmounting. The main motion forms of the robot include
wheel and wheel-leg movement modes, and the modes are
switched by the rotation of the hip motor. The wheel
movement mode is used on flat terrain, and the wheel-
leg movement mode is used on obstacles and rough terrain
to improve energy utilization efficiency. In the wheel-leg
movement mode, the robot cannot only use the wheels
to move quickly and stably, but also jump over obstacles
through the expansion and contraction of the wheel-leg linkage
mechanism. The paper is structured as follows: In Section
“Kinematics and dynamics analysis,” the robot is introduced
and the kinematics and dynamics modeling, including the
self-balancing dynamics model and the jumping dynamics
model. In Section “Analysis of obstacle crossing conditions,”
the wheeled overcoming obstacles and jumping over obstacles
are analyzed respectively, and the conditions for overcoming
the obstacles are obtained. The control system is presented in
Section “Robot Control System,” divided into self-balancing and
jump control. Section “Simulation and experiment” conducts
simulation tests on robot crossing obstacles in different terrains,
and conducts actual test verifications. The paper is concluded in
the last section.

Kinematics and dynamics analysis

The overall structure design of the robot is shown in
Figure 1, which consists of the body, six motors, two linkage
mechanisms, two pairs of universal wheels and two wheels. The
two waist motors (including No. 4 in Figure 1) are hidden inside
the body, and two motors are installed in the left and right
wheels to drive the wheels to move. The waist motors are used
to adjust the pitch angle of the body, and the hip motors are
used to control the robot to change the height of the body and
realize the jumping function. The hip motor rotates, and under
the action of gravity, the connection between the Connecting
rod 2 and the hip motor rotates around the rotation axis of
the hip joint to realize the expansion and contraction of the
leg linkage mechanism. The height of the body is raised and
lowered through the expansion and contraction of the linkage
mechanisms, and the wheel-leg linkage mechanisms contract
and stretch in a short time, completing the accumulation and
release of the energy required for jumping, and the robot
realizes the jumping action. The wheel movement mode and the
wheel-leg movement mode are shown in Figures 2A,B below,
respectively.

Kinematic modeling

As shown in Figure 3, the kinematic model of the standing
posture of the wheel-legged robot is established. {W} is the

Frontiers in Neurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1066714
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-16-1066714 November 30, 2022 Time: 10:36 # 3

Guo et al. 10.3389/fnbot.2022.1066714

FIGURE 1

Schematic diagram of the robot structure. 1. Right wheel (driving wheel); 2. Universal wheel; 3. Body; 4. Waist motor; 5. Hip motor;
6. Connecting rod 1; 7. Connecting rod 2; 8. Connecting rod 3; 9. Left wheel (driving wheel).

world coordinate system, the Z axis is vertically upward, the
X axis is perpendicular to the Z axis and points to the right
end, and the Y axis direction is determined according to the
right-hand rule. In order to simplify the kinematics problem,
the base coordinate system {B} is established at the contact
point between the wheel and the ground, the direction is
parallel to the world coordinate system, and the coordinate
system {0} is established at the center of the wheel. The
coordinate system {1} is established at the connection between
the Connecting rod 3 and the wheel, the coordinate system
{2} is established at the connection between the Connecting
rod 1 and the Connecting rod 3, and the coordinate system
is established at the position shown in the Figure 3 in turn.
The Zi(i = 1 ∼ 5) axis of the link is along the joint. The
positive direction of the axis is placed perpendicular to the
surface of the paper, the positive direction of the Xi axis points
to the common perpendicular of the i axis and the i+1 axis,
and the direction of the Yi axis is determined by the right-
hand rule.

In the kinematic model of Figure 3, ai−1 is the length of
the connecting rod, αi−1 is the rotation angle of the connecting
rod, di is the offset distance of the connecting rod, θi is
the joint angle, li is the distance between the origin of the
coordinate system {i− 1} and the origin of the coordinate
system {i} in the Z-X plane. where i = 1 ∼ 5 is the
rotational joint of the robot, d1 = 0.026 m, d2 = 0.021 m,
d3 = 0.016 m, d5 = 0.016 m. l2 = 0.14 m, l3 = 0.14 m,
l4 = 0.09 m, l5 = 0.14 m, l6 = 0.09 m, the robot wheel radius
r = 0.095 m.

According to the established kinematics model, the forward
kinematics is solved, and the connecting rod transformation

matrix is obtained as:

0
1T =


C1 −S1 0 0
S1 C1 0 0
0 0 1 0
0 0 0 1

 , 0
2T =


C12 −S12 0 C1l2
S12 C12 0 S1l2
0 0 1 −d1 − d2

0 0 0 1

 (1)

0
3T =


C123 −S123 0 C1l2 + C12l3
S123 C123 0 S1l2 + S12l3

0 0 1 −d1 − d2 − d3

0 0 0 1

 ,

0
4T =


C1234 −S1234 0 C1l2 + C12l3 + C123l4
S1234 C1234 0 S1l2 + S12l3 + S123l4

0 0 1 −d1 − d2 − d3

0 0 0 1

 (2)

0
5T =


C1234 −S1234 0 C1l2 + C12l3 + C123l4 + C1234l5
S1234 C1234 0 S1l2 + S12l3 + S123l4 + S1234l5

0 0 1 d5 − d1 − d2 − d3

0 0 0 1

 (3)

Where, C1234 is the meaning of cos(θ1 + θ2 + θ3 + θ4), S1234 is
the meaning of sin(θ1 + θ2 + θ3 + θ 4).

The robot is a parallelogram linkage mechanism, and the
robot body is expected to be parallel to the ground while
maintaining balance, so the constraint equation is attached:

θ2 = θ4 = π− θ3, θ1 =
1
2
θ3 (4)

Use UG software to analyze the position of the center of mass of
each rod and the body of the robot, and obtain the coordinates
of the center of mass c1 of the Connecting rod 3, the center of
mass c2 of the Connecting rod 1, the center of mass c3 of the
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FIGURE 2

Schematic diagram of robot motion posture: (A) Wheel movement mode; (B) Wheel-leg movement mode.

body, and the center of mass c4 of the Connecting rod 2 relative
to the X-Y plane of the {1}, {2}, {3}, {4} coordinate system:

{
1Xc1 = 0.0545
1Yc1 = 0

,

{
2Xc2 = 0.0802
2Yc2 = −0.0128

,

{
3Xc3 = −0.0219
3Yc3 = −0.0235

,

{
4Xc4 = 0.0714
4Yc4 = −0.0152

(5)

The angle between the line connecting the center of mass c2
and the origin of the coordinate system {2} and the positive
direction of the X2 axis is ϕ2 = atan2(2Yc2,

2 Xc2), the angle
between the line of the center of mass c3 and the origin of
the coordinate system of {3} and the positive direction of the
X3 axis is ϕ3 = atan2(3Yc3,

3 Xc3), the angle between the
line connecting the center of mass c4 and the origin of the
coordinate system of {4} and the positive direction of the X4 axis
is ϕ4 = atan2(4Yc4,

4 Xc4), the center of mass of the hip motor
c5 is at the center of rotation. Let the lengths of the center of
mass c1, c2, c3, and c4 from the origin of the {1}, {2}, {3}, and {4}
coordinate systems be lc1, lc2, lc3, and lc4, respectively. Then the
position of the center of mass of each rod ci relative to the world

coordinate system is (Xci, Zci), and the velocity is
√
˙X2
ci +
˙Z2
ci,

i = 1 ∼ 5.

Dynamic modeling

Self-balancing dynamic modeling
When the robot maintains a standing posture, the leg

linkage mechanism is kept fixed by locking the hip joint motor.
At this time, the robot can be equivalent to a two-wheeled self-
balancing robot, as shown in Figure 4. The center of mass is
located above the wheel axis of the robot, and the pose of the
robot in the world coordinate system is [xb, yb, zb, α]T , where
the position coordinate of the midpoint of the axis of the driving
wheels of the robot is [xb, yb, zb + r], α is the heading angle of

the robot, the distance between the centers of the two wheels
is D, and the radius of the wheel is r, the angles that the left and
right wheels have turned are θL, θR, and the displacements of the
left and right wheels are xL, xR, respectively. Assume that the
body mass of the simplified robot is M, the length of the body
is L, the moment of inertia of the body around the Y axis is Ib,
and the position coordinate of the center of mass of the body
is [x, 0, z]. The moment of inertia of each connecting rod at
the center of mass is Ici, which is obtained with the assistance
of Adams simulation software. The tilt angle and body length of
the equivalent model are:

φ = arctan(
x

z − r
), L =

√
x2 + (z − r)2 (6)

Taking the left wheel of the robot as an example to analyze the
force on the wheel and the body, the balance formula of the force
and moment of the body and the wheel can be obtained:{

FsL − FxL = mẍL

FnL − FzL = mbg
,

{
TL − rFsL − TfL = IW θ̈L

TfL = b
(
θ̇L − φ̇

) (7)

According to the relationship between the displacement of the
midpoint of the line connecting the centers of the two wheels
and the wheel rotation, the equation can be obtained:

(TL + TR)− r (FsR + FsL)− b
(
θ̇L + θ̇R

)
+

2bφ̇− Iw
(
θ̈L + θ̈R

)
= 0 (8)

According to the balance relationship between force and
moment, follows is got:

(TL + TR)+ML cos φ
(
ẍb + φ̈L cos φ− φ̇2L sin φ

)
+

ML sin φ(−g + φ̈L sin φ+

φ̇2L cos φ)− b
(
θ̇L + θ̇R

)
+ 2bφ̇ = Ibφ̈

(9)

Among them, assuming that there is no slippage between the
wheels and the ground, then xL = rθL, the relationship between
the displacement of the midpoint of the line connecting the
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FIGURE 3

Kinematics model of robot.

centers of the two wheels and the left and right wheel angles is:
xb = 1/2(θL + θR). Iw is the moment of inertia of the wheel, Fx

is the interaction force between the wheel and the body in the
X-axis direction, Fz is the interaction force between the wheel
and the body in the Y-axis direction, TL and TR are the output
torques of the left and right wheel motors, respectively, TfL and
TfR are the friction torque, b is the friction coefficient between
the wheel and the rod, the support force between the wheel and
the ground is Fn, and the friction force is Fs.

The top view of the robot is shown in Figure 5, the ṡL

and ṡR are the speeds of the left and right wheels in the X
direction, respectively. Assuming that the moment of inertia of
the robot around the vertical direction is It , the robot realizes

differential turning when there is a differential speed between
the two wheels. The turning dynamics equation is:(

DIw

r
+mDr +

2Itr
D

)
α̈ = TL − TR (10)

The dynamic equations of the robot in the self-balancing mode
can be sorted out as:

TL + TR − ẍb
(
2mbr +Mr + Iw

2
r
)
−

Mr
(
φ̈L cos φ− φ̇2 sin φ

)
− 2b

(
ẋb
r + φ̇

)
= 0

ẍbML cos φ−MgL sin φ+ φ̈
(
ML2
− Ib

)
−

2b
r ẋb + 2bφ̇+ TL + TR = 0(
DIw

r +mbDr + 2Itr
D

)
α̈ = TL − TR

(11)
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Organize the dynamic equations into non-linear dynamic
equations in state-space form:

φ̈ =

(a21 cos φ− a11) (TL + TR)+

(a11a24 − a15a21 cos φ) ẋb − (a14a21 + a11a25) φ̇

+a13a21φ̇
2 sin φ cos φ+ a11a22 sin φ

a11a23 + a12a21 cos2 φ

ẍb =

− (a23 + a12 cos φ) (TL + TR)− a13a23φ̇
2 sin φ+

(a14a23 − a12a25 cos φ) φ̇

+ (a15a23 + a12a24 cos φ) ẋb + a12a22 sin φ cos φ

a11a23 + a12a21 cos2 φ

α̈ =
TL − TR

a31

(12)
Where, a11 = 2mbr +Mr + 2Iw

r , a12 = MLr, a13 = Mr,
a14 = 2b, a15 =

2b
r , a21 = ML, a22 = Mgl, a23 = ML2

− Ib,
a24 =

2b
r , a25 = 2b, a31 =

DIw
r +mbDr + 2Itr

D .
For the dynamic equation of the robot in the self-balancing

mode, take X = [xb, ẋb, φ, φ̇, α, α̇]
T as the system state

variable and u = [TL, TR]
T as the system input variable for

linearization. Assuming that the robot is near the equilibrium
position, there is φ ≈ 0, φ̇ ≈ 0, which is brought into the
non-linear dynamic equation to obtain the linearization of the
system. Equation of state:


ẋb
ẍb
φ̇

φ̈
α̇
α̈

 =


0 1 0 0 0 0
0 A22 A23 0 0 0
0 0 0 1 0 0
0
0
0

A42
0
0

A43
0
0

0
0
0

0 0
0 1
0 0




xb
ẋb
φ

φ̇
α
α̇

+


0 0
B2 B2
0 0

B4 B4
0 0

B6 −B6


[

TL
TR

]

(13)
Among them,

1 = r2(2M2L2
+ 2mbML2

− 2mbIb −MIb)+ 2ML2Iw − 2IwIb

A22 = 2(bML2
− bIb +MLrb)/1

A23 = M2gL2r2/1

A42 = (4brmb + 2Mbr + 4bIw/r − 2MbL)/1

A43 = (2MmbgLr2
+M2gLr2

+ 2IwMgL)/1

B2 = (−ML2r + Ibr −MLr2)/1

B4 = (−2mbr2
−Mr2

− 2Iw +MLr)/1
B6 = Dr/(D2Iw +mbD2r2

+ 2Itr2)

The linear system is decoupled into a separate balance subsystem
and steering subsystem, and the straight-running torque Tφ and
the steering torque Tω of the robot are, respectively, input. The
relationship between the left and right wheel torques and Tφ and
Tω is expressed as a matrix:[

TL

TR

]
=

[
0.5 0.5
0.5 0.5

][
Tφ

Tω

]
(14)

Then the state space equations of the equilibrium system and the
steering system are:

Ẋ1 = A1X1 + B1Tφ, Ẋ2 = A2X2 + B2Tω (15)

FIGURE 4

Force diagram of equivalent model.

Where,

X1 =


xb

ẋb

φ

φ̇

 , A1 =


0 1 0 1
0 A22 A23 0
0 0 0 1
0 A42 A43 0

 , B1 =


0

B2

0
B4

 ,

X2 =

[
α

α̇

]
, A2 =

[
0 1
0 0

]
, B2 =

[
0
B6

]
. (16)

Jump phase dynamic modeling
The inertia tensor of the robot is calculated by Adams

software. The coordinate origin of the inertia tensor is the
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FIGURE 5

Top view of the robot.

center of mass of each rod. The jumping action of the robot
is analyzed on the XOZ plane of the base coordinate system.
The rotation axis of the rod is the Z axis of the corresponding
joint coordinate system. In order to simplify the calculation of
the inertia tensor, let the coordinate system with the center of
mass of each rod as the origin of the inertia tensor coincide
with the three inertia axes of the rod, and according to the
parallel shift axis theorem, the change of the rotation axis of the
connecting rod only changes the size of the moment of inertia
in the inertia tensor, so the inertia tensor can be easily calculated
using Adams software.

In this paper, the Lagrangian equation is used to establish the
dynamic model of the wheel-legged robot, and θ3 is used as the
generalized coordinate, and the Lagrangian equation is applied
to the process of the robot’s take-off phase. The kinetic energy K
and potential energy V of the system are:

K0 =
1
2 mbẊ2

B

K1 =
1
2 mc1(Ẋ2

c1 + Ż2
c1)+

1
2 Ic1θ̇

2
1

K2 =
1
2 mc2(Ẋ2

c2 + Ż2
c2)+

1
2 Ic2(θ̇1 + θ̇2)

2

K3 =
1
2 mc3(Ẋ2

c3 + Ż2
c3)

K4 =
1
2 mc4(Ẋ2

c4 + Ż2
c4)+

1
2 Ic4(θ̇1 + θ̇2 + θ̇3 + θ̇4)

2

K5 =
1
2 mc5(Ẋ2

c5 + Ż2
c5)+

1
2 Ic5θ̇

2
3

(17)

V = 2mc1gZc1 + 2mc2gZc2 +mc3gZc3 + 2mc4gZc4+

2mc5gZc5 + 2mbgZb (18)

L = 2K0 + 2K1 + 2K2 + K3 + 2K4 + 2K5 − V (19)

Where, L is the Lagrangian, which represents the difference
in value between the kinetic energy K and potential energy
V of the robot.

The hip joint motor torque τ =
[

d
dt

(
∂K
∂ θ̇3

)
−

∂K
∂θ3
+

∂V
∂θ3

]
/2

is obtained, and the hip joint space dynamics state space
equation of the robot is sorted out as:

M
(
q
)

q̈+ V
(
q, q̇

)
+ G

(
q
)
= τ (20)

Where, M(q) is the inertia matrix of the robot, V(q, q̇) is
the centrifugal and Coriolis matrix, and G(q) is the gravity
compensation vector.

Analysis of obstacle crossing
conditions

The robot’s ability to overcome obstacles is mainly affected
by its own structure and road conditions. The wheel movement
mode of the wheel-legged robot proposed in this paper is mainly
used for smooth road movement, and the wheel-leg mode is
used to pass the rough road with obstacles. In the following,
the obstacle crossing analysis is carried out, respectively, for the
cases that the obstacle height is lower than the wheel radius
and the obstacle height is higher than the wheel radius in
the wheel-leg mode.

Wheeled obstacle crossing analysis

When the height of the obstacle is less than the radius of the
wheel, the analysis is performed at the initial stage of the robot
crossing the obstacle. At the beginning of obstacle crossing, keep
the center of mass of the robot and the center of rotation of the
wheel on the same vertical line, and perform force analysis on it.

Figure 6 shows the robot cross over the obstacle in wheel-
leg mode, at the beginning of obstacle crossing, the robot is
balanced by the forces and moments between the ground and
the wheels and between the obstacles and the wheels. The
balance formula of the robot’s two legs over obstacle is shown
in Equation (21):


M − Gr cos α+ FN1r cos α = 0
FN2 cos α− f1 − f2 sin α = 0
G− FN1 − FN2 sin α = 0

(21)

In Equation (21), Mw is the torque of the wheel motor, G is its
own gravity, FN1 is the support force of the ground facing the
wheel, FN2 is the support force of the obstacle contact point to
the wheel, f1 is the friction force of the ground facing the wheel,
and f2 is the frictional force on the wheel at the contact point
of the obstacle, α is the angle between the supporting force of
the contact point between the wheel and the obstacle and the
ground, h is the height between the contact point of the obstacle
and the ground, and r is the radius of the wheel.
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FIGURE 6

Wheel over obstacles in wheel-leg mode: (A) Cross obstacle on two legs; (B) Cross obstacle on one leg.

FIGURE 7

Schematic diagram of the robot over the obstacle.

The balance formula of the robot’s one leg over obstacle is
shown in Equation (22):

Mw − Gr cos α+ FN1r cos α+ Fhr cos α = 0
FN2 cos α− f1 − f2 sin α = 0
G− FN1 − FN2 sin α− Fh = 0

(22)

In Equation (22), Mh and Fh are, respectively, the torque of the
hip motor in the adaptive contraction state of the robot when
crossing the obstacle with one leg, and the force transmitted by
the torque of the hip motor to the wheel through the connecting
rod of the wheel leg. The meanings of other parameters are
consistent with Equation (21).

In Equations (21, 22), f1 = µFN1, f2 = µFN2,
α = arcsin r−h

r . When α > 0, the wheel can advance over the
obstacle by its own rotational motion driven by the motor.

Analysis of jumping over obstacles

In the analysis of the robot jumping over obstacles,
due to the symmetric design of the robot, the center of
mass in the process of movement can be kept only in the
X and Z direction displacement in the world coordinate
system, and the jumping process is analyzed according to
the plane robot analysis method. Assume that the take-off
phase time of the robot is [t0, t1) and the flight phase time
is [t1, t4). If the robot wants to jump off the ground after
energy storage, it needs to meet the following conditions:

{
Żc > 0
Z̈c = −g

(23)
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FIGURE 8

Fuzzy Proportion Differentiation (PD) control block diagram.

FIGURE 9

Control effect of fuzzy PD controller.
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FIGURE 10

Screenshot of movement process: (A) Mode switching process
diagram; (B) Jump process diagram.

Therefore, the following conditions should be met in the take-
off phase time [t0, t1):

Ẋc(t1) = Ẋc0 ≥ 0
Żc(t1) = Żc0 ≥ 0
Z̈c(t1) ≥ −g

(24)

When the speed of the robot in the horizontal and vertical
directions is greater than zero, it will make an oblique
throw motion with only the initial speed in the flight
phase. It is assumed that the robot makes uniform linear
motion in the horizontal direction before jumping, and
the velocity of the center of mass in the horizontal and
vertical directions is vx and vy, respectively. Then, the robot’s
flight time is t = 2vy

g , the highest jumping height is

Hmax =
v2

y
2g , and the horizontal displacement distance is

S = 2vxvy
g .

The obstacle crossing process is shown in Figure 7, it’s
required that when the horizontal displacement is St2 = D1,
the jump height Ht2 > Ho. When the horizontal displacement
is St3 = D1 + Do, the jump height Ht3 > Ho. Then, the
conditions under which the robot can overcome obstacles are:

Hmax =
V2

y
2g > Ho

Ht2 > Ho

Ht3 > Ho

S = 2VxVy
g > D1 + Do

(25)

When considering the robot perform jumps has higher request
to the speed and acceleration, vertical direction of the robot
center of mass in accordance with the planned five times
polynomial interpolation method, the initial and the end of a
robot position, velocity and acceleration, respectively, yinit , vinit ,
ainit and yend, vend, aend, using the method of undetermined
coefficients can get desired trajectory:

y(t) = a0 + a1t + a2 + t2
+ a3t3

+ a4t4
+ a5t5 (26)

FIGURE 11

Position and velocity curve of state switching process.

Among them,

a0 = yinit

a1 = vinit

a2 = ainit/2
a3 = [20yend − 20yinit − (8vend + 12vinit)t4−

(3ainit − aend)t2
4]/2t3

4

a4 = [30yinit − 30yend − (14vend + 16vinit)t4−

(3ainit − 2aend)t2
4]/2t4

4

a5 = [12yend − 12yinit − (6vend + 6vinit)t4−

(ainit − aend)t2
4]/2t5

4

Robot control system

Balance and speed control

In general, the wheel-leg movement mode of the robot
proposed in this paper can be divided into two forms: wheel
movement and jumping over obstacles, which are self-balancing
mode and jumping mode, respectively. The robot can switch
between the two modes to complete the task, and it is necessary
to design controllers for the two motion modes, respectively.
The balance and speed control of the robot are realized by the
Linear Quadratic Regulator (LQR) method. The state equation
of the linear time-invariant system is:

ẋ(t) = Ax(t)+ Bu(t) (27)

For the balance system of the robot, the speed, tilt angle and
tilt angle velocity are taken as the state variables, and the state
variable is x = [ẋb, φ, φ̇]. Then the equilibrium system can be
expressed as: ẍb

φ̇

φ̈

 =
A22 A23 0

0 0 1
A42 A43 0


 ẋb

φ

φ̇

+
B1

0
B2

Tφ (28)

If the robot takes ẋref as the reference speed and keeps balance,
then φ̇ = 0, ẋ = ẋref , the system stable state variable
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A B

FIGURE 12

Jump process curve: (A) Position curve; (B) Vertical velocity curve.

FIGURE 13

Ground support reaction force variation curve.

xs = f
(
ẋref

)
, the stability control input us = g

(
ẋref

)
, take

the new state variable 1x = x− xs, the new system input
1u = Tφ − us, then the new system state equation is:

1x =

A22 A23 0
0 0 1

A42 A43 0

1x+

B1

0
B2

1u (29)

The optimal control input is obtained as follows:

u = us − k1x (30)

Where, f
(
ẋref

)
=

 ẋref
A22B2−A42B1
A43B1−A23B2

0

, g
(
ẋref

)
=

A42A23−A22A43
A43B1−A23B2

.

Jumping control

In this paper, the jump control of the robot adopts fuzzy
Proportion Differentiation (PD) control. According to the
dynamic equation of the jump stage obtained in the dynamic
analysis:

M
(
q
)

q̈+ V
(
q̇, q

)
+ G

(
q
)︸ ︷︷ ︸

H(q̇,q)

= τ (31)

The control scheme for calculating torque is set as:

M
(
q
) (

q̈d + Kpe+ Kd ė
)
+ V

(
q̇, q

)
q̇+ G

(
q
)
= τ (32)

Where, e = qd − q, e = q̇d − q̇, qd and q are the ideal angle
and the actual angle, respectively.

The fuzzy PD controller is designed to calculate the torque
control, e and ė are taken as the input of the fuzzy controller.
Mamdan rule is used for fuzzy inference, and min-max-center
of gravity method is used for fuzzy resolution. The output is
1Kp and 1Kd, let the self-tuning parameters Kp = Kp0+1Kp,
Kd = Kd0+1Kd. Kp0 and Kd0 are initial values, KP and KD are
final values. The block diagram of the control scheme is shown
in Figure 8.

For the dynamic model of the robot in the take-off phase,
assuming that the angle tracking command of the robot hip
joint is qd = 2sin(πt)rad, the dynamic equation is written
as s-function by the Simulink module in Matlab to test the
simulation effect. Fuzzy PD control is used to design the control
law, and the initial values of PD parameters are set as Kp0 = 20
and Kd0 = 20. The simulation results are shown in Figure 9.

It can be seen that the joint angle tracking curve of the fuzzy
PD controller is close to the expected tracking angle curve in
Figure 9, and has a fast response speed, no obvious overshoot,
and has a good control effect.

Simulation and experiment

Simulation

The 3D model of the robot was imported into Adams
simulation software, and the co-simulation of the self-balance
and obstacle crossing of the robot is carried out by using
Simulink module of Matlab. The hip motor rotates at different
angles, which can adjust the height of the robot when standing.
First, the simulation of the robot shifting from the wheel mode
to the wheel-leg mode is carried out. When the hip motors
rotate in wheel-leg mode, the robot switches to wheel movement
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FIGURE 14

Curve change of jump process: (A) Curve of joint angle change; (B) Output torque diagram of motors.

mode, and then reverts to the original posture through motors
reversals. The simulation process is shown in Figure 10A. In
order to realize the function of jumping over obstacles, the hip
motors need to rotate with different steering to complete the
contraction and extension of the wheel leg connecting rod, so as
to storage and release the energy needed for jumping. Taking the
single jump process of the robot as an example, its screenshot is
shown in Figure 10B. When the robot moves at a constant speed
of 1 m/s, the robot reaches the highest jump height of 0.16 m at
0.8 s. The take-off phase of the robot is 0.5–0.6 s, the flight phase
is 0.6–0.95 s, and the landing phase is 0.95–1.2 s.

FIGURE 15

Schematic diagram of pits.

FIGURE 16

Left and right motor location diagram.

In the process of mode switching, the position and velocity
change curve of the robot’s center of mass in the vertical
direction are shown in Figure 11. It can be seen that the velocity
change curve is smooth and continuous, which can ensure the
stable mode switching. According to different expected jumping
heights, the jumping trajectories of the robot are different.
Jump simulation experiments are conducted for the expected
heights Hd = 0.16 m and Hd = 0.11 m, and the longitudinal
trajectories of the bottom of the robot wheel and the robot
center of mass are obtained as shown in Figure 12A. It can be
seen from Figure 12B, the motion of the robot after take-off
is oblique throwing motion, and the planned motion wants to
achieve a higher jumping height, so a larger longitudinal velocity
is needed at the take-off point to prolong the time of flight. In the
take-off phase, the wheel-leg linkage mechanisms successively
contract and extend to realize the energy storage and release
of the machine mechanisms. When the condition of leaving
the ground is reached, the end of the robot’s wheels leave the
ground and enter the phase of flight. In the flight phase, the
robot system is in the state of momentum conservation, so the
method of contracting the wheel-legs to increase the jumping
height causes the overall centroid velocity to fluctuate. In order
to reduce the impact of landing, a method is used to keep the
mechanism retraction until the wheels touch the ground. After

FIGURE 17

Obstacle crossing of wheel-leg without adaptive contraction.
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FIGURE 18

Process diagram of single-leg obstacle crossing.

A B

FIGURE 19

Crossing the obstacle with one leg: (A) Diagram of motors’ locations; (B) Diagram of motors’ torques.

FIGURE 20

Schematic diagram of different motion states.

FIGURE 21

Diagram of jump process.
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FIGURE 22

Moving over potholed ground.

the robot lands, the wheel-legs extend back to the position before
the jump.

In Figure 13, the curve of ground support reaction force on
the wheel in the process of jumping is measured, and it’s found
that the support reaction force gradually increases in the take-off
phase, reaches the maximum value at 0.6 s at the end of wheel-
leg contraction, and decreases rapidly at the moment of take-off.
When the wheels leave the ground, the support reaction force
is 0. At the moment of landing, the support reaction force will
change due to impact. The change of the support reaction force
corresponds to the height above the ground in each stage of
the robot jumping process, which verifies the feasibility of the
jumping.

Figure 14A shows the angle variation of each joint when
the jump height is 0.16 m. Since the wheel-leg of the robot is
a parallelogram linkage mechanism, q4 = q5. Among them,
the angles q2, q3, q4, and q5 represent are the angle between
Connecting rod 3 and Connecting rod 1, the angle between
Connecting rod 3 and Connecting rod 2 at the hinge point,
The angle between Connecting rod 2 and the motor rotation
center and the Connecting rod 2 hinge, and the angle between
Connecting rod 2 and Connecting rod 3. Robot hip motor
torque curves is shown in Figure 14B, it can be seen two
hip motors’ output torques are basically consistent, the motors’
torques of the wheel-legs contraction in the take-off phase are
shown in the curves from 0.5 to 0.6 s, which are the torques
curves of the wheel-legs extension from 0.6 to 0.65 s, and the
torque generated near 0.97 s is generated when the robot lands
and touches the ground.

When the robot passes over the pavement with pothole
(major diameter: 15 cm, minor diameter: 10 cm, depth: 5 cm)
as shown in Figure 15, the robot is required to keep moving
smoothly. When the left leg of the robot passes over the pothole,
the linkage mechanism of the right leg contracts to keep the axes
of the motor rotation of the hip joint of the two legs coincide
as much as possible. Figure 16 shows the height of the rotation
axes of the left and right wheel-leg hip motors in this process. It
can be seen that the axes of the two motors basically coincide. At
time of 1.2 s, the deviation of the axis of the two legs is relatively
large, but as a whole, the deviation is small, only about 2 mm.
The robot can smoothly pass through the pothole terrain.

The following simulation experiments are done for the
robot to cross the slope obstacle with one leg. The obstacle
set by the simulation is about 6.5 cm in height and 65 cm in
length. When the robot crosses the obstacle without adaptive
contraction wheel-legs, the side view of the obstacle crossing
process of the robot is shown in Figure 17. In this case,
crossing the obstacle may cause damage to the connecting rod
structure of the robot wheel-leg or the motors of the hip joints.
Therefore, when the vertical height of the contact between the
left and right wheels and the ground is different, the wheel-
leg linkage mechanism with relatively high vertical position of
the contact point needs to be properly contracted to ensure
the stability of the robot body. For this purpose, the one-leg
obstacle crossing simulation experiment was carried out, and
the whole process of obstacle crossing was captured, as shown
in Figure 18.

Figure 19A shows the height variation curve of the rotation
axis of the left and right hip joint motors in the vertical direction.
It can be seen from the figure that the left leg of the robot
starts to cross the obstacle when it contacts the obstacle at
about 2 s, and the robot starts to leave the obstacle at about
7.15 s. In the process of obstacle crossing, the highest position
deviation of the motor axis of the hip joint of the two legs is
generated at 7.9 s, and the maximum deviation between the
motor position of the left leg and the motor position of the right
leg is about 6.6 mm. It can be seen that in the whole process
of obstacle crossing, the position height deviation of the two
hip motors is low, and the performance of obstacle crossing
is better. And because of gravity, the time for going up and
down is different, and the time for going down is less than
that for going up. Figure 19B is the robot’s left leg hip motor
torque figure, can be seen from the figure when the robot starts
uphill because access to the obstacles, will jump a torque value,
and in the process of uphill, with the contraction of the wheel-
leg, it gradually attenuates to the torque value of maintaining
the motor position locking, and also produces a sudden torque
when downhill.

Experimental verification

On the basis of simulation, in order to verify the feasibility
of jumping over obstacles designed in this paper and the
correctness of the simulation results, real robot tests are carried
out. The experiments are based on the DDT robot platform of
Direct Drive Technology Ltd. The total mass of the robot is
about 30 kg, the height of the robot in the wheeled mode is about
21 cm, the length of the robot is about 35 cm, and the width is
about 53 cm. The height of the robot can be adjusted under the
wheel-leg mode. The robot moves in wheel mode and wheel-leg
mode at different height of center of mass on flat ground, the
motion posture is shown in Figure 20.

The real tests are carried out in different terrain, first of
all, the jump height and jump feasibility will be analyzed and
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FIGURE 23

Comparison of different height of obstacle crossing.

verified under flat ground. Control the robot to jump and
compare the jump height with the scale of the preset whiteboard
(see Figure 21). The energy needed for the robot to jump is
stored by the contraction of the leg mechanisms, the energy
release is completed by the extension of the leg mechanism and
the jump is carried out, the wheel-legs are contracted in the flight
phase to improve robot’s height off the ground, and the purpose
of jumping over obstacles is realized. After comparing with the
scale of the white board, it is found that when the robot jumps
at a low speed, the jump height can be 0.16 m. The experimental
results are basically consistent with the simulation results, which
verifies the feasibility of the jump action of the wheel-legged
robot designed in this paper.

The adaptive contraction of the wheel leg is actually tested
on the pothole ground. In Figure 16, it can be seen that in
the simulation experiment of pothole terrain, the robot passes
through the pothole in about 1.2 s, corresponding to the
robot state shown in serial number À and serial number Á

of Figure 22. At this time, the robot walks on the road with
potholes. The axes of the two hip motors are always in the same
vertical position by contracting the wheel-leg which is at a higher
position, it ensures the stability of the robot when walking on the
pothole ground.

For the test of single-leg obstacle crossing, a single block, two
blocks and three blocks of wood are set in front of the right leg
as obstacles. The height of a single plank is 2 cm, the height of
the corresponding obstacles is 2, 4, and 6 cm, respectively, and
the radius of the wheel is 9.5 cm. The obstacle crossing process
is shown in Figure 23. The process from contacting the obstacle
to adaptively adjusting the expansion of the wheel-leg is shown.
It can be seen that the degree of contraction of the wheel-leg is
different when the height of the obstacle is different. The robot
can easily cross the obstacles with height lower than the radius
of its own wheels, and keep moving smoothly through obstacles
by adjusting the wheel-leg adaptively.

FIGURE 24

Jumping process on uneven ground.

In addition to jumping on the flat and open ground,
jumping over obstacles on the uneven ground is an important
embodiment of the robot’s ability to jump over obstacles. The
jumping ability was further tested on the uneven grass outside,
and the test results in Figure 24 shows that the robot still had
good jumping ability on the uneven ground.

Conclusion

In this paper, a bipedal wheel-legged robot with parallel
four-bar linkage wheel-leg structure is proposed. The kinematics
and dynamics of the robot are analyzed, and LQR controller
and fuzzy PD controller are designed for balance and jump,
respectively. According to the output torque curve and hip
joint angle tracking curve obtained by Simulink simulation
experiment, it can be seen that it has a good control
effect. In view of the different ground conditions that the
robot may encounter in the complex terrain environment,
Adams and Simulink are used to simulate the robot’s obstacle
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crossing, respectively, for the pothole road surface, the obstacle
height is higher than the wheel radius and the obstacle crossing
with one leg. Under the gait strategy of adaptive wheel-leg
contraction, the error of each simulation data of the robot is
small and the output torque is within the effective output range
of the motor, which can ensure the smooth obstacle crossing. In
the jump simulation, when the expected jump height is 0.11 and
0.16 m, the vertical velocity of the former is lower than that of
the latter. To increase the height of obstacle crossing, the vertical
velocity of the take-off should be increased. The gait strategies
used in each simulation experiment are verified in real scene test,
and the robot can smoothly cross the obstacles, which verifies
the feasibility of the jumping and control method.
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