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Dynamic complex matrix equation (DCME) is frequently encountered in the

fields of mathematics and industry, and numerous recurrent neural network

(RNN) models have been reported to effectively find the solution of DCME

in no noise environment. However, noises are unavoidable in reality, and

dynamic systems must be affected by noises. Thus, the invention of anti-

noise neural network models becomes increasingly important to address this

issue. By introducing a new activation function (NAF), a robust zeroing neural

network (RZNN) model for solving DCME in noisy-polluted environment is

proposed and investigated in this paper. The robustness and convergence

of the proposed RZNN model are proved by strict mathematical proof

and verified by comparative numerical simulation results. Furthermore, the

proposed RZNN model is applied to manipulator trajectory tracking control,

and it completes the trajectory tracking task successfully, which further

validates its practical applied prospects.

KEYWORDS

recurrent neural network, zeroing neural network, dynamic complex matrix
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Introduction

Complex matrix problems frequently arise in mathematics and engineering, since
complex matrices are widely applied in signal processing (Liu et al., 2014), image
quality assessment (Wang, 2012), joint diagonalization (Maurandi et al., 2013), and
robot path tracking (Guo et al., 2019, 2020; Jin et al., 2020, 2022a,c,e; Shi et al.,
2021, 2022a; Liu et al., 2022). Various numerical algorithms have been presented to
solve the complex matrix problems, such as the Newton iterative method (Rajbenbach
et al., 1987) and the Greville recursive method (Gan and Ling, 2008). However, the
complexity of these iterative algorithms is proportional to the dimension of the matrix
to be calculated, and these iterative algorithms are very effective in the calculation of
low dimensional matrix. As the dimension of the matrix increases, the computational
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workload also increases dramatically. Moreover, with the
development of big data science, the demand for large-scale
computation is also inevitable. Owing to their serial-processing
characteristic, the powerlessness of iterative algorithms in large-
scale computation are gradually revealed.

To solve the above mentioned issue, the neural network
method is proposed and deeply investigated due to its potential
advantages of distributed-storage and parallel-computation in
large-scale computation (Lin et al., 2022a,b; Zhou et al.,
2022a,b). As a typical recurrent neural network (RNN), the
gradient-based neural network (GNN) is widely used to solve
matrix problems in recent years (Liu et al., 2021; Jin et al.,
2022b). For example, an odd activation function (AF) activated
GNN model is presented in Zhang (2005), and it solves matrix
inversion problem effectively. Besides, an improved GNN model
for solving linear inequalities is presented in Xiao and Zhang
(2011). The GNN model can only approach the theoretical
solutions of time-varying problems with fluctuation, rather than
precisely converging to their theoretical solutions, and they
are commonly used to solve static problems. However, time-
varying problems are often encountered with the increasingly
development engineering techniques, and it is urgent to develop
a neural network model for solving time-varying problems.

It is worth to mention that the zeroing neural network
(ZNN) model for solving dynamic problems has been proposed
by Zhang and Ge (2005). As the time derivative of coefficient
matrices is fully considered, the ZNN model achieves accurate
solution to dynamic problems, which makes the ZNN model
a powerful tool for solving dynamic problems. In Li et al.
(2013), a sign-bi-power activation function (SBPAF) activated
ZNN model achieves finite-time convergent to the theoretical
solution of dynamic linear equation. In Jin (2021b), a finite
time convergence recurrent neural network (FTCRNN) model
is realized for solving time-varying complex matrix equation,
and it has faster convergent speed than the conventional ZNN
model. The above mentioned improved ZNN models guarantee
accurate and fast solution to dynamic problems in ideal no
noise environment. However, noises are unavoidable in reality,
anti-noise ability must be considered for all the neural models.
Hence, many anti-noise neural models have been reported to
address this issue in recent years. In Jin et al. (2016), an anti-
noise IEZNN model is reported for dynamic matrix inversion
in noise polluted environment. Besides, in Jin et al. (2017),
a NTZNN model is presented for solving dynamic problems
in noisy environment. The existing anti-noise models work
properly in noisy environment, but their finite-time convergent
performance can be further improved. Thus, the improvement
of the convergence and robustness of the existing neural models
is still open. Moreover, the previous neural models focused on
solving real domain dynamic problems (Li et al., 2020, 2021,
2022; Gong and Jin, 2021; Jin, 2021a; Jin and Qiu, 2022; Jin
et al., 2022d,f; Shi et al., 2022b; Zhu et al., 2022), and the
neural network research for solving complex domain dynamic

problems is also indispensable. With the expansion of neural
models to complex domain, various complex domain scientific
and engineering problems can be solved easily.

Inspired by the above mentioned issues, a robust zeroing
neural network (RZNN) model with fast convergence and
robustness to noises for solving dynamic complex matrix
equation (DCME) problems is proposed in this work. Its fast
convergence irrelevant to system initial state and robustness to
various noises are verified by rigorous mathematical analysis.
Besides, the ZNN model activated by SBPAF are also applied
to solve the DCME in same condition for the purpose of
comparison, and the corresponding simulation results further
demonstrate the superior convergence and robustness of
the proposed RZNN model for solving dynamic complex
domain problems.

The dynamic complex matrix
equation and its transformation

Generally, DCME problem can be described by the
following equation.

A(t)D(t) = B(t) ∈ Cn×n (1)

where A(t) ∈Cn×n and B(t) ∈Cn×n are the known dynamic
complex matrices, and D(t)∈Cn×n represents the unknown
dynamic complex matrix to be solved.

As we know, it is very difficult to find the matrix D(t)
directly from the above complex domain equation. However,
any complex number contains real and imaginary parts, and we
can solve the complex matrix D(t) through the transformation
below.[

Are(t)+ jAim(t)
] [
Dre(t)+ jDim(t)

]
= Bre(t)+ jBim(t) (2)

Then, calculating Eq. 2 yields{
Are(t)Dre(t)− Aim(t)Dim(t) = Bre(t)
Are(t)Dim(t) + Aim(t)Dre(t) = Bim(t)

(3)

Then, Eq. 3 can be simplified as,[
Are(t) −Aim(t)
Aim(t) Are(t)

][
Dre(t)
Dim(t)

]
=

[
Bre(t)
Bim(t)

]
∈ R2n×n (4)

Equation 4 can be further rewritten as,

G(t)X(t) = H(t) (5)

where, G(t) =

[
Are(t) −Aim(t)
Aim(t) Are(t)

]
∈ R2n×2n, X(t) =[

Dre(t)
Dim(t)

]
∈ R2n×n, and H(t) =

[
Bre(t)
Bim(t)

]
∈ R2n×n, and

we assume det |D(t)| 6= 0 to guarantee unique solution of Eq. 5
for t∈ [0,∞].
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Based on the above transformation, we can know that
solving DCME (1) is equivalent to find the solution of the real
domain dynamic matrix equation (DME) in (5), and the solution
of Eq. 5 satisfies X(t) = Dre(t)+ jDim(t).

Zeroing neural network and robust
zeroing neural network models

We can follow the steps below to construct the ZNN model
for solving DME (5).

Firstly, we define a dynamic error matrix

E(t) = G(t)X(t)−H(t) (6)

Then, formula (7) is applied for the convergence of E(t).

dE(t)
dt
= −γ0 (E (t)) (7)

where γ> 0 is an adjustable coefficient for the convergent speed,
and 0() is an AF array.

Combining (6) and (7), the ZNN model for solving DME (5)
is obtained.

G(t)
•

X(t) = −γ0 (G(t)X(t)−H(t))−
•

G(t)X(t)+
•

H(t) (8)

It is worth to point out that the ZNN model (8) is stable as
long as AF 0() is a monotonically odd function. As a vital part
of the ZNN model, the AF 0() has an important influence on
the convergence and robustness of the ZNN model, and various
AFs have been reported in recent years, such as the linear AF,
bi-power activation function, and SBPAF, etc. In addition, the
SBPAF will be adopted as the AF 0() in the ZNN model (8)
for the comparisons with the proposed RZNN model in the
simulation section.

To further improve the convergence and robustness of the
ZNN model, a new AF is presented below.

ϕ (x) =
(
a |x|m + b

)k sgn(x)+ cx+ dsgn(x) (9)

where sgn() is the signum function and m, k, a, b> 0, mk> 1.
On the basis of the new AF (9), the RZNN model proposed

in this work is realized.

G(t)
•

X(t) = −γ8(G(t)X(t)−H(t))−
•

G(t)X(t)+
•

H(t) (10)

where ϕ(•) is the corresponding element of the AF array8(•).
Considering the noises, the noise polluted RZNN model is

represented as,

G(t)
•

X(t) = −γ8(G(t)X(t)−H(t))−
•

G(t)X(t)+
•

H(t)+ N(t)
(11)

where N(t) denotes the additive matrix noise, and nij(t)
represents its ijth element.

Robust zeroing neural network
model analysis

In this section, the convergence and robustness of the
proposed RZNN model will be analyzed and verified. For the
convenience of subsequent analysis, the following Lemma 1 is
introduced in advance.

Lemma 1. Consider the following dynamic system (Aouiti
and Miaadi, 2020)

•
x(t) ≤ −

(
axm(t)+ b

)k (12)

where m, k, a, b> 0, mk> 1. Dynamic system (12) is fixed-time
stable, and x(t) will converge to zero within t.

t ≤
1
bk

(
b
a

)1/m (
1+

1
mk− 1

)
(13)

On the basis of Lemma 1, the convergence and robustness of
the proposed RZNN model with noise and without noise will be
analyzed, respectively.

Case 1: Without noise
The following theorem 1 guarantees the fixed-time

convergence of the proposed RZNN model (10) in no
noise environment.

Theorem 1. For arbitrary initial system state, state solution
X(t) generated by RZNN model (10) will converge to the
theoretical solution X∗(t) of DME (5) within ts.

ts ≤
1

λbk

(
b
a

)1/m (
1+

1
mk− 1

)
Proof. According to (7), the design formula of RZNN model

(10) can be derived as dE(t)
dt = −λ8(E(t)), and its n × n

subsystems can be presented as

deij(t)
dt
= −λϕ(eij(t)) (14)

Consider the Lyapunov candidate function vij(t) = | eij(t)|,
and substitute AF (9) into (14), then the derivative of vij(t) is

dvij(t)
dt
=
•
e
ij
(t)sgn

(
eij(t)

)
= −λϕ

(
eij(t)

)
(15)

sgn
(
eij(t)

)
= −λ

((
a|eij(t)|m + b

)k sgn(eij(t))+ ceij(t)+ dsgn(eij(t))
)

sgn
(
eij(t)

)
= −λ

((
a|eij(t)|m + b

)k
+ c|eij(t)| + d

)
(16)

≤ −λ
(
a
∣∣eij(t)∣∣m + b

)k
= −

(
λ

1/k
(
avm(t)+ b

))k
(17)
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Based on Lemma 1, the convergent time tij of the ijth
subsystem is

tij ≤
1

λbk

(
b
a

)1/m (
1+

1
mk− 1

)
Then upper bound of the convergent time of RZNN model

(10) is obtained.

ts = max(tij) ≤
1

λbk

(
b
a

)1/m (
1+

1
mk− 1

)
Case 2: Polluted by dynamic bounded disappearing noise

(DBDN)
The following theorem 2 guarantees the fixed-

time convergence of the proposed RZNN model (11)
polluted by DBDN.

Theorem 2. If N(t) in (11) is a DBDN, and | nij(t)| ≤ δ| eij(t)|
and λc≥ δ [δ ∈ (0,+∞)] hold. For arbitrary initial system state,
state solution X(t) generated by RZNN model (11) will converge
to the theoretical solution X∗(t) of DME (5) within ts.

ts ≤
1

λbk

(
b
a

)1/m (
1+

1
mk− 1

)
Proof. The evolution formula of RZNN model (11) with

noise can be written in the form of dE(t)
dt = −λ8(E(t))+ N(t),

and its n× n subsystem can be obtained as

deij(t)
dt
= −λϕ(eij(t))+ nij(t) (18)

Consider the Lyapunov candidate function vij(t) = | eij(t)|
and the inequalities | nij(t)| ≤ δ| eij(t)| and λd≥ δ, substitute AF
(9) into (16), then the derivative of vij(t) is

dvij(t)
dt
=
•
e
ij
(t)sgn

(
eij(t)

)
=
(
−λϕ

(
eij(t)

)
+ nij(t)

)
sgn(eij(t))

=

(
−λ

((
a
∣∣eij(t)∣∣m + b

)k sgn(eij(t))+ ceij(t)+ dsgn(eij(t))
)

+ nij(t)
)
sgn

(
eij(t)

)
= −λ

(
a
∣∣eij(t)∣∣m + b

)k
− λd1

∣∣eij(t)∣∣− λd2 + nij(t)sgn
(
eij(t)

)
≤ −λ

(
a
∣∣eij(t)∣∣m + b

)k
+
(
δ
∣∣eij(t)∣∣− λd1

∣∣eij(t)∣∣)
≤ −λ

(
a
∣∣eij(t)∣∣m + b

)k
= −

(
λ

1/k
(
avm(t)+ b

))k

(19)
Based on Lemma 1, the convergent time tij of the ijth

subsystem is

tij ≤
1

λbk

(
b
a

)1/m (
1+

1
mk− 1

)
Then upper bound of the convergent time of RZNN model

(11) polluted by DBDN is obtained.

ts = max(tij) ≤
1

λbk

(
b
a

)1/m (
1+

1
mk− 1

)

Case 3: Polluted by dynamic bounded non-disappearing
noise (DBNDN)

The following theorem 3 guarantees the fixed-
time convergence of the proposed RZNN model (11)
polluted by DBNDN.

Theorem 3. If N(t) in (11) is a DBNDN, | nij(t)| ≤ δ and
λd ≥ δ [δ ∈ (0, + ∞)] hold. For arbitrary initial system state,
state solution X(t) generated by RZNN model (11) will converge
to the theoretical solution X∗(t) of DME (5) within ts.

ts ≤
1

λbk

(
b
a

)1/m (
1+

1
mk− 1

)
Proof. The evolution formula of RZNN model (11) with

noise can be written in the form of dE(t)
dt = −λ8(E(t))+ N(t),

and its n× n subsystem can be obtained as

deij(t)
dt
= −λϕ(eij(t))+ nij(t) (20)

Consider the Lyapunov candidate function vij(t) = | eij(t)|
and the inequalities | nij(t)| ≤ δ and λd ≥ δ, substitute AF (9)
into (18), then the derivative of vij(t) is

dvij(t)
dt
=
•
e
ij
(t)sgn

(
eij(t)

)
=
(
−λϕ

(
eij(t)

)
+ nij(t)

)
sgn(eij(t))

=

(
−λ

((
a
∣∣eij(t)∣∣m + b

)k sgn(eij(t))+ ceij(t)+ dsgn(eij(t))
)

+nij(t)
)
sgn

(
eij(t)

)
= −λ

(
a
∣∣eij(t)∣∣m + b

)k
− λc

∣∣eij(t)∣∣− λd + nij(t)sgn
(
eij(t)

)
≤ −λ

(
a
∣∣eij(t)∣∣m + b

)k
+
(
δ− λd

)
≤ −λ

(
a
∣∣eij(t)∣∣m + b

)k
= −

(
λ

1/n
(
avm(t)+ b

))k

According to Lemma 1, the convergent time tij of the ijth
subsystem is

tij ≤
1

λbk

(
b
a

)1/m (
1+

1
mk− 1

)
Then, upper bound of the convergent time of RZNN model

(11) polluted by DBNDN is obtained.

ts = max(tij) ≤
1

λbk

(
b
a

)1/m (
1+

1
mk− 1

)
Based on the above theorems, we can draw the conclusion
that the proposed RZNN model can converge to the theoretical
solution of DME (5) within fixed-time and it is robust to noise.

Numerical verification and robotic
manipulator application

The convergence and robustness of the proposed RZNN
model in noisy environment are analyzed in the above section,
two examples of the proposed RZNN for DCME (1) solving
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FIGURE 1

Dynamic complex matrix equation (DCME) (1) solved by robust zeroing neural network (RZNN) model (10) with k = 0.5 in no noise environment.

FIGURE 2

Dynamic complex matrix equation (DCME) (1) solved by robust zeroing neural network (RZNN) model (10) with k = 1 in no noise environment.

FIGURE 3

Dynamic complex matrix equation (DCME) (1) solved by robust zeroing neural network (RZNN) model (10) with k = 2 in no noise environment.
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FIGURE 4

Dynamic complex matrix equation (DCME) (1) solved by sign-bi-power activation function (SBPAF)-based zeroing neural network (ZNN) model
(8) in no noise environment.

FIGURE 5

Residual errors of robust zeroing neural network (RZNN) model (10) and sign-bi-power activation function (SBPAF)-based ZNN model (8) in no
noise environment.

and robotic manipulator trajectory tracking will be presented
in this section.

Example 1. DCME (1) solving
Consider DCME (1) with the following dynamic coefficient

matrices.

A(t) =
(

sin 3t + j cos 3t sin 3t − j cos 3t
)

B(t) =
(

sin 3t − j cos 2t (cos 2t + 1)+ j(sin 3t + 2)
)

According to the transformation theory in Section “The
dynamic complex matrix equation and its transformation,” the
above DCME (1) can be transformed to DME (5) with the

following dynamic coefficient matrices.

G(t) =

(
sin 3t sin 3t − cos 3t cos 3t
cos 3t − cos 3t sin 3t sin 3t

)

·H(t) =

(
sin 3t cos 2t + 1
− cos 2t sin 3t + 2

)
Let γ = 1, both of the proposed RZNN model (10) and

SBPAF-based ZNN model (8) are used to solve the above DME
(5) in no noise environment for arbitrary initial state X(t = 0).
Moreover, in order to observe the parameter n in AF (9) to
adjust the convergent speed of the proposed RZNN model (10),
the parameter k is, respectively, set to be k = 0.5, k = 1, and
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FIGURE 6

Dynamic complex matrix equation (DCME) (1) solved by robust zeroing neural network (RZNN) model (11) with k = 0.5 in n(t) = 0.5 polluted
environment.

FIGURE 7

Dynamic complex matrix equation (DCME) (1) solved by robust zeroing neural network (RZNN) model (11) with k = 1 in n(t) = 0.5 polluted
environment.

FIGURE 8

Dynamic complex matrix equation (DCME) (1) solved by robust zeroing neural network (RZNN) model (11) with k = 2 in n(t) = 0.5 polluted
environment.
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FIGURE 9

Dynamic complex matrix equation (DCME) (1) solved by sign-bi-power activation function (SBPAF)-based robust zeroing neural network (RZNN)
model (8) in n(t) = 0.5 polluted environment.

FIGURE 10

Residual errors of robust zeroing neural network (RZNN) model (11) and sign-bi-power activation function (SBPAF)-based ZNN model (8) in
n(t) = 0.5 polluted environment.

k = 2 for solving DME (5). The corresponding simulation results
are presented in Figures 1–5, and solid blue curves are state
solutions of DME (5) obtained by neural network models, and
red dotted curves are theoretical solutions of DME (5).

As observed in Figures 1–4, both of the proposed RZNN
model (10) and SBPAF-based ZNN model (8) effectively solve
DME (5) in no noise environment. Moreover, the parameter k
in AF (9) has an important influence on the convergence of the
RZNN model (10), and the convergence of the RZNN model
(10) increases with the increase of the parameter k. The residual

errors | | G(t)X(t)-H(t)| | F of RZNN model (10) and SBPAF-
based ZNN model (8) are presented in Figure 5. From Figure 5,
we can clearly observe that the proposed RZNN model (10) has
superior convergence than the SBPAF-based ZNN model (8) in
no noise environment.

To further observe the convergence and robustness of the
proposed RZNN model (11) and the SBPAF-based ZNN model
(8), both of the proposed RZNN model (10) and SBPAF-
based ZNN model (8) are adopted to solve the same DME
(5) in constant noise n(t) = 0.5 polluted environment, and the
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FIGURE 11

Trajectory tracking results of the robotic manipulator synthesized by robust zeroing neural network (RZNN) model with n(t) = 0.5. (A) Whole
tracking trajectory of the manipulator, (B) mobile platform trajectory, (C) desired path and the end-effector trajectory, and (D) tracking errors.

parameter n is also set to be k = 0.5, k = 1, and k = 2, respectively.
The corresponding simulation results for solving DME (5) in
constant noise n(t) = 0.5 polluted environment are presented in
Figures 6–10.

As seen in Figures 6–8, the proposed RZNN model (10)
still effectively solves DME (5) in noise polluted environment.
However, the SBPAF-based ZNN model (8) fails, and it cannot
converge to the theoretical solution of DME (5) owing to the
influence of the additive noise. The residual errors | | G(t)X(t)-
H(t)| | F of the two models are presented in Figure 10 to further
demonstrate their convergence and robustness. From Figure 10,
we can also clearly observe that the proposed RZNN model (10)
has superior convergence and robustness than the SBPAF-based
ZNN model (8) in noise polluted environment.

Example 2. Robotic manipulator trajectory tracking
With the development of artificial intelligence, robots have

drawn considerable interests in academic and industrial fields
(Guo et al., 2021; Jin and Gong, 2021). In this section, a robotic
manipulator trajectory tracking application using the proposed
RZNN model in noisy environment is presented.

According to Zhou et al. (2022c), the kinematic model of a
robotic manipulator is

r(t) = ξ(θ(t)) (21)

where r(t) is the end-effector position, θ(t) is joint angle, ξ ()
stands for a non-linear function. The velocity level motion
equation can be expressed as

•
r(t) = J(θ)

•

θ(t) (22)

where J(θ) = eξ (θ)/ eθ.
Assume rd(t) is the desired path, and r(t) is the end-effector

tracking trajectory. We will design a control law µ =
•

θ, which
enforces the tracking error e(t) = r(t)–rd(t) converging to 0. To
achieve such a purpose, the proposed RZNN model is used to
design the control law, and the RZNN-based kinematic control
model is shown below.

J
•
µ = −

•

J θ+
••
rd−λ8(Jµ−

•
rd)+ n(t) (23)
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The corresponding simulation results are presented in
Figure 11. Figure 11A is the overall view of the tracking
trajectory, Figure 11B is the mobile platform trajectory,
Figure 11C presents the actual trajectory of end-effector and
the desired tracking path, and Figure 11D presents tracking
errors of the robotic manipulator in X, Y, and Z directions.
As seen in Figure 11, the RZNN-based kinematic control
model (21) completes the trajectory tracking task successfully,
and the tracking errors of the robotic manipulator in X,
Y, and Z directions are all less than 0.1 mm in noise
polluted environment, which further demonstrates its superior
convergence and robustness to noise.

Conclusion

In this paper, by introducing a new AF, a RZNN
model for DCME solving and robotic manipulator trajectory
tracking is presented. Rigorous mathematical verification
demonstrates that the RZNN model can accurately and
quickly solve the DCME problem in various noises polluted
environment. Moreover, the convergence and robustness of the
proposed RZNN model are verified by comparative numerical
simulation results. Compared with the SBPAF-based ZNN
model, the proposed RZNN model has superior convergence
and robustness to noise. In addition, we could focus our
future research directions on the further improvements of
the convergence and robustness of the RZNN model and the
engineering application expansion of the ZNN models.
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