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Machine learning works similar to the way humans train their brains. In

general, previous experiences prepared the brain by firing specific nerve

cells in the brain and increasing the weight of the links between them.

Machine learning also completes the classification task by constantly changing

the weights in the model through training on the training set. It can

conduct a much more significant amount of training and achieve higher

recognition accuracy in specific fields than the human brain. In this paper, we

proposed an active learning framework called variational deep embedding-

based active learning (VaDEAL) as a human-centric computing method to

improve the accuracy of diagnosing pneumonia. Because active learning

(AL) realizes label-e�cient learning by labeling the most valuable queries,

we propose a new AL strategy that incorporates clustering to improve

the sampling quality. Our framework consists of a VaDE module, a task

learner, and a sampling calculator. First, the VaDE performs unsupervised

reduction and clustering of dimension over the entire data set. The end-to-end

task learner obtains the embedding representations of the VaDE-processed

sample while training the target classifier of the model. The sampling

calculator will calculate the representativeness of the samples by VaDE, the

uncertainty of the samples through task learning, and ensure the overall

diversity of the samples by calculating the similarity constraints between the

current and previous samples. With our novel design, the combination of

uncertainty, representativeness, and diversity scores allows us to select the

most informative samples for labeling, thus improving overall performance.

With extensive experiments and evaluations performed on a large dataset, we

demonstrate that our proposed method is superior to the state-of-the-art

methods and has the highest accuracy in the diagnosis of pneumonia.

KEYWORDS

pneumonia diagnosis, active learning, variational autoencoders, brain-like

computing, human-centric computing
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1. Introduction

COVID-19 has become a worldwide pandemic since 2019.

It has infected more than 600 million population around 216

countries, with over 6.5 million death cases. In the current

COVID-19 pandemic, there is an urgent need to screen infected

patients quickly and accurately (Jadon, 2021). Many studies

showed that deep learning models trained on chest X-ray

images could become an efficient method for screening patients

with COVID-19 during this pandemic. Alike to the human

brain which increases the weight of the links between the

nerves through frequent training (Miller and Cohen, 2001),

deep learning models also need large amount of trainings.

Alyasseri et al. (2022) reviewed the existing work and concluded

that most of the work on COVID diagnosis were mainly

based on SVM and CNN. While deep learning has achieved

unprecedented success in image processing, it is not the case

in CT-scan diagnosis. The disadvantage of deep learning is

that it relies heavily on a large amount of labeled data,

which, in most cases, is costly to obtain. Especially in the

field of medical diagnosis, due to the limitation of patient

numbers and their privacy, the number of labeled data is

narrowed to hundreds and is insufficient for deep learning.

Under these circumstances, the active learning (AL) paradigm

is proposed to actively find the most informative and valuable

samples for model training, hence realizing label-efficient

learning and alleviating the reliability of label annotation.

Concretely, AL iteratively selects the most informative samples

from the unlabeled data pool to be labeled by an oracle

(i.e., a human annotator) and then adds it to the labeled

pool for task learner training. AL proved to be promising in

various computer vision tasks (Li and Guo, 2013; Yang et al.,

2017; Beluch et al., 2018; Kuo et al., 2018; Mahapatra et al.,

2018).

Essentially, the main idea of AL is to design an effective

sampling strategy to query the most valuable samples for the

improvement of the model to get a labeled subset. The objective

is to make the model trained on this subset have comparable

performance to the model trained on the whole data set. Most

earlier methods were derived from various task-aware ideas,

such as classifier uncertainty (Tong and Koller, 2001) and

expected error reduction (Yoo and Kweon, 2019). However, they

were considered to be significantly affected by the scale and

quality of the initially labeled data (Kim et al., 2021). A series of

recent literature (Mottaghi and Yeung, 2019; Sinha et al., 2019;

Zhang et al., 2020; Kim et al., 2021) have proposed adversarial

AL methods, which generally use the label state information

to train a discriminator to distinguish the unlabeled data

representations. Adversarial methods have stronger robustness

to outliers, noisy labels, and biased initial labeled data.

However, they merely focus on the uncertainty of unlabeled

samples, lacking a measure of other useful information, such

as representativeness and diversity. In this paper, we designed

our novel AL framework based on some ideas from pool-based

methods. Pool-based methods are often classified into three

broad categories: distribution-based, uncertainty-based, and

combination. The distribution-based approach aims at selecting

data that increase the diversity of the labeled pool. Those

methods are proposed based on the data representation learning

framework (Huang et al., 2018). In Nguyen and Smeulders

(2004), diversity is improved by clustering unsupervised data

and selecting samples from different clusters. In the literature

on deep active learning, distribution diversity is estimated by

observing gradients (Settles et al., 2007) or changes in the

output of training models (Freytag et al., 2014). Uncertainty-

based methods estimate the uncertainty of unlabeled data

and sample the top-K most uncertain data points in each

iteration. Most uncertainty-based methods derive sampling

strategies from task learning. For example, these methods

usually select the points with the smallest distance from the

decision boundary (or classification hyperplane) (Tong and

Koller, 2001) or with high information entropy (MacKay, 1992).

Methods combining uncertainty and distribution consider both

the uncertainty of data points and sampling diversity. Some

studies have introduced the idea of adversarial representation

learning into AL to learn an adversarial representation and select

data points based on the discrimination for data representation.

Typically, variational adversarial active learning (VAAL) (Sinha

et al., 2019) learns a unified adversarial representation for

labeled and unlabeled data by leveraging a generative model

and estimating sample uncertainty. The learning process of

VAAL is based on the difference in distribution, which is

learned by the discriminator. Our proposed framework, in

this study, variational deep embedding-based active learning

for pneumonia diagnosis (VaDEAL), is based on the idea of

adversarial representation learning, but the key difference is

that in VaDEAL, the uncertainty estimate is not given by the

discriminator. By introducing clustering into this adversarial

architecture, our method comprehensively measures sample

uncertainty, representativeness, and diversity.

In this paper, we present our framework, VaDEAL, based

on the idea of human-centric computing. We remodeled the

existing AL framework by adding a few more parameters for

decision-making to alleviate the bias in the sampling phase

and make our framework more trustworthy and fairness-

aware. VaDEAL consists of three parts: a VaDE module,

a task learner, and a sampling calculator. First, the VaDE

performs unsupervised reduction and clustering of dimension

over the entire dataset. The end-to-end task learner obtains

the embedding representations of the VaDE-processed samples

while training the target classifier of the model. In detail, the

VaDE performs adversarial training by learning a latent space to

map the data to a unified representation. The task learners are

trained on latent data representations and output uncertainty

Frontiers inNeurorobotics 02 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1059739
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Huang et al. 10.3389/fnbot.2022.1059739

estimates for sampling. The sampling calculator will calculate

three scores for each sample:

1. The uncertainty score h is obtained from the task learner.

The higher the predicted entropy of the sample, the more

uncertain the sample is;

2. The representation score G is calculated based on clustering

results. The sample at the center of the cluster is the most

representative;

3. The diversity score R represents the similarity constraint

between the current and previous samples and guarantees the

overall diversity.

Finally, our AL strategy selects the sample with the largest

weighted sum of uncertainty, representativeness, and diversity

scores. Then, our VaDEAL framework can consider all three

parameters during sampling and excel in its performance.

The contributions of this paper are summarized as follows:

• We use a VaDE algorithm to implement unified latent data

representation and clustering in AL. With this, we can

obtain the embedding representations of the samples for

uncertainty score h and prevent overfitting due to the size

of annotated samples being too small.

• We improve existing sampling strategies by efficiently

integrating representativeness, diversity, and uncertainty,

thus incorporating more information in selecting valuable

unlabeled data.

• We applied this novel AL framework design to the practice

of identifying pneumonia CT pictures, verifying the

effectiveness of the proposed VaDEAL algorithm on a large

dataset, and demonstrating that VaDEAL outperforms

other state-of-art methods in diagnosing pneumonia.

2. Methods

In this section, we discuss VaDEAL framework in detail.

The framework consists of three parts: a VaDE module, a

task learner, and a sampling calculator. First, all the given

samples are passed into the VaDE module, where samples will

be reduced in dimension and clustered. Then, the samples

processed by VaDE are used to train the task learner to give the

uncertainty score. Finally, the sampling calculator will consider

the representativeness G provided by VaDE, the uncertainty h

from the task learner, and the overall diversity R to determine the

valuable data points for labeling from the unlabeled sample pool.

Therefore, our model can minimize labeling costs and build a

high-performance task model. In the following paragraph, the

unlabeled pool will be denoted as XU and the labeled pool as

DL. xU represents a data point in the unlabeled pool, and (xL,

yL) represent a data point and its annotation, respectively, in

the labeled pool. The overall framework of our proposed AL

algorithms is shown in Figure 1.

2.1. Variational deep embedding for
clustering

First, we learned from the VaDE model (Jiang et al., 2016)

to introduce clustering into adversarial AL. For clustering,

VaDE uses GMM to pick up a cluster c and sample a latent

representation z and then uses a deep neural network (DNN)

f to decode z to an observation x. VaDE uses another DNN

g to encode observed data x into latent embedding z to use

stochastic gradient variational Bayes (SGVB) estimator (Tjandra

et al., 2016) and the reparameterization trick to maximize the

evidence lower bound (ELBO) LELBO:

LELBO(x) = Eq(z,c|x) log
p(x, z, c)

q(z, c|x)

=

∫
z
q(z|x) log

p(x|z)p(z)

q(z|x)
dz

−

∫
z
q(z|x)DKL(q(z|x)||p(c|z)))dz (1)

where p(x, z, c) represents the joint probability which can be

factorized as p(x|z)p(z|c)p(c). q(z, c|x) is the variational posterior

to approximate the true posterior p(z, c|x). To maximize LELBO,

DKL(q(z|x)||p(c|z))) ≡ 0 should be satisfied.

Once the training is done by maximizing the ELBO, we can

extract a latent representation for each observed sample and

obtain the clustering assignments. In our sampling strategy, the

clustering results are used to estimate the representativeness of

the samples.

In this paper, the implementation of VaDE has two main

contributions to the overall model: 1) VaDE prevents over-fitting

caused by too small labeled samples, and 2) It provides clustering

results to assist in sampling, from which the representative score

of the sample can be obtained.

2.2. Task learner

The task learner obtains data representations in the VaDE

latent space as input and outputs an uncertainty estimate for

samples. The task learner also has two main functions: 1) to get

the classification result and 2) to provide the uncertainty score

of the sample. The loss function of the task leaner is

Loss = −

β∑
x

C−1∑
i=0

q(y = i|x) log p(y = i|x) (2)

where q is the actual label probability of x, when x is from

a labeled pool. β represents the total number of samples, and

p represents the probability that the model predicts on x. The

classification uncertainty of the sample will be

h(x)c =

L∑
i

p(y = i|x) log p(y = i|x) (3)
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FIGURE 1

The overall framework for variational deep embedding based active learning for pneumonia diagnosis (VaDEAL).

where L is the number of Monte Carlo samples in the

SGVB estimator.

2.3. Sampling calculator

The sampling calculator will calculate the weighted sum of

the three scores for each sample:

Both representativeness and diversity can be optimized from

clustering, but we still calculate them separately to give a specific

metric.

1. Representativeness: Data points are clustered and the

similarity between data points are computed within the

cluster. First, the similarity of the current sample to other

samples in the same cluster is calculated, and then averaged

(the samples in the center of the cluster are the most

representative).

2. Uncertainty: h(x)c from Equation (3) will be served as the

uncertainty score in the sampling calculator (the higher the

predicted entropy, the more uncertain the sample).

3. Diversity: Diversity is related to the sampled set S. For each

unlabeled sample point, the similarity is calculated with all

samples in the S, then averaged, and the negative is taken.

With the framework given above, the sampling strategy of

the whole model is as follows:

1. First, the uncertainty H and representative G of all unlabeled

samples are calculated.

2. The diversity R is calculated for each sample of the sampled

set S (if S is empty, the diversity can be set to 0).

3. The composite score is calculated for the sample I = H + r ∗

G+ b∗R, where r and b are the weights of representative and

diversity, respectively. r, bwill be chosen within the scope 0.1,

0.5, 1, and 5, and each combination will be tried for the best

performance.

4. The sample I is sorted in descending order, for all the samples

outside S, find the one with the largest score I and put it into S.

5. The above process is repeated until the size of S is equal to

budget B, the sample size for each round of sampling.

Therefore, our model considers all three important criteria

of sampling, namely uncertainty, representativeness, and

diversity, which current AL community emphasizes.

3. Experiment

Dataset. We used the ChestX-ray14 dataset provided by

the NIH Research Institute (Wang et al., 2017), which is

the largest chest X-ray image dataset with the most disease

types. The ChestX-ray14 dataset contains 14 chest diseases and

normal samples where no infection was found. This paper only

considered single-label samples, as well as normal samples, for

Frontiers inNeurorobotics 04 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1059739
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Huang et al. 10.3389/fnbot.2022.1059739

TABLE 1 Di�erent sampling strategies.

Strategy Random Max-entropy Feature-mixing

AL rounds ACC micro-F1 AVG-AUC ACC micro-F1 AVG-AUC ACC micro-F1 AVG-AUC

0 0.5982 0.5162 0.7322 0.5982 0.5162 0.7322 0.5982 0.5162 0.7322

1 0.6464 0.5645 0.7642 0.6678 0.6196 0.7785 0.6773 0.6134 0.7848

2 0.6738 0.6079 0.7825 0.6884 0.6538 0.7923 0.6961 0.6621 0.7974

3 0.6944 0.6314 0.7963 0.7064 0.6809 0.8043 0.7185 0.6870 0.8123

4 0.7090 0.6345 0.8060 0.7253 0.7006 0.8169 0.7305 0.7081 0.8203

5 0.6858 0.6352 0.7906 0.7313 0.7047 0.8209 0.7511 0.7276 0.8340

TABLE 2 Variational deep embedding based active learning for pneumonia diagnosis (VaDEAL) framework.

AL rounds 0 1 2 3 4 5 Over best of baselines after 5 rounds

ACC 0.7474 0.7842 0.8193 0.8126 0.8291 0.8356 11.25%

micro-F1 0.6916 0.7450 0.7761 0.7642 0.8037 0.8106 11.41%

AVG-AUC 0.9185 0.9421 0.9467 0.9456 0.9515 0.9530 14.27%

15 categories with 21000 X-ray PNG images in 1024 × 1024

resolution.

Baselines. We compared our method with the recent state-

of-the-art AL approaches:

1. Random samplingVitter (1985) uniformly picks the samples

from the unlabeled pool, and then train the classifier on the

labeled data.

2. Max-entropy Wang and Shang (2014) picks unlabeled

instances with the highest entropy.

3. Feature mixing Parvaneh et al. (2022) identifies informative

unlabeled instances by evaluating the variability of the

labels predicted for perturbed versions of these instances

and explores the neighborhood surrounding an unlabeled

instance by interpolating its features with those of previously-

labeled ones.

Implementation detail. We initialized the labeled pool

DL by randomly selecting a part of the whole dataset and

the unlabeled data DU with the remaining data. The AL

program selected and labeled the samples from DU in the

experiments. The newly labeled samples were appended to

DL, and the training was repeated on the new DL. We

measured the accuracy of the classifier trained in the AL

process as DL grew. We computed the average accuracy of

five experiments for the reliability of the experiment. The

data (DL, DU ) of each experiment were randomly initialized.

The 5-layer multilayer perceptron (MLP) was used as a task

learner, and the VaDE we used in this study has the same

architecture and hyperparameters setting as the VaDE in the

literature (Jiang et al., 2016). The parameters of SDG were

set as 0.9 momentum and 0.005 weight decay. The learning

rate for the task learner was 1e−4. The batch size of all

training modules was 64, and the sample size of each AL round

was 100.

Results.We then compared the performances by evaluating

micro-F1, ACC, and AUC scores. From Tables 1, 2, the

performance of three baseline methods and our framework

improved after each active learning rounds. After five rounds,

the feature-mixing strategy has the best performance among

the three baseline methods, as highlighted in Table 1. The

performance of our framework after five rounds with a

percentage improvement compared to feature-mixing was

also highlighted in Table 2. Compared to three baselines,

our proposed framework outperformed all three baseline

methods under any AL round, with 27.61, 15.03, and 11.41%

improvements in the F1 score compared to random-sampling

strategy, maximum-entropy, and feature-mixing, respectively.

4. Discussion

In this paper, we proposed a new AL algorithm VaDEAL,

that fully used label information and hidden clustering

information to improve the sampling quality in AL. VaDEAL is

a computer-automatic diagnosis approach that aims to improve

the accuracy of the diagnosis of pneumonia. It is the human-

centric computing (HCC) approach that human beings are

treated only at an end. VaDEAL is designed to be more

trustworthy and fairness-aware as we remodeled the framework

to consider more label information to alleviate the bias during

sampling. It performs brain-like computing by adjusting the

parameters on the training set to achieve the classification task

on the diagnosis of pneumonia. We build our framework with

three modules:
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• A VaDE module that implements unsupervised clustering

on the samples and also helps to obtain samples’

representation score G;

• A task learner is trained to get the classification result and

provide the uncertainty score h of samples;

• A sampling calculator adds the weighted sum of R,G, and

h scores to determine the value of each sample so that our

framework can comprehensively consider all three scores

and fully use the label information and hidden clustering

pattern in data.

We implemented our novel framework in diagnoses

of pneumonia, and with extensive experiments on the

ChestX-ray14 dataset, we demonstrated that VaDEAL

outperformed all three baseline methods and showed a

larger potential.
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