
TYPE Original Research

PUBLISHED 08 November 2022

DOI 10.3389/fnbot.2022.1059497

OPEN ACCESS

EDITED BY

Peng Li,

Dalian University of Technology, China

REVIEWED BY

Inam Ullah,

Chungbuk National University, South

Korea

Desheng Liu,

Jiamusi University, China

Dianchen He,

Shenyang Normal University, China

*CORRESPONDENCE

Junjun Liu

9663137@qq.com

RECEIVED 01 October 2022

ACCEPTED 26 October 2022

PUBLISHED 08 November 2022

CITATION

Zhang J and Liu J (2022) A novel single

robot image shadow detection

method based on convolutional block

attention module and unsupervised

learning network.

Front. Neurorobot. 16:1059497.

doi: 10.3389/fnbot.2022.1059497

COPYRIGHT

© 2022 Zhang and Liu. This is an

open-access article distributed under

the terms of the Creative Commons

Attribution License (CC BY). The use,

distribution or reproduction in other

forums is permitted, provided the

original author(s) and the copyright

owner(s) are credited and that the

original publication in this journal is

cited, in accordance with accepted

academic practice. No use, distribution

or reproduction is permitted which

does not comply with these terms.

A novel single robot image
shadow detection method
based on convolutional block
attention module and
unsupervised learning network

Jun Zhang1 and Junjun Liu2*

1O�ce of Academic A�airs, Zhengzhou University of Science and Technology, Zhengzhou, China,
2College of Information Engineering, Zhengzhou University of Science and Technology,
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Shadow detection plays a very important role in image processing. Although

many algorithms have been proposed in di�erent environments, it is still

a challenging task to detect shadows in natural scenes. In this paper, we

propose a convolutional block attention module (CBAM) and unsupervised

domain adaptation adversarial learning network for single image shadow

detection. The new method mainly contains three steps. Firstly, in order to

reduce the data deviation between the domains, the hierarchical domain

adaptation strategy is adopted to calibrate the feature distribution from low

level to high level between the source domain and the target domain.

Secondly, in order to enhance the soft shadow detection ability of the

model, the boundary adversarial branch is proposed to obtain structured

shadow boundary. Meanwhile, a CBAM is added in the model to reduce

the correlation between di�erent semantic information. Thirdly, the entropy

adversarial branch is combined to further suppress the high uncertainty

at the boundary of the prediction results, and it obtains the smooth and

accurate shadow boundary. Finally, we conduct abundant experiments on

public datasets, the RMSE has the lowest values with 9.6 and BER with 6.6 on

ISTD dataset, the results show that the proposed shadow detection method

has better edge structure compared with the existing deep learning detection

methods.

KEYWORDS

robot image shadow detection, hierarchical domain adaptation strategy, boundary

adversarial branch, unsupervised learning, convolutional block attention module

1. Introduction

Shadows exist in most scenes in our daily life, which are shielded by light sources.

Shadows can preserve important information about dynamic scene and objects, such as

detection of buildings and vegetation areas, and detection of clouds through shadows

in satellite images. On the other hand, shadows are also a major source of error and

uncertainty (Shoulin et al., 2018; Sun et al., 2019; Yuan et al., 2020). For example, shadows
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may be wrongly labeled as targets in dynamic target tracking

tasks. Therefore, shadow detection in images can significantly

improve the performance of many visual tasks. The shape and

brightness of the shadow depends on the intensity, direction,

color of the light source, and the geometry and albedo of

the shade. Shadows can be divided into hard shadows and

soft shadows based on their intensity. Hard shadows have

relatively clear shadow boundaries, while soft shadows are

often generated when the light source intensity is low, and

the shadow boundaries are blurred. Most existing shadow

detection methods are usually limited to hard shadow detection.

Compared with video shadow detection, single image shadow

detection is more challenging because of the lack of relevant

information before and after frames (Sun et al., 2018).

Most traditional shadow detection methods are based on the

fact that the brightness of the shadow pixel is different from

that of the non-shadow pixel (Vicente et al., 2018). In addition,

Wang et al. (2018) firstly divided images into multiple image

blocks based on statistical learning method, and then classified

these blocks using Least Squares Support Vectors Machine

(LSSVM) to obtain shadow detection results. In recent years,

many methods based on deep learning have quickly become the

benchmark due to their good effects and calculation efficiency.

For example, Khan et al. (2016) combined Conditional Random

Field (CRF) and convolutional neural network (CNN) to extract

the local features of shadow pixels in the image. In Yago Vicente

et al. (2016), a stacked convolutional neural network (Stacked

CNN) was proposed based on a large-scale shadow detection

data set. It allowed one CNN with learned semantic features

to train another CNN and refined the details of the shadow

areas. Recently, Nguyen et al. (2017) proposed a novel shadow

detection method based on Conditional Generative Adversarial

Network (CGAN), which benefited from special sensitivity

factors and adversarial learning framework, which could obtain

relatively accurate shadowmask. Based on the idea of adversarial

learning, Le et al. (2018) trained a shadow image attenuator

to generate additional challenging image data to enhance the

robustness of shadow detection. Wang et al. (2018) proposed

the Stacked Conditional Generative Adversarial Network (ST-

CGAN), which used two CGAN for shadow detection task

and shadow removal task, respectively. Mohajerani and Saeedi

(2018) preserved the global semantic features of shadows by

changing the internal connection of the network to enhance the

ability of shadow detection based on U-Net13.

The above methods can be roughly divided into the

traditional machine learning methods based on custom features

and the feature learning methods based on deep learning (Ji

et al., 2021; Ma et al., 2021; Shafiq and Gu, 2022). Due to the

lack of prior information of light source or occlusion, traditional

machine learning methods based on custom features often

lack robust custom features and cannot accurately understand

shadows. Through many rich experiments, although many deep

learning methods are more accurate than traditional methods,

they usually only have good results on homologous test sets. In

addition, most shadow images in common data sets are strong

shadow images captured by artificial occlusion (Kamnitsas et al.,

2017; Shafiq et al., 2020b; Hatamizadeh et al., 2022). However,

the shapes and scenes of shadows are not limited to such

shadows, such as shadows on buildings or soft shadows cast

when the light source is not strong enough. They do not have

clear shadow boundaries. Deep learning methods used to detect

shadow images in these target domains (target datasets) often

only produce incomplete and jagged shadow detection results.

To solve the above problems, our research goal is that a novel

unsupervised domain adaptation adversarial learning network

for single image shadow detection is proposed in this paper.

The model is trained by supervised learning on the source data

set. But for the unused target data set, the complex artificial

labeling process is considered to make the model have the same

performance on the target data set, and enhance the robustness

of the model. Specifically, in the process of feature extraction,

the multi-layer feature domain adaptation strategy is combined

to minimize the data deviation between the source domain

and the target domain. Secondly, the boundary adversarial

branch is proposed, and the boundary generator and boundary

discriminator are used to strengthen the boundary structure

of soft shadow detection results. Finally, entropy adversarial

branch is introduced to reduce the uncertainty of the shadow

boundary region in the shadow image, and a smooth and

accurate shadow mask is obtained.

This paper is organized as follows. Section 2 detailed

introduces the proposed domain adaptation adversarial learning

network for shadow detection. We conduct rich experiments in

section 3. There is a conclusion in section 4.

2. Proposed unsupervised learning
network

Different “domains” are actually different data sets. The

process of domain adaptation aims to make a model adapt to

multiple different domains, so that the model can be better

generalized to other data sets. Many supervised deep learning

methods can bring significant performance improvement

for shadow automatic detection, but due to cross-domain

discrepancy (Shafiq et al., 2020a), the model cannot get

satisfactory results on the target data set. As shown in Figure 1,

through many experiments and analysis, the deep network

trained on source data set ISTD can usually only generate

relatively accurate shadow results for its homologous test

images. When applied to the target data set SBU, the boundary

structure of shadow detection results is poor, as shown in

Figure 1B. The proposed model not only performs well on the

source data set, but also has good detection capability on the

target data set, as shown in Figure 1C. Compared with these

methods, when facing a new data set, the proposed method is no
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FIGURE 1

Analysis of cross-domain discrepancy. First row: Source data

set. Second row: Target data set. First column: shadow image

(A). Second column: CGAN method (B). Third column: proposed

method (C).

longer need the tedious manual labeling work as training data

to provide the corresponding shadow labeled data, it uses the

unsupervised learning aiming to make the model easily realize

the domain adapt to get accurate shadow detection results for

new data sets.

The proposed shadow detection framework is shown in

Figure 2. For the shadow images in the source domain and

the target domain, a separate feature extraction channel is

firstly adopted, and the domain discriminator is used to judge

the domain label of the current feature from the low level

to the high level. Then, two generative adversarial branches

are constructed. The boundary adversarial branch is used to

enhance the detection ability of soft shadow image in the target

dataset (Lee et al., 2022). The entropy adversarial branch can

further suppress the uncertainty at the boundary of the shadow,

so that a smooth and accurate shadow mask can be obtained.

With the objective function and special network connection, the

two tasks are mutually constrained and promoted to achieve

accurate cross-domain shadow detection.

2.1. Hierarchical feature extraction
method

The traditional domain adaptation model only corrects

the feature distribution between different domains in the last

convolution layer to realize the whole local adaptation (Chen

et al., 2018). However, this method ignores the importance

of low-level features, and makes some domain-sensitive local

features weaken the generalization ability of the domain

adaptation model. Because of the non-transferable layer, a single

domain classifier is difficult to eliminate the data deviation

between the source domain and the target domain. Inspired by

Shafiq et al. (2020c) and Zhang et al. (2020), shadow images

are taken as input in the source domain and target domain. In

the process of image encoding, each convolution layer in the

encoder has a corresponding feature graph. It extracts the output

feature graphs of multiple middle layers in the encoder. The

corresponding image domain classifier is constructed on each

convolution layer between the encoders of the source domain

and the target domain to promote the feature matching in the

middle layer. The aim is to make two different encoders still

have similar feature extraction process under different data sets

to achieve the purpose of domain adaptation. The objective

function is shown in Equation (1):

LM = −
∑

i,k,o,p

[Dilnfk(8
o,p
i,k

)+ (1− Di)ln(1− fk(8
o,p
i,k

))] (1)

where Di is the domain label of the i− th image. 8
o,p
i,k

represents

the feature graph activation value of the pixel at the k− th layer

with coordinate (o, p) in the i− th image. fk is the corresponding

domain classifier.

Hierarchical domain adaptation ensures that the

intermediate features between the two domains have similar

distribution, thus enhancing the robustness of the adaptation

model. In the process of shadow detection, eliminating the

data deviation between domains can improve the accuracy of

shadow detection on the target data set. As shown in Figure 3,

Figure 3A is the shadow image in the target domain. Figure 3B

is the label data (ground truth). Figure 3C shows the shadow

detection results with the global domain adaptation. Figure 3D

shows the shadow detection results with the hierarchical domain

adaptation. Compared with Figures 3C,D, the model obtains a

better generalization after the hierarchical domain adaptation

feature extraction, and has a more accurate detection ability

for the text with different colors adjacent to the shadow in

the image.

2.2. A hybrid domain attention
mechanism with CBAM

For computer vision tasks, the attention mechanism plays

the role of generating weights for each pixel of the image. Ideally,

the weight of foreground pixel will increase and the weight of

background pixel will decrease gradually. Through the widening

of the weight gap, the effect of different semantic separation will

be achieved.

Convolutional Block AttentionModule (CBAM) is a reliable

attention mechanism algorithm in computer vision tasks, which

has a simple algorithm structure and considerable practical

effect. Convolutional block attentionmodule combines the space

and channel of CNN to generate respective attention for images

and feature maps of different attention domains, and guides the

model to distinguish semantic information more efficiently.
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FIGURE 2

Proposed single robot image shadow detection.

FIGURE 3

E�ect of hierarchical domain adaptation on shadow detection.

First column (A), second column (B), third column (C), and

fourth column (D) are shadow image, GT, global domain

adaptation, hierarchical domain adaptation, respectively.

FIGURE 4

CBAM.

Convolutional block attention module is composed of

spatial domain attention generation module and channel

domain generation module, and the two modules need to be

combined by weighted sum operation. Where, the space domain

generation module can be expressed as:

FSAvg = AvgPool(F) (2)

FSMax = MaxPool(F) (3)

MSF = Sigmoid(f 7×7(FSAvg + FSMax)) (4)

According to the feature map F output by the CNN, the

global average pooling and global maximum pooling operations

of the feature map are carried out simultaneously. Then, the

results of the two pooling methods are connected based on

channels, and a convolution network with the number of target

channels is 1 and the convolution kernel is 7 × 7 is input. The

number of channels is reduced to 1 without changing the length

and width of the feature map. Then the activation function

Sigmoid is used to transform the output into nonlinear data, and

the spatial domain attention matrix Ms(F) is obtained. Figure 4

shows the spatial domain generation module of CBAM.

The channel domain generation module can be expressed as:

FCAvg = MLP(AvgPool(F)) (5)

FCMax = MLP(MaxPool(F)) (6)

McF = Sigmoid(FCAvg + FCMax)) (7)

In the attention module of channel domain, the average

pooling and maximum pooling operations based on channel

are carried out synchronously in the feature map F. Then the

results of the two operations are respectively input into the same

multi-layer perceptron, and the two vectors are directly added

together. It inputs Sigmoid activation function, and outputs

channel domain attention matrixMc(F).

2.3. Boundary feature analysis

The existing shadow detection data sets lack the soft shadow

images with rich scenes because of the single acquisition method

(using various shielders under the strong light source). Affected

by the intensity of light source, soft shadow image does not have

clear shadow boundary. However, many existing deep learning
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methods are unable to obtain good detection results on soft

shadow images. As shown in Figure 5, for soft shadow images

in the target data set, the detection result of boundary structure

cannot be obtained only by correcting feature distribution, as

shown in Figure 5B.

In order to solve the above problems, the boundary

adversarial branch model is constructed to predict the boundary

structure results in the target data set. Boundary adversarial

branch is designed to generate the shadow boundary image as

shown Figure 5C. Then, based on the principle of adversarial

learning, the discriminator is used to further improve the

quality of the generated image. With the initial positioning of

the shadow boundary, the subsequent shadow detection results

will have more boundary structure and ultimately improve the

detection ability of soft shadow.

Assume that the source data set is S. Its label data is the

ground truth mask ys. The target dataset T has no labeled

data. Firstly, the generator Gb fits the shadow boundary in the

image and generates boundary prediction results Gb(xs) and

Gb(xt) for the light source shadow image xs and target shadow

image xt , respectively. The visualization is shown in Figure 5C.

Secondly, the discriminatorDb is designed to determine whether

the boundary comes from the source or the target dataset. With

the boundary adversarial branch, for the soft shadow image in

the target domain, it can accurately identify the shadow region,

as shown in Figure 5D.

For the source domain data set and target domain data

set with domain label, boundary discriminator Db judges

and punishes Gb(xs) and Gb(xt), respectively, as shown in

Equation (8):

LDb
=

1

N

∑

xt∈S

LB(Gb(xs), 1)+
1

M

∑

xt∈T

LB(Gb(xt), 0) (8)

where LB is binary cross entropy loss, which is defined as

LB(ŷ, y) = −(ylnŷ+(1−y)ln(1− ŷ));N andM are the number of

images in the source data set and the target data set, respectively.

The loss function LGb
of the generator is a weighted

combination of the mean absolute error loss term on the source

data set and the adversarial loss term on the target data set, as

shown in Equation (9):

LGb
=

1

N

∑

xs∈S

||ybxs − (Gb(xs)||1+ λ1
1

M

∑

xs∈T

LB(Gb(xs), 1) (9)

where ybxs is the shadow boundary label image in the source data

set.

2.4. Entropy mask prediction

After the boundary adversarial branch, using the additional

shadow mask generator directly generates zigzag shadow

detection boundaries for the target dataset (Figure 5B). Inspired

by Vu et al. (2019), the shadow mask results have a high entropy

value (uncertainty) in the region near the shadow boundary,

which will lead to the zigzag boundary phenomenon.

In order to suppress the uncertain prediction results, the

entropy adversarial branch first generates the shadow probability

map for the shadow image. Based on the probability map, the

Shannon entropy is used to transform the probability map into

the entropy map. Entropy maps of the target domain and source

domain are forced to be as similar as possible, so as to reduce

the effect difference between the model on the target and source

data sets. Finally, the quality of the generated image is improved

by the idea of adversarial learning. The high entropy value in

the entropy graph should only be around the shadow boundary.

The reasonable entropy distribution corresponds to the shadow

detection results with smooth boundary.

Mask generator Gm generates mask prediction results

Gm(xs) and Gm(xt) for source and target images, respectively.

Given the mask prediction result p of input image x, Shannon

entropy can be used to calculate the entropy graph, as shown in

Equation (10):

E(x) = p× log(p) (10)

Entropy discriminator De aims to calibrate the distribution

of E(xs) and E(xt). Similar to the boundary-driven adversarial

learning, the entropy discriminator De determines whether the

entropy graph comes from the source domain or the target

domain. Its objective function is shown in Equation (11):

LDe =
1

N

∑

xt∈S

LB(E(xs), 1)+
1

M

∑

xt∈T

LB(E(xt), 0) (11)

The loss function LGm of the generator is a weighted

combination of the pixel-level cross entropy loss on the source

data set and the adversarial loss item on the target data set, as

shown in Equation (12):

LGm = −
1

N

∑

xs∈S

(ymxs · ln(Gm(xs))+ (1− ymxs ) · ln(1− Gm(xs)))

+λ2
1

M

∑

xs∈T

LB(E(xt), 1) (12)

where ymxs is the shadow mask label image.

2.5. Shadow removal

Firstly, the coherence block matching strategy is used to

find the best matching non-shaded region block for each region

block in the shaded region. Then, local illumination propagation

and global illumination optimization were performed for each

matching shaded and non-shaded area pair. Finally, the shadow

boundary is processed to get the final result.
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FIGURE 5

Analysis of boundary adversarial branch. (A) Shadow image, (B) before boundary adversarial, (C) after boundary adversarial, and (D) detection

result.

A. Local illumination propagation

The shadow area is modeled and combined with the

illumination propagation algorithm, the ratio of direct light and

indirect light is calculated to obtain the video without shadow:

Ii = (kiLd + Le)Ri (13)

where Ii is the i− th pixel of the image in RGB space. ki ∈ [0, 1]

is the degree of direct illumination of the pixel. Both Ld and Le

are vectors of scale 3, representing the intensity of direct light

and ambient light. Ri is the reflectance of the pixel, which is also

a three-dimensional vector, and each dimension corresponds

to a color channel of the RGB image. Equation (13) indicates

that the pixel value of a pixel is obtained by the interaction of

direct light and ambient light and multiplied by the reflectance

of the pixel. The state of direct light in the image can be divided

into three situations, namely, shaded area, non-shaded area, and

semi-shaded area. When ki = 0, the pixel is not affected by

direct light and belongs to the shadow area. When ki = 1, direct

light completely acts on the pixel, and the pixel belongs to the

non-shadow region. When ki ∈ (0, 1) is the shaded transition

region.

Then for a pixel with the shadow removed, the relationship

between its pixel value and the pixel value of the shadow pixel

can be simplified as Equation (14):

I′i = (Ld + Le)Ri =
r + 1

kir + 1
Ii (14)

where r =
Ld
Le

is the ratio of direct light to ambient light. Ii is the

RGB value of the i-th pixel of the original image.

B. Global shadow removal

Although the local illumination propagation operation can

remove the shadow in the shadow area block, it can not get

the spatio-temporal coherent shadow free video result. After

the local illumination propagation, the global shadow removal

method should be used to make up for this deficiency. In order

to obtain spatially coherent unshaded images V ′
s , a weighted

FIGURE 6

Loss value curves.

FIGURE 7

Overall accuracy curves.

average method is proposed to recover the unshaded values of

pixels in overlapping areas in the following equation.

V ′
p =

∑

Si∈Ns(p)

V ′
si (p)wi/

∑

i

wi (15)

where Ns(p) is the block containing pixel p. wi = dist(i, j) is

the similarity distance between block si and its corresponding

block Lj. Where NL(p) is the block set formed by the nearest
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FIGURE 8

(A–C) Datasets for network training.

FIGURE 9

Detection results with di�erent methods on ISTD dataset. (A) Shadow image, (B) GT, (C) GSCA-Unet, (D) SAS, (E) DSAN, and (F) Proposed.

FIGURE 10

Detection results with di�erent methods on SBU dataset. (A) Shadow image, (B) GT, (C) GSCA-Unet, (D) SAS, (E) DSAN, and (F) proposed.

n Ns(p) corresponding to the bright region. V ′
p is the result of

local illumination propagation of pixel p through both block

Si and block Li. In summary, the pixel value of pixel p in the

overlapping area is obtained by the weighted average of multiple

blocks containing pixel p.

Using the above global optimization technique, spatially

smooth shadow-free results can be obtained within the shadow.

Using weighted average method to calculate the shadow free

value of overlapping pixels can avoid or greatly reduce the

fuzzy artifacts in the overlapping area. Minimizing the objective

function ensures that the results are consistent in time.

E(V f ) =
∑

p∈S

=
∑

p∈S

φ([V f (p)− V ′
s(p+ u(p))]2)+ φ([V f (p)

−V ′
s(p+ v(p))]2) (16)
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FIGURE 11

Detection results with di�erent methods on remote sensing images (Toronto). (A) Shadow image, (B) GT, (C) GSCA-Unet, (D) SAS, (E) DSAN, and

(F) proposed.

FIGURE 12

Detection results with di�erent methods on remote sensing images (Vienna). (A) Shadow image, (B) GT, (C) GSCA-Unet, (D) SAS, (E) DSAN, and

(F) proposed.

where V f is the final shadow-free result. S represents the

shaded area. u(p) and v(p) are the forward and backward

optical flow direction of pixel p. φ(x) =
√

x2 + ε. Using the

gradient descent algorithm to minimize the objective function,

the spatio-temporal coherence of the image without shadow can

be obtained.
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TABLE 1 The average detection results on the ISTD dataset.

Method RMSE BER Shadow (PER) Non-shadow (PER)

GSCA-UNet 14.7 8.5 7.9 7.2

SAS 13.8 7.2 7.2 6.4

DSAN 12.3 6.9 7.1 5.8

Proposed 9.6 6.6 6.9 5.1

TABLE 2 The average detection results on the SBU dataset.

Method RMSE BER Shadow (PER) Non-shadow (PER)

GSCA-UNet 14.5 10.2 10.2 11.1

SAS 12.2 9.8 9.7 9.3

DSAN 11.9 8.7 8.8 8.6

Proposed 10.3 7.6 7.1 7.7

2.6. Network structure and training

The proposed network structure adopts encoder-decoder

structure of U-Net (Lee et al., 2022). U-Net structure consists

of a contraction channel and an expansion channel. The

contraction channel is used to extract contextual features,

while the expansion channel is used for image up-sampling to

obtain a generated image. The discriminator of the proposed

network is also consistent with Lata et al. (2019), it contains

multiple convolution blocks. The convolution layer is followed

by Batch Normalization and activation function LeakyRelu.

The last layer of the discriminator is a Sigmoid function,

which outputs the probability value of the true image. In the

training process, the generation network and the discriminant

network are optimized by the alternating gradient updating

strategy. First, the boundary and entropy discriminant networks

are optimized to minimize the objective function. Second, the

generator network, generation loss, and hierarchical domain

adaptation loss are optimized. The overall loss function of the

generator network is shown in Equation (17):

L = LM + LGb
+ LGm (17)

The detailed variations of the overall loss value and its

accuracy at each training stage are shown in Figures 6, 7 with

our proposed shadow detection method. As can be seen from

Figures 6, 7, the convergence process of the proposed method

is stable, which reduces the over-fitting phenomenon effectively.

The overall accuracy exceeds 96%.

3. Experiments and analysis

The experiment platform is: Python programming language,

TensorFlow package, Ubuntu 18.04, 16 GB memory, Inter i7

TABLE 3 The average detection results on the remote sensing dataset.

Method RMSE BER Shadow (PER) Non-shadow (PER)

GSCA-UNet 13.7 10.7 11.7 12.3

SAS 11.9 9.2 10.8 9.7

DSAN 10.2 8.4 8.9 8.8

Proposed 9.8 8.1 7.4 8.2

TABLE 4 The average detection time with di�erent methods.

Method Time

GSCA-UNet 6.7

SAS 3.8

DSAN 2.3

Proposed 1.2

CPU, and NVIDIA GTX1060TI. In the network, the slope of

LRELU is set to 0.25, and the objective function is optimized by

Adam. The 286× 286 pixel image in the data set is cropped into

256 × 256 pixel sub-images and flipped to increase the training

data. λ1 = λ2 = 0.5. The initial learning rate is 0.1. As shown in

Figure 8, three groups of different training images in the source

data set are shown. The three groups of images represent simple

geometric boundary shadow, text mixed shadow and complex

structure shadow image, respectively. The training data sets with

various scenarios aremore conducive to the generalization of the

network model.

The proposed method is compared with three new shadow

detection methods: GSCA-UNet (Jin et al., 2020), SAS (Fan et

al., 2020), DSAN (Li et al., 2020). GSCA-UNet aimed to generate

additional shadow images to enhance the generalization ability

of the model. SAS was constructed based on two CGANs. The

multi-task learning mode was used to perform shadow detection

and shadow removal tasks successively. DSAN preserved the

semantic information of each convolution layer by changing

the network connection in the encoding and decoding process

to improve the accuracy of shadow detection based on the

traditional U-Net image generation model. They are tested on

ISTD dataset.

Figure 9 shows the shadow detection effect of different

methods in four different shadow scenes. By comparing

Figures 9C–F, it can be found that the entropy-driven

adversarial learning model also has a great performance

improvement in the source domain. In the complex shadow

scenes, such as cross texture, text confusion, and irregular shape,

it can also get better detection results and has better robustness.

It is worth noting that, compared with the incomplete shadow

detection results in DSAN, the necessity of boundary adversarial

branch can also be reflected in a lateral way.
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In order to verify the cross-domain detection performance of

the proposed method, a cross-domain comparative experiment

is conducted between the proposed method and references

(Chen et al., 2018; Shafiq et al., 2020c; Zhang et al., 2020) on

the SBU dataset. Figure 10 shows the detection performance of

different methods in four different shadow scenes. In the first

line, due to the combination of multi-layer domain adaptive

feature extraction process, the proposedmethod will not mistake

the black shorts of athletes as shadows. Similarly, compared with

the other two methods, the proposed method also has better

accuracy in the soft shadow images in the third and fourth

rows. In this paper, boundary adversarial branch and entropy

adversarial branch are combined, so that the shadow detection

results have good boundary structure, and the shadow boundary

is smooth and natural.

We also conduct experiments on some remote sensing

images, the results are shown in Figures 11, 12.

The obtained results by the GSCA-UNet method look

reasonable compared to the GT maps. However, as shown in

Figures 11C, 12C, quite a few positive (shadow) and negative

(non-shadow) samples are needed to be labeled in advance to

yield the final detection results for each input image. Another

obvious weakness of the GSCA-UNet method can be found

from Figures 11C, 12C, where some small shadows are missed,

which is caused by the fact that it is arduous to mark small

shadows. The SAS method maintains well the integrity of the

detected shadow regions, as illustrated in Figures 11E, 12E.

Unfortunately, the SAS method fails to handle the nonuniform

shadows in the Toronto image and the dark water body in

the Austin image. The DSAN method produces satisfactory

detection results. However, it can be seen in Figure 11 that it is

insufficient to precisely locate the shadow boundaries (Shafiq et

al., 2022), and part of the shadows was missed due to lack of

consideration for global spatial contextual information. From

the aforementioned comparisons, we can conclude that the

balance between automaticity and accuracy for the proposed

method is better than that of other advanced methods.

We select three evaluation indexes RootMean Squared Error

(RMSE), Balance Error Rate (BER), and Per pixel Error Rate

(PER) to evaluate the proposed method.

BER = 1− 0.5(
TP

TP + FN
+

TN

TN + FP
) (18)

where TP, TN, FP, and FN are the correctly detected shadow

pixels, correctly detected non-shadow pixels, wrongly detected

shadow pixels and wrongly detected non-shadow pixels,

respectively.

Table 1 shows the same domain detection analysis on the

ISTD dataset. Table 2 shows the cross-domain detection analysis

on the SBU dataset. Table 3 shows the detection results of remote

sensing images. It can be seen that the proposed method is better

than other methods.

Table 4 is the computation time comparison, which also

shows the better effect with the proposed method.

4. Conclusion

Because existing shadow detection methods only have good

performance on source data sets, a novel shadow detection

method is proposed in this paper. Themethod aims to obtain the

same accurate detection results on the target data set as on the

source data set. Firstly, combined with the hierarchical domain

adaptive feature extraction method, a domain classifier is added

after each convolution layer in feature extraction process to

reduce the data differences between domains, and thus it

improves the robustness of the model. Secondly, boundary

adversarial branch and entropy adversarial branch are used

to obtain smooth boundary detection results. Compared with

the most advanced shadow detection methods, the proposed

method not only has a great improvement in the source

domain, but also has advantages in the target domain. In the

future research work, we will consider to further improve the

performance of the model from the perspective of generating

diverse shadow image data.
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