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Lower limb rehabilitation robots (LLRRs) have shown promising potential

in assisting hemiplegic patients to recover their motor function. During

LLRR-aided rehabilitation, the dynamic uncertainties due to human-robot

coupling, model uncertainties, and external disturbances, make it challenging

to achieve high accuracy and robustness in trajectory tracking. In this study, we

design a triple-step controller with linear active disturbance rejection control

(TSC-LADRC) for a LLRR, including the steady-state control, feedforward

control, and feedback control. The steady-state control and feedforward

control are developed to compensate for the gravity and incorporate the

reference dynamics information, respectively. Based on the linear active

disturbance rejection control, the feedback control is designed to enhance the

control performance under dynamic uncertainties. Numerical simulations and

experiments are conducted to validate the e�ectiveness of TSC-LADRC. The

results of simulations illustrate that the tracking errors under TSC-LADRC are

obviously smaller than those under the triple-step controller without LADRC

(TSC), especially with the change of external loads. Moreover, the experiment

results of six healthy subjects reveal that the proposedmethod achieves higher

accuracy and lower energy consumption than TSC. Therefore, TSC-LADRC has

the potential to assist hemiplegic patients in rehabilitation training.

KEYWORDS

lower limb rehabilitation robot, triple-stepmethod, linear active disturbance rejection

control, dynamic uncertainties, trajectory tracking

Introduction

Globally, stroke is a major threat to human health, and post-stroke

care has brought a substantial economic burden to society (Johnson et al.,

2019). Due to brain injury, stroke often leads to lower limb dysfunction,

which greatly reduces patients’ quality of life (Hobbs and Artemiadis, 2020).
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Therefore, rehabilitation training is needed to help these

patients recover their motor function or reduce the risk of

several medical consequences secondary to paralysis, such as

muscle atrophy and obesity (Chen et al., 2016). In traditional

rehabilitation training, the physiotherapist manually guides the

patients with impaired limbs to perform repetitive movement

training, which is labor-intensive and difficult to quantitatively

assess the level of recovery (Akdogan and Adli, 2011). In order

to reduce the workload of physiotherapists and enhance the

rehabilitation effect, many studies have been conducted on lower

limb rehabilitation robots (LLRRs), such as LOPES (Veneman

et al., 2007), HAL (Sankai, 2007), and Lokomat (Riener et al.,

2005).

Controllers are the critical factor determining the

effectiveness of LLRR-aided rehabilitation (Hussain et al.,

2013). Among the present research works, most controllers

are designed to assist dysfunctional lower limbs in tracking a

predefined trajectory (Li et al., 2021). As a model-free controller

with a simple and generic control structure, the proportional-

integral-derivative (PID) controller has been widely applied to

LLRRs (Wu et al., 2015; Zhang et al., 2016; Al-Waeli et al., 2021).

However, due to the underutilization of model information,

the robotic systems based on the PID controller show poor

robustness to external disturbances. Therefore, model-based

controllers are proposed to strengthen the anti-disturbance

ability of LLRRs. Shen et al. (2020) combined the kinematics

and friction models with adaptive robust position control to

improve the tracking performance of LLRR under a complex

interaction environment. Hernández et al. (2020) designed a

non-singular fast terminal sliding mode control for a powered

four-degree-of-freedom LLRR, showing strong robustness

to external disturbances. Based on a unilateral human-robot

dynamical model, a robust controller was designed to drive a

LLRR to follow a pre-specified trajectory (Qin et al., 2020). In

fact, the LLRR system is characterized by non-linearity, hence

the calculation and deduced process of the designed controllers

is complicated. Inspired by the triple-step method (Gao et al.,

2014; Zhou et al., 2019) proposed a triple-step non-linear

controller for LLRR to guarantee control accuracy under

different levels of interaction torque. The triple-step method

simplified the complicated design of a non-linear controller as

a triple-step design process, including the design of steady-state

control, feedforward control, and feedback control. On this

basis, the structure of the deduced controller was concise.

Dynamic uncertainties of the LLRR system are the main

issue that should be considered in controller design (Li

et al., 2021). In the LLRR-aided rehabilitation training, the

dynamic uncertainties such as human-robot coupling, model

uncertainties, and external disturbances, significantly affect

the tracking performance. Owing to the non-linear mapping

capability, Zhang et al. (2020) combined a radial basis functions

neural network (RBFNN) with a sliding mode controller to

approach and compensate for the model uncertainties and

external disturbances. Besides, Huang et al. (2022) integrated

a disturbance observer (DO) into the controller design to

compensate for dynamic uncertainties. Khamar et al. (2021)

used a non-linear DO in the backstepping sliding controller

to assess the wearer’s muscle effort and the uncertainties in

modeling. Although the control performance of LLRR can

be improved by the RBFNN and DOs, the parameters they

introduce are difficult to adjust. Long et al. (2017) presented a

controller for trajectory tracking under dynamic uncertainties

based on active disturbance rejection control (ADRC), which

facilitated the parameter tuning. First proposed by Han (2009),

the core idea of ADRC is to view the system’s external

disturbances and internal uncertainties as “total disturbance”,

estimate the real-time value of the total disturbance by an

extended state observer, and finally compensate for it through

feedback to achieve satisfying control performance. Moreover,

Gao (2003) proposed a linear version of ADRC (LADRC), i.e.,

a combination of linear extended state observer (LESO) and

linear state feedback, which simplified the control structure and

reduced the number of tuning parameters.

Although the LADRC technique is a powerful tool to

cope with dynamic uncertainties, extra model information

is necessary to further improve the control performance (Li

et al., 2022; Long and Peng, 2022). In this paper, a triple-

step controller with LADRC (TSC-LADRC) is designed for a

LLRR to accurately assist the user in tracking a predefined gait

trajectory. On the one hand, the triple-step method establishes

the main framework of a model-based controller. On the other

hand, the feedback control is modified based on the control

conception of LADRC using a second-order error auxiliary

system. Accordingly, the total disturbance will be estimated in

real time by the LESO and compensated with the feedback

control input. To validate the effectiveness of TSC-LADRC,

simulations considering the dynamic uncertainties are carried

out, and experiments with the LLRR are performed on six

healthy subjects. All results show that the trajectory tracking

performance under TSC-LADRC is more accurate and robust

than that under TSC, especially with different external loads.

System description

Mechanical structure

Based on the physiological characteristics of the human’s

lower limb, we have developed a LLRR with three degrees of

freedom, as shown in Figure 1A. The LLRR includes the hip,

knee, and ankle joints, where the hip and knee joints of this

LLRR are active joints driven by brushless motors (EC 90flat,

Maxon, Switzerland) to assist the movement of the wearer’s

lower limb in the sagittal plane. The linkage is mainly made of

lightweight aluminum and nylon materials through machining

and three-dimensional printing. Besides, both the thigh and the
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FIGURE 1

The structure of the LLRR. (A) is the actual prototype of the

LLRR. (B) is the simplified two-linkage model of the LLRR.

shank parts are designed as a two-segment mosaic structure

that can adapt to subjects of different heights. The wearer’s

lower limb is fixed to the exoskeleton by Velcro. And the fixed

points in the limb are equipped with force sensors (FSSM-

500N, Forsentek, China), which can measure the human-robot

interaction forces.

Since the exoskeleton and the wearer perform motions

in a shared workspace, the designed exoskeleton must be

safe. According to the ranges of motion for the lower limb

exoskeleton (Veneman et al., 2007), once the program detects

that the joint angle or speed is out of the normal range, the

control system will immediately stop driving the motor. In

addition, an emergency shutdown button is set to allow the

operator to turn off the motor in time. Mechanical limit plays

the ultimate role in protection. Please refer to our previous work

for more details (Zhou et al., 2021).

Dynamics model

As shown in Figure 1B, the exoskeleton can be simplified to

a two-link model in the sagittal plane. Considering the external

disturbances, joint friction torques as well as the uncertain

model parameters, the dynamics of the LLRR can be modeled

by the Euler-Lagrange method as follows:

M̂(θ)θ̈+Ĉ(θ ,θ̇)θ̇+Ĝ(θ) =τ−T (1)

T=τHR+f (θ̇)+M(θ)θ̈+C(θ ,θ̇)θ̇+G(θ) (2)

Where θ= [θ1; θ2]∈R
2 × 1, θ̇ ∈ R

2 × 1 and θ̈ ∈ R
2 × 1

are joint angle, velocity and acceleration vectors, respectively;

τ = [τ1; τ2] ∈ R
2 × 1 are the control torques; f

(

θ̇
)

∈ R
2 × 1

and τHR ∈ R
2 × 1 are joint friction torques and human-robot

interaction torques; M̂ (θ) ∈ R
2 × 2, Ĉ

(

θ ,θ̇
)

∈ R
2 × 2 and

Ĝ (θ) ∈ R
2 × 1 are the nominal inertia matrix, the nominal

centripetal and Coriolis matrix, and the nominal gravitational

vector, respectively; M (θ) ∈ R
2 × 2, C

(

θ ,θ̇
)

∈ R
2 × 2 and

G (θ) ∈ R
2 × 1 are the corresponding model uncertainties

between nominal dynamics and actual dynamics; T ∈ R
2 × 1

is defined as the total disturbances including the structural and

non-structural uncertainties.

The nominal dynamics matrixes are expressed in detail as:







































M̂(θ) =

[

M̂11(θ) M̂12(θ)

M̂21(θ) M̂22(θ)

]

M̂11(θ) = m̂1d
2
1 + m̂2l

2
1 + m̂2d

2
2 + 2m̂2l1d2 cos(θ2)+ Î1 + Î2

M̂12(θ) = m̂2d
2
2 + m̂2l1d2 cos(θ2)+ Î2

M̂21(θ) = M̂12(θ)

M̂22(θ) = m̂2d
2
2 + Î2

(3)







































Ĉ(θ , θ̇) =

[

Ĉ11(θ , θ̇) Ĉ12(θ , θ̇)

Ĉ21(θ , θ̇) Ĉ22(θ , θ̇)

]

Ĉ11(θ , θ̇) = −2m̂2l1d2 sin(θ2)θ̇2

Ĉ12(θ , θ̇) = −m̂2l1d2 sin(θ2)θ̇2

Ĉ21(θ , θ̇) = m̂2l1d2 sin(θ2)θ̇1

Ĉ22(θ , θ̇) = 0

(4)

Ĝ (θ) =

[

(m̂1gd1 + m̂2gl1) sin θ1 + m̂2gd2 sin(θ1 + θ2)

m̂2gd2 sin(θ1 + θ2)

]

(5)

Where m̂1 and m̂2 are the mass of the thigh part and the calf

part; l1 and l2 are the length of the thigh part and the calf part;

d1 and d2 are the distances from the center of mass to the center

of rotation; Î1 and Î2 are the moments of inertia of the thigh part

and the calf part.

Triple-step controller with LADRC

In this section, a position controller for LLRR is proposed

by combining the triple-step method with LADRC, in order to

ensure that the robot follows the reference gait trajectory with

high accuracy. Designed by the triple-step method, the control

framework of the position controller is shown in Figure 2. The

core concept is to divide the design process of a non-linear

controller into three steps: steady-state control is to compensate

for the effect of gravity, which can improve the steady-state

performance of the system; feedforward control takes the change

of reference dynamics into account, so as to improve the system

response speed; feedback control is designed through LADRC

using a second-order error auxiliary system, to reduce the

influence of dynamic uncertainties during trajectory tracking.
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FIGURE 2

Control framework of the triple-step controller with LADRC.

FIGURE 3

Tracking performance of TSC with di�erent loads. (A,B) are the joint angles of the hip and knee. (C,D) are the tracking errors of the hip and knee.

I, II, and III represent three cases of di�erent loads. RT, reference trajectory.

Steady-state control

By assigning zero to θ̇ , θ̈ andT, and replacing τ with τs in (1),

we can obtain the control input defined by steady-state control:

τ s = Ĝ (θ) (6)

Feedforward control

For a complex system with non-linear and time-varying

characteristics, steady-state control alone cannot achieve good

control performance. Hence, a feedforward control input is

designed to improve the system response speed by considering

the variation of the reference dynamics.

By defining θ̈ = θ̈ r , θ̇ = θ̇ r , τ = τ s + τ f and assigning zero

to T in (1), the control input defined by the reference-dynamics-

based feedforward control can be obtained:

τ f = M̂ (θ) θ̈ r + Ĉ
(

θ , θ̇ r
)

θ̇ r (7)

where θ̇ r , θ̈ r∈R
2 × 1 are the derivative and the second

derivative of the reference joint angle θ r .
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FIGURE 4

Tracking performance of TSC-LADRC with di�erent loads. (A,B) are the joint angles of the hip and knee. (C,D) are the tracking errors of the hip

and knee. I, II, and III represent three cases of di�erent loads. RT, reference trajectory.

FIGURE 5

Tracking errors of TSC-LADRC under di�erent values of ωo. The part plots are the initial response of joints’ tracking errors in the time interval [0,

0.5s].
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FIGURE 6

Tracking performance of the exoskeleton robot under TSC-LADRC and TSC. (A,B) are the joint angles of the hip and knee. (C,D) are the tracking

errors of the hip and knee. RT, reference trajectory.

FIGURE 7

The mean values of each evaluation index in all experiments: (A) RMSE results of hip joint; (B) RMSE results of knee joint; (C) Energy index. The

error bars indicate the standard errors. The asterisk reveals significant di�erence (p<0.05).
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Feedback control

As for the dynamics equation of the non-linear exoskeleton

in (1), the uncertainties such as external disturbances and the

change of structural parameters will degrade the performance of

the controller. Therefore, it is significant to design a feedback

control input to improve the accuracy and robustness of the

non-linear system.

Since M̂ (θ) is a positive definite symmetric matrix, the

dynamics equation (1) can be rewritten as:

θ̈ =M̂ (θ)−1 (τ − T)−M̂ (θ)−1 Ĉ
(

θ , θ̇
)

θ̇ − M̂ (θ)−1 Ĝ (θ) (8)

By letting τ = τ s + τ f + τu and defining the tracking error

e=θ r − θ , we can obtain:

ë = M̂ (θ)−1 Ĉ
(

θ , θ̇
)

θ̇ − M̂ (θ)−1 Ĉ
(

θ , θ̇ r
)

θ̇ r

−M̂ (θ)−1
τu + M̂ (θ)−1 T (9)

Based on the LADRC, a second-order error auxiliary system

is defined:

ë = M̂ (θ)−1 T + (b− b0) u+ b0u (10)

Where e = [e1; e2], u = [u1; u2], and b = diag
(

b1, b2
)

are

the output, the input, the dynamic characteristics of the auxiliary

system respectively, and b0 = diag
(

b01, b02
)

are the presetting

values of the dynamic characteristics.

τu = −M̂ (θ) bu+ Ĉ
(

θ , θ̇
)

θ̇ − Ĉ
(

θ , θ̇ r
)

θ̇ r (11)

The second-order auxiliary system constructed in (10) is

studied as follows.

Defining the total disturbance as d =
[

d1; d2
]

=

M̂ (θ)−1 T+(b− b0) u, the auxiliary system can be rewritten as:

ëi = di + b0iui, i = 1, 2 (12)

The core concept of LADRC is to estimate the real-

time action value of the external disturbances and internal

uncertainties, and compensate for it in the feedback to eliminate

the influence of the total disturbance and thus enhance the

performance of disturbance rejection. Specifically, the value of

di can be estimated as d̂i by LESO.

The extended state space model of (12) can be expressed as:



















ẋi = Aixi + Biui + Eidi

ei = Cixi

(13)

Where xi =
[

ei; ėi; di
]

is the extended state vector, Ai =






0 1 0

0 0 1

0 0 0






, Bi =

[

0; b0i; 0
]

, Ei = [0; 0; 1], Ci = [1, 0, 0 ].

The corresponding continuous LESO is:



















ȯi = Aioi + Biui + Li
(

ei − êi
)

êi = Cioi

(14)

Where oi = [zi1; zi2; zi3] =
[

êi; ˆ̇ei; d̂i

]

is the state

vector of the observer, and Li = [βi1;βi2;βi3] is defined as
[

3ωoi; 3ω
2
oi;ω

3
oi

]

, so that the gain vector of the observer is

uniquely related to the bandwidth of the observer, i.e., ωoi. The

explanation will be given in Section Stability of the LESO.

Replacing ei− ėi withCi (xi − oi), the observer equation can

be rewritten as:























ȯi = Aeioi +
[

Bi Li

]

uci

yi = oi

(15)

Where uci = [ui; ei] is the combined input of the observer,

yi = oi is the observer output, and Aei = Ai − LiCi.

For the second-order error auxiliary system, LESO can

estimate the external and internal disturbances in real time.

Therefore, the integrator in classical PID for eliminating static

error under constant disturbance is no longer needed. The linear

state feedback control law is further simplified to a proportional–

derivative controller:

u0i = −kLpizi1 − kLdizi2 (16)

Where zi1 and zi2 are states obtained from LESO; kLpi and

kLdi are the gain coefficients, defined as kLpi = ω2
ci and kLdi =

2ωci, based on the closed-loop transfer function of the auxiliary

system (12):

Gi =
kLpi

s2 + kLdis+ kLpi
=

ω2
ci

(s+ ωci)
2

(17)

In this way, the auxiliary system becomes a pure second-

order system without zeros and the controller parameters are

uniquely related to the controller bandwidth, i.e., ωci.

Remark 1: The ways to determine the gains of the LESO and

the linear error feedback control are termed as ωo-Optimization

and ωc-Optimization respectively (Gao, 2003). The empirical

value of the controller bandwidth ωci is one-third to one-

fifth of the observer bandwidth ωoi. Generally as the value
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of bandwidth increases, the estimated error decreases and the

controller performs better. When the bandwidth increases to a

certain extent, the observer will introduce high-frequency noise

and reduce the robustness of the system (Han et al., 2021).

Since the bandwidths are significantly related to the control

performance of the system, the tuning process of the controller

is greatly simplified.

The control input of the error system is designed as follows

to reject the estimated disturbance:

ui =
u0i − zi3

b0i
=

−kLpizi1 − kLdizi2 − zi3

b0i
(18)

Therefore, the final control input of feedback control is:

τu = M̂ (θ) bb−1
0

(

KLpZ1 + KLdZ2 + Z3
)

+Ĉ
(

θ , θ̇
)

θ̇ − Ĉ
(

θ , θ̇ r
)

θ̇ r (19)

whereb = diag
(

b1, b2
)

, b0 = diag
(

b01, b02
)

,

KLp = diag
(

kLp1, kLp2
)

, KLd = diag
(

kLd1, kLd2
)

,

Z1 = [z11; z21] Z2 = [z12; z22], Z3 = [z13; z23 ].

Sum up (6), (7), and (19), and the final control law of the

triple-step controller with LADRC is obtained as:

τ = τ s + τ f + τu = M̂ (θ) bb−1
0

(

KLpZ1 + KLdZ2 + Z3
)

+M̂ (θ) θ̈ r + Ĉ
(

θ , θ̇
)

θ̇ + Ĝ (θ) (20)

Stability analysis

Assuming the derivative of the total disturbance ḋi

is bounded, the closed-loop system (1) can be bounded-

input-bounded-output stable under the triple-step controller

with LADRC.

Stability of the LESO

Defining the estimated error of the observer as

e∗i = xi − oi =
[

e∗i1; e
∗
i2; e

∗
i3

]

(21)

and subtracting (13) and (14), we can obtain the error

equation of LESO:

ė
∗

i = Aeie
∗

i + Eiḋi (22)

where

Aei =







−βi1 1 0

−βi2 0 1

−βi3 0 0






(23)

The characteristic polynomial of Aei is

λ (s) = s3 + βi1s
2 + βi2s+ βi3 (24)

By the way of ωo-Optimization, βi1 = 3ωoi, βi2 = 3ω2
oi,

βi3 = ω3
oi, and thus all the roots of λ (s) are in the left part of the

complex plane. Based on this, the LESO is obviously bounded-

input-bounded-output stable because ḋi is bounded (Qing et al.,

2007).

Stability analysis of the triple-step controller
with LADRC

According to the second-order error auxiliary system

defined by (10) and the control input defined by (18), we

can obtain:



















ë = d + b0u

u = −b−1
0

(

KLpZ1 + KLdZ2 + Z3
)

(25)

which can be simplified as:

ë+ KLpZ1 + KLdZ2 + Z3 = d (26)

Combining (21) with (26), the dynamics equation of the

tracking error can be obtained:

ë+ KLpe+ KLd ė = KLpE
∗

1 + KLdE
∗

2 + E
∗

3 (27)

where E
∗

1 =
[

e
∗

11; e
∗

21

]

, E
∗

2 =
[

e
∗

12; e
∗

22

]

, E
∗

3 =
[

e
∗

13; e
∗

23

]

.

As stated in Section Stability of the LESO, as long as Aei is

a Hurwitz matrix and ḋ is bounded, the boundness of E
∗

1, E
∗

2

and E
∗

3 can be guaranteed. Besides, KLp and KLd are positive-

definite by the way of ωc-Optimization. Therefore, according

to the Routh criterion, the tracking error e is bounded and the

system is bounded-input-bounded-output stable.

Simulation

Simulation setup

The uncertainties of the dynamics model, such as the

uncertainty of model parameters, sensor measurement noises,

external disturbances, load changes and so on, have a significant

impact on the performance of a model-based control method.

In this section, numerical simulations with uncertainties are

carried out in Matlab (R2020b, MathWorks), to verify the

excellent performance of the triple-step controller with LADRC
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(TSC-LADRC) compared with the original triple-step controller

(TSC). The control law of TSC is expressed as (Zhou et al., 2019):

τ = M̂ (θ)

(

Kpe+ Ki

∫

edt + Kd ė

)

+ M̂ (θ) θ̈ r

+Ĉ
(

θ , θ̇
)

θ̇ + Ĝ (θ) − τHR (28)

Where Kp, Ki and Kd denote the proportional, the integral

and the derivative gain vectors.

The nominal physical parameters are set as m̂1 = 2.582 kg,

m̂2 = 3.192 kg, l1 = 0.390 m, l2 = 0.464 m, d1 = 0.328 m,

d2 = 0.355 m, and the actual mass parameters are set as m1 =

m̂1 × 120%, m2 = m̂2 × 120%. Referring to Yang et al. (2019),

the interaction torques are assumed to be periodic, i.e., τHR =

[2 cos (0.2πt) ; 2 sin (0.2πt)]. The reference angle of each joint is

fitted from a healthy subject’s gait data (Zhou et al., 2021). The

trajectory’s period is set to 10s and a simulation includes three

cycles. All the simulations are conducted with a sample time

0.01s. For simplicity, the observer bandwidths of hip and knee

joints are set to be the same value ωo = 60, and the controller

bandwidth is one-third of the observer bandwidth. Moreover,

b = diag (10, 10),b0 = diag (5, 5),Kp = diag (950, 1, 020),Ki =

diag (80, 90),Kd = diag (110, 130 ).

The interaction between the wearer and the exoskeleton

can be measured by force sensors. However, it is difficult to

accurately measure the disturbances exerted by the time-varying

load through the force sensors. Hence, in order to demonstrate

the robust control performance of TSC-LADRC against external

loads, three sets of time-varying external torques with different

magnitudes are applied to the system to simulate different

external loads, i.e., (I) τL1 = 5 cos (0.4πt), τL2 = 5 sin (0.4πt);

(II) τL1 = 10 cos (0.4πt), τL2 = 10 sin (0.4πt); and (III) τL1 =

15 cos (0.4πt), τL2 = 15 sin (0.4πt ).

Simulation results

The results of the simulations are shown in Figures 3, 4. It

can be seen from Figure 3 that TSC is able to follow the reference

trajectories. However, the presence ofmodel uncertaintiesmakes

it difficult to reduce the tracking errors. Furthermore, TSC is

susceptible to the changes of the load. As the load increases, the

tracking errors of TSC increase significantly, with the maximum

errors of the two joints exceeding 0.05 and 0.1 rad, respectively.

By contrast, the absolute value of the tracking errors shown in

Figures 4C,D are almost less than 0.02 and 0.04 rad, respectively,

demonstrating that the proposed TSC- LADRC is robust against

different external loads and can achieve higher control accuracy.

To further verify the effect of the observer bandwidth

described in Remark 1, the simulation results of TSC-LADRC

under different bandwidths are shown in Figure 5. External

loads are fixed to τL1 = 5 cos (0.4πt) and τL2 = 5 sin (0.4πt).

TABLE 1 Control parameters.

Method Parameter Value

TSC-LADRC b diag (0.3, 0.5)

b0 diag (1, 1)

ωo diag (36, 36)

ωc diag (12, 12)

TSC Kp diag (76.01, 126.78)

Ki diag (91.28, 253.57)

Kd diag (2.11, 5.87)

For simplicity, the observer bandwidths of hip and knee joints

keep the same value ωo. From Figure 5, the larger the value

of ωo, the smaller the tracking errors, which means larger

observer bandwidths can enhance the control performance of

TSC-LADRC. Besides, when the bandwidth increases to 70, the

observer will introduce high-frequency noise and reduce the

smoothness of the trajectories. These results are consistent with

what we described in Remark 1, hence we can intuitively set the

parameters by control performance.

Experiment

Experiment protocol

To further validate the superiority of the proposed

method to the original triple-step controller, experiments were

conducted on the actual exoskeleton robot, based on LADRC-

TSC and TSC, respectively. Six healthy subjects were recruited

to perform passive trajectory tracking experiments on the LLRR

(four males and two females; age, 24.33 ± 2.56 years; height,

1.69 ± 0.07m; weight, 59.33 ± 7.76 kg). The reference angle

of each joint and the sampling time were set the same as

those in the simulations. Each subject was asked to perform

five experiments for each controller. The experimental operator

assisted the subjects in getting familiar with the LLRR before

the experiments. Besides, the ethical approval of our study

was authorized by the Ethics Committee of Guangdong Work

Injury Rehabilitation Center and written informed consents

were signed by all subjects. The control parameters of TSC

and TSC-LADRC shown in Table 1 are chosen according to the

control performance by a trial-and-error method.

During the experiments, the workflow of the robotic system

can be described as follows. First, the actual positions of

the joints are measured using the angle encoders, which are

assembled with the joint motors. Second, a data acquisition

board (NI USB-6341, National Instruments, USA) transfers

the angle data to a laptop computer with an Intel i5 12500H

CPU (2.5 GHz) and 16 GB of RAM. Next, the computer

processes the signals in LabVIEW 2018 software based on the
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position controller. The software generates the control input

and translates it into pulse width modulation (PWN) signals.

Finally, the PWN signals are transferred to the data acquisition

board through a USB interface, and the board sends the signals

to the motor drivers, which can supply specific voltages for the

joint motors. Meanwhile, the actual positions of the joints are

measured again. Therefore, the robot can be driven to follow the

reference angles based on this workflow.

Evaluation method

To evaluate the control performance of TSC-LADRC, we

calculate the root mean square error (RMSE) based on the

trajectory tracking errors of the hip and knee joints, respectively:

RMSE =

√

1

n

∑

n
k=1

e2
(

k
)

(29)

Where e
(

k
)

is the tracking error at the kth sampling time

point, and n is the sample number.

Besides, we calculate the amount of energy that motors

consume during trajectory tracking, based on an energy index

E (Jiang et al., 2017):

E =
∑

2
i=1

∫ l

0
|τi (t)| dt (30)

Where τi (i=1, 2) is the control torque and l is the length of

the torque signal.

The two evaluation indicators were calculated across each

experiment. All the indicators are expressed in the form of

mean± standard error. And the paired t-test with a significance

level of 0.05 was utilized to test the effect of the control

algorithms statistically.

Experiment results

The tracking results in one experiment are shown in

Figure 6. TSC can assist the LLRR in following the reference

angles. However, due to the factors such as friction, sensor

noise, model uncertainties, and so on, the actual trajectories

based on TSC have undesirable chattering phenomena and

deviate from the reference trajectories at some point. Compared

with TSC, the proposed TSC-LADRC is able to realize more

accurate trajectory tracking, and the problem of chattering

can be reduced. From Figures 6C,D, the maximum tracking

errors of TSC-LADRC are almost half smaller than those

of TSC.

The calculation results of RMSE are shown in Figures 7A,B.

The RMSE results of the TSC- LADRC are 0.0086 ± 0.0007

and 0.0179 ± 0.0005 rad, while the RMSE results of TSC

are 0.0173 ± 0.0017 and 0.0286 ± 0.0035 rad, respectively.

It can be seen from Figures 7A,B that the RMSE results

of the TSC-LADRC are reduced significantly by 50.29 and

37.41% respectively compared with those of TSC. Besides, the

standard error of the RMSE results under TSC-LADRC is

less than that under TSC, which means that the proposed

controller is more robust than the TSC when coping with

different loads. Hence, the TSC-LADRC can improve the

accuracy and robustness of trajectory tracking for the lower limb

rehabilitation robot.

The energy consumption of each controller is given in

Figure 7C. We can see that the energy consumption of

LADRC-TSC is less than that of TSC in all experiments. The

average energy consumption of LADRC-TSC is 1,414.62 N2m2s

and that of TSC is 2,081.00 N2m2s, showing a significant

difference. From the above results, it can be concluded that

TSC-LADRC not only realizes more accurate and robust

trajectory tracking but also achieves less energy consumption

than TSC.

Discussion

Control accuracy and robustness are critical during

robot-aided rehabilitation training, while LLRR is

vulnerable to dynamic uncertainties due to the unexpected

behavior of stroke patients, model uncertainties,

and external disturbances (Yang et al., 2019, 2020).

In this study, TSC-LADRC was a robust position

controller that addressed the dynamic uncertainties in

trajectory tracking through a simple and easy-to-apply

control structure.

Our previous work has verified that TSC can guarantee

control accuracy under different interaction torque levels (Zhou

et al., 2019). However, the simulation results in this study

revealed that the model errors and external loads would degrade

the tracking performance of TSC. Compared with TSC (Zhou

et al., 2019), the key feature of TSC-LADRC was to define

a second-order error auxiliary system, which could estimate

and reject the total uncertainties based on the LADRC (Gao,

2003). On the other hand, the parameter tuning of TSC-

LADRC was more straightforward than that of TSC. Based

on LADRC (Gao, 2003), TSC-LADRC had only two main

parameters to be tuned, the controller bandwidth ωci and the

observer bandwidth ωoi. Moreover, an empirical setting of ωci

was 1
5 ∼ 1

3ωoi, meaning that the tuning of TSC-LADRC

was further simplified. From the simulation results shown

in Figure 5, the tracking errors decreased with the observer

bandwidth increasing, which was consistent with the results of

Long et al. (2017). Therefore, the main control parameter ωoi

of TSC-LADRC was directly related to the control performance

and easy to be tuned.
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Trajectory error directly reflects the tracking ability of

the position controller. Compared with TSC, the decrease in

RMSE values of TSC-LADRC demonstrated that the tracking

ability of TSC-LADRC improved significantly, which could

be explained by the reason that the total disturbances of the

robotic systemwere estimated and compensated by the LADRC-

based feedback control. It is worth mentioning that, the RMSE

values of TSC-LADRC were smaller than the RMSE results

of Huang et al. (2022), and the tracking errors shown in

Figures 6C,D were under the average errors of Zhang et al.

(2020). Thismeans that, comparedwith theDO-based controller

(Huang et al., 2022) and RBFNN-based controller (Zhang

et al., 2020), TSC-LADRC not only facilitates the parameter

tuning, but can also address the dynamic uncertainties and

improve the tracking accuracy. Moreover, compared with TSC,

the decrease in E value of TSC-LADRC demonstrated that

the energy consumption efficiency of the controller improved

significantly (Jiang et al., 2017). We attributed this phenomenon

to the fact that, by combining LADRC with TSC, small and

bounded tracking errors were guaranteed, which could also

lead to a smaller feedback gain in the control law. For the

rehabilitation robot system, the energy reduction is beneficial to

improving the portability of the exoskeleton design (Ferris et al.,

2007).

In future work, experiments will be carried out on patients

withmotor dysfunction to further verify the clinical effectiveness

of TSC-LADRC. Moreover, the LLRR will be combined with

treadmill and the motor performance of the wearer’s non-

paretic limb will be assessed in real time. Based on this real-

time assessment, we will focus on the adaptation law of the

observer bandwidth to improve patients’ gait symmetry and

promote their active effort (Wolbrecht et al., 2008; Zhong et al.,

2022).

Conclusion

In this study, a triple-step controller with LADRC

was proposed for a LLRR to improve gait tracking

performance. Under the design framework of the triple-

step method, LADRC was incorporated into the feedback

control to improve the accuracy and robustness against

dynamic uncertainties. Results of numerical simulations

and experiments showed that TSC-LADRC could achieve

better control performance than TSC. Moreover, our

proposed controller facilitated the tuning of control

parameters. Therefore, it has the potential to be an easy-

to-implement position controller for LLRRs to achieve

promising performance, and can be extended to other

rehabilitation robots.
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