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A dynamic integrated scheduling
method based on hierarchical
planning for heterogeneous
AGV fleets in warehouses

Enze Hu, Jianjun He* and Shuai Shen*

The School of Automation, Central South University, Changsha, China

In modern industrial warehouses, heterogeneous and flexible fleets of

automated guided vehicles (AGVs) are widely used to improve transport

e�ciency. However, as their scale and limit of battery capacity increase, the

complexity of dynamic scheduling also increases dramatically. The problem is

to assign tasks and determine detailed paths to AGVs to keep the multi-AGV

system running e�ciently and sustainedly. In this context, a mixed-integer

linear programming (MILP) model is formulated. A hierarchical planning

method is used, which decomposes the integrated problem into two levels:

the upper-level task-assignment problem and the lower-level path-planning

problem. A hybrid discrete state transition algorithm (HDSTA) based on an

elite solution set and the Tabu List method is proposed to solve the dynamic

scheduling problem to minimize the sum of the costs of requests and the

tardiness costs of conflicts for the overall system. The e�cacy of our method

is investigated by computational experiments using real-world data.

KEYWORDS

automated guided vehicles, dynamic integrated scheduling, task assignment, path

planning, hierarchical planning, hybrid discrete state transition algorithm

1. Introduction

With the development in automation technology, AGVs as an important component

of the modern warehouse logistics system is getting increased attention because of

their accuracy, flexibility, and efficiency. More recently, heterogeneous AGV fleets are

rapidly being adopted by industrial instances to perform different material handling

tasks, where each vehicle has specific capabilities (e.g., pallet truck AGVs can tow

loads, while backpack AGVs can lift loads). The minimization of travel costs is

the most important objective of dynamic scheduling pursued in practice, which is

affected by various decisions such as task assignment (i.e., assigning and sequencing

tasks to AGVs), path planning (i.e., selecting optimal paths taken by each vehicle

to reach the destination), and conflict management (i.e., avoiding conflicts between

AGVs). These subproblems are interdependent; therefore, optimizing scheduling

problems sequentially may yield a suboptimal performance of the overall AGV system

(Maza and Castagna, 2005).

An example of a warehouse trying to implement an automated material handling

system using a heterogeneous AGV fleet is Trucking Company (TC), which is a high-tech
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listed company in Changsha, China. Currently, the vehicle

management system used in TC relies on prepackaged software

provided by AGV manufacturers. However, such software

packages are not applicable to a heterogeneous AGV fleet and

cannot handle dynamic problems such as the addition of new

tasks and charging requests for AGVs. In addition, the optimal

task assignment schememay cause more traffic jams during path

planning, and an evaluation index needs to be quantified and

established for the delay time caused as a result of the waiting

and detour strategy of the AGVs. As the configuration cost

increases, a real-time and efficient integrated scheduling method

becomes important in improving the economic performance

of the warehouse. In this study, we focus on a dynamic

integrated scheduling problem for heterogeneous AGVs with

battery constraints.

Motivated by our collaboration with the TC, the main

novelty of our problem setting in contrast to the existing

literature is constituted by the combination of the following

features. First, we specifically focused on solving the scheduling

problems right on time, whereas the methods in most studies

consume unreasonable computational effort, in particular, some

exact methods (Schiffer andWalther, 2017;Ma et al., 2020; Singh

et al., 2022). Second, the AGVs considered in this study are

heterogeneous in terms of battery management, travel speed,

and capabilities to perform transportation of different types of

materials, which increases the complexity of the problem. Third,

we simultaneously considered joint task assignments, path

planning, and conflicts that reduce the problems of the AGV

system. We aimed to make decisions on optimizing the overall

AGV system performance rather than successively solving

each subproblem. Our main contributions are summarized

as follows:

First, we developed a mixed-integer linear programming

(MILP) model for analyzing the scheduling of multi-AGVs,

which combines both task assignment and path planning in

automated warehouses. The model captures conflicts between

a heterogeneous set of AGV fleets, allowing for scheduling

according to the uncertain environment. The objective is to

minimize the sum of the costs of requests and costs of conflicts.

Constraints are also formulated to cope with features of capacity

and battery management.

Second, the hierarchical planning method was used to

decompose the complex and integrated scheduling problem.We

propose a hybrid discrete state transition algorithm (HDSTA)

considering the two-layer problems based on incorporating

an elite solution set and the Tabu Search to find the

optimal solution for the overall system instead of optimal

solutions for each independent problem. Although our model

is stylized for warehouses, the method can be applied to

other applications such as flexible manufacturing systems and

automated container terminals.

Third, we present the concept of a path expert database

and its generation methods. The selection procedure based on a

preset database is established for real-time path planning, which

provides the foundation for dynamic scheduling.

Finally, numerical experiments are performed to validate

the model according to the real-world data of warehouses in

Changsha, China. Our approach is shown to yield approximate

optimal solutions for AGV scheduling and path planning within

a reasonable timeframe.

The remainder of this article is organized as follows.

Relevant literature on the scheduling of multi-AGVs is

discussed in the “Literature review” section. Problem

description and the MILP model are formally established

in the “Dynamic scheduling system and problem description”

section. The “Hierarchical planning method” section presents

the hierarchical planning method and introduces the proposed

HDSTA and the selection procedure based on the path expert

database. The “Computational experiments” section reports the

experiments conducted to test the proposed method. Finally,

conclusions and several future research directions are discussed

in the “Conclusion” section.

2. Literature review

AGV scheduling can directly determine the efficiency and

the cost of the overall transport system and therefore high

attention is paid by researchers or manufacturing enterprises.

Fazlollahtabar and Saidi-Mehrabad (2015) presented a literature

review and divided AGV scheduling into three subproblems,

task assignment, path planning, and collision avoidance. Many

studies applied various methods, such as exact methods,

heuristics, and meta-heuristics, to treat the subproblems

separately or simultaneously.

As for exact methods, Desaulniers et al. (2003) designed

an exact method including three algorithms (greedy search,

column generation, and branch cutting), which enables

solving the scheduling problem for four vehicles. Nishi et al.

(2011) addressed a Lagrangian relaxation and cut scheme

under the bilevel decomposition framework to optimize

simultaneous task assignments and conflict-free routing

problems. Fazlollahtabar and Hassanli (2018) presented a

modified network simplex algorithm for blocking a scheduling

problem in the manufacturing system. Nevertheless, because

of the non-deterministic polynomial-time (NP)-hard nature of

the scheduling problems, the exact method is only suitable for

instances of small-scale problems.

For large-scale complex real-world problems, heuristics or

metaheuristics are mainly adopted. Li et al. (2019) proposed

an improved harmony search algorithm to improve the AGV

scheduling rate, which can obtain the best harmony by

considering the rate change. Zhang et al. (2019) proposed a

genetic algorithm and a hybrid-load AGV scheduling model

to reduce the total cost of the logistics system, which was

successfully applied to a mixed-model automobile assembly
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line. Abderrahim et al. (2020) used a variable neighborhood

search algorithm to assign tasks in a manufacturing shop

based on a vehicle manufacturing facility to minimize the

maximum completion time. Zhang et al. (2022) proposed

an improved iterated greedy algorithm to solve the AGV

dispatching problem to minimize the total transportation cost

of the matrix manufacturing workshop. In addition, many other

meta-heuristics were also used in scheduling problems, such

as the simulated annealing algorithm (Lu and Wang, 2019),

the two-stage ant colony algorithm (Hamzeei et al., 2013), the

evolutionary algorithm (Saidi-Mehrabad et al., 2015), and the

particle swarm optimization algorithm (Gen et al., 2017). In

the above literature, a common feature of the problems studied

is that all the task information are stable and obtained in

advance, and then, an analytical model was established and the

problems are solved with a heuristic ormeta-heuristic algorithm.

Nevertheless, in a real-world instance, it is unrealistic to obtain

all the task information in advance, while many uncertainties

(e.g., urgent tasks and task rework) exist under dynamic and

complex environments (Zhang et al., 2017). Therefore, the static

scheduling method is insufficient for the complicated real-world

industrial environment.

In recent years, with the development of IoT technology,

many researchers focused on the dynamic scheduling problem.

Li et al. (2020) proposed a multi-vehicle AGV scheduling

mechanism for simulating multicustomer demands in an

intelligent warehouse system. Mourtzis et al. introduced a

cloud-based cyber-physical system with the help of IoT to

achieve adaptive shop floor scheduling and condition-based

maintenance. Umar et al. (2015) proposed an improved hybrid

genetic algorithmmethod for dynamic scheduling that considers

dispatching and conflict-free routing problems of AGVs under

a flexible workshop environment. Lyu et al. (2019) presented

an improved genetic algorithm combined with the Dijkstra

algorithm considering time windows to solve the problems of

optimal numbers, shortest transportation time, and conflict-

free routing in the path planning process. Qiuyun et al. (2021)

improved the particle swarm optimization algorithm to obtain

the shortest transportation time for the AGV path planning

problem of a one-line production line in manufacturing.

Guo et al. (2020) studied the acceleration control method

and the AGV priority determination method to improve the

negotiation of AGVs that implement conflict-free path planning.

Nevertheless, these researchers ignored the influence of not only

the case of AGV heterogeneity but also battery management.

Through the review of the above literature, there have been

no studies on dynamic integrated scheduling in warehouses

for a heterogeneous set of AGV fleets with battery constraints.

Therefore, a novel scheduling approach for AGVs is in high

demand. In this study, we propose an HDSTA under a

hierarchical planning framework to solve the complex problem,

which is a kind of intelligent optimization algorithm with good

global search capability and convergence property, considering

the solution as a state and the update of the solution as a state

transition process. Thus, we evaluated the proposed method

with an industrial case study finally.

3. Dynamic scheduling system and
problem description

In this section, a dynamic scheduling system for AGVs is

proposed, which is based on a control system using inertial

navigation guidance and QR codes. The information service is

implemented by network and wireless routers. The integrated

scheduling problems of heterogeneous AGVs with battery

constraints in the AGV system are described and formulated

while the conflict problem is highlighted.

3.1. Dynamic schedule system

The overall architecture of the dynamic scheduling system is

presented in Figure 1. The dynamic supervisory layer provides

real-time information about AGVs and the current schedule.

The AGV monitoring system is responsible for managing the

AGVs in terms of recognition, positioning, motor control, and

battery level. The schedule monitoring system is responsible

for receiving new tasks while monitoring the implementation

of the current schedule and requesting a new schedule as a

result of a change of tasks. The rescheduledmodule initialization

harmonizes additional parameters with the running schedule

that includes active AGVs, new tasks, completed tasks, and

in-process tasks.

The integrated scheduling layer is responsible for

determining the task assignment/sequence and path planning,

which is more complex because of the consideration of conflict

avoidance. AGVmovement on warehouse layout is a multigraph

problem, in that there are various parallel paths between the

presorting stations. The path expert database is established in

the offline stage, which can be regarded as a dataset containing

warehouse layout information and the candidate elite paths

sets between each presorting station. Accessory equipment

such as sensors are equipped which enables AGVs to detect

moving objects by hardware and avoid collision by preprocessed

combination strategies of traffic regulations (e.g., stop and wait

for the higher priority AGV to pass first or move around the

conflict location). Conflicts can also be reduced by combining

and changing the task assignment/sequence if it cannot be

solved separately by path selection. However, the delay time

as a result of the waiting and detour strategy of AGVs needs

to be quantified and reduced. The schedule contains task

assignment/sequence and path planning, which are generated

by the task scheme generator and the path planning generator.

The generated schedule is downloaded for execution by

the system.
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FIGURE 1

Dynamic scheduling system.

In a dynamic system, the assumptions considered are as

follows: (1) loading and unloading times are fixed; (2) the AGVs

move in four directions; and (3) the positioning deviation of the

AGVs is negligible.

3.2. Problem statement

This study considers a real-world industry case of the

TC where the goal is to have continuous material handling

without human interference. Each transport process of the

AGVs is composed of pickup travel, loading, delivery travel,

and unloading. The layout of the warehouse is modeled as a

multigraph, G = (N, E), where N = {1, 2, . . . , n} is a set of

all the nodes. Let C ⊂ N denote the set of charging stations

and X ⊂ N denote the set of presorting stations, respectively.

Moreover, E = {
(

i, j, p
)

: i, j ∈ N, i 6= j } denotes the set of

arcs between every node pair. The pth path between the nodes

i and j is represented by
(

i, j, p
)

∈ E. Parallel paths are stored

in the path expert database Ns which is established in the offline

stage. If there is a collision between a pair of current paths, a path

parallel to one of this pair of current paths can be used to replace

this path for avoiding conflict.

In our problem setting, a set of transport tasks T are serviced

by a set of heterogeneous AGVs K, and each task r ∈ T contains

a pickup node and a delivery node which are denoted by ur ∈ X

and dr ∈ X, respectively. Besides transport task requests, a set

of charging requests is denoted by B = {1, 2, . . . , |B|}, where

|B| = |C| • |K| is the upper bound which is sufficiently large

and C represents a set of charging stations. For each charging

request b ∈ B, the pickup node and the delivery node are the

same. The AGV makes a start instruction at the origin station s

and each request contains only one delivery node. A termination

instruction will be issued when the AGV reaches the terminal

station e. Multiple request sets are defined by R = T ∪ B,Rs =

R ∪ {s},Re = R ∪ {e}, and Rse = R ∪ {s} ∪ { e}.
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We considered battery constraints and the maximum and

minimum battery levels for each AGV, where k ∈ K are denoted

by bk
h
and bk

l
, respectively. Before performing a new task, the

battery level bk of each AGV needs to be above the minimum

threshold bk
l
. The AGV is not allowed to access the charging

facilities while traveling with a load. AGVs are required to

complete the current task with the first priority before going

to the charging station. The discharging rate of AGV k ∈ K is

represented by dk, while each AGV has a unit time travel cost

of ck.

As previously mentioned, AGVs are heterogeneous in terms

of their capabilities to perform the transportation of different

types of materials. Let CTr denote a set of capability requirements

for each task, and each AGV has a specific capability CK
k
. The

task r ∈ T is only able to be performed by AGV k ∈ K if

CTr ⊆ CK
k
holds to ensure that each task is performed by an AGV

with corresponding handling capacity. For example, the tasks of

lifting loads need to be performed by backpack AGVs while the

pallet truck AGVs are only able to tow loads.

The path from the pickup node to the delivery node r is

denoted by Pr , and the path from the delivery node of task r

to the pickup node of task r′ is denoted by P
rr
′ . The AGV has

its specific forward speed and velocity of rotation, respectively.

For each path p ∈ Pr , the travel time of AGV k is denoted by

Tk
rp, and for each path p ∈ P

rr
′ , the travel time of AGV k is

denoted by Tk
rr
′
p
. In addition, the conflict-free path is optional

during path planning because collisions can be prevented by

traffic regulations. A delay time returns when an AGV follows

a waiting and detour strategy to avoid a collision. When the

path p ∈ Pr of AGV k conflicts with the path q ∈ Pm of

AGV g, the delay time of AGV k on the path p ∈ Pr is defined

by 8
mgq
rkp

(zu
rk
, zumg ), where zu

rk
represents the time for AGV k

to arrive at the pickup node of request r and zumg represents

the time for AGV g to arrive at the pickup node of request m,

respectively. When the path p ∈ Pr of AGV k conflicts with

the path q ∈ P
mm
′ of AGV g, the delay time of AGV k on

the path p ∈ Pr is defined by 8
mm
′
gq

rkp
(zu
rk
, zdmg), where zdmg

represents the time for AGV g to arrive at the delivery node

of requestm.

3.3. Mixed-integer linear programming
model

In this section, we formulate a mathematical model based

on the problem description, which is an improvement from the

findings of Dang et al. (2021) and Singh et al. (2022). Decision

variables are introduced as follows:

x
p
rk
: binary variable equal to 1 if AGV k ∈ K travels from

the pickup node to the delivery node of request r ∈ R using

p ∈ Pr or 0 otherwise

y
p
rr′k

: binary variable equal to 1 if AGV k ∈ K travels from

the delivery node of request r ∈ Rs to the pickup node of

request r
′
∈ Re using p ∈ P

rr
′ or 0 otherwise

zu
rk
: time of AGV k at the pickup node ur of request r ∈ Re;

zu
ek

is the termination time of AGV k

zd
rk
: time of AGV k at the delivery node dr of request r ∈ Rs;

zd
sk
is the start time of AGV k

λu
rk
: percent amount of battery discharge of AGV k at the

pickup node ur of request r ∈ Re

λd
rk
: percent amount of battery discharge of AGV k at the

delivery node dr of request r ∈ Rs

The mathematical model of the described problem is

presented as follows:

The objective function f is to minimize the sum of the costs

of requests and the tardiness costs of conflicts as the cost of each

AGV is directly proportional to its travel time.

f = min
∑

k∈K

ck(z
u
ek − zdsk)

∑

k∈K

∑

p∈pr

xprk = 1 ∀r ∈ T (1)

∑

k∈K

∑

p∈pr

xprk ≤ 1 ∀r ∈ B (2)

xprk = 0 ∀p ∈ Pr , ∀r ∈ T,∀k ∈ K,CTr 6⊆ CKk (3)

yprrk = 0 ∀r ∈ R,∀k ∈ K (4)
∑

r∈Rs

∑

p∈prr′

yprr′k =
∑

p∈pr′

xpr′k ∀r′ ∈ R, ∀k ∈ K (5)

∑

p∈pr

xprk =
∑

r′∈Re

∑

p∈prr′

yprr′k ∀r ∈ R, ∀k ∈ K (6)

zurk + T
p
rk
+

∑

g∈K

∑

m∈T

∑

q∈pm

8
mgq
rkp

(zurk, z
u
mg)x

q
mg

+
∑

g∈K

∑

m∈Rs

∑

m′∈Re

∑

q∈pmm′

8
mm′gq
rkp

(zurk, z
d
mg)

∗yqmm′g −M(1− xprk) ≤ zdrk ∀p ∈ Pr ,

∀r ∈ T,∀k ∈ K (7)

zdrk + T
p
rr′k
+

∑

g∈K

∑

m∈T

∑

q∈pm

8
mgq
rr′kp

(zdrk, z
u
mg )x

q
mg

+
∑

g∈K

∑

m∈Rs

∑

m′∈Re

∑

q∈pmm′

8
mm′gq
rr′kp

(zdrk, z
d
mg)

∗yqmm′g −M(1− yprr′k) ≤ zur′k

∀p ∈ Prr′ , ∀r ∈ Rs,∀r
′ ∈ Re,∀k ∈ K (8)

Constraint (1) ensure that each transport request is assigned

only one time and can be followed by another request.

Constraint (2) makes sure that each charging request is

presented by at most one AGV. Each charging request r has

only one path. Constraint (3) ensures that the capabilities of the

requests and AGVs match. Constraint (4) ensures that self-visits
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are avoided. Constraints (5) and (6) make sure that the number

of entering paths of request, execution paths, and leaving paths

of each request are consistent. The time constraints are given by

(7) and (8), and Constraint (7) calculates the travel time from

the pickup node of request r to the delivery node. Constraint (8)

calculates the travel time between different requests. The travel

time includes transportation time and delay time, where M is a

large positive constant.

bkl ≤ λdrk ≤ bkh ∀r ∈ Rs,∀k ∈ K (9)

bkl ≤ λurk ≤ bkh ∀r ∈ Re,∀k ∈ K (10)

λurk + dk(z
d
rk − zurk)−M(1− xprk) ≤ λdrk

∀p ∈ Pr , ∀r ∈ T,∀k ∈ K (11)

λdrk + dk(z
u
r′k − zdrk)−M(1− yprr′k) ≤ λur′k ∀p ∈ Prr′ ,

∀r ∈ Rs,∀r
′ ∈ Re,∀k ∈ K (12)

The constraints related to power consumption are given by

(9) to (12). Constraints (9) and (10) set the lower and upper

bounds for an amount of battery discharge. Constraint (11)

calculates the amount of battery discharge due to the travels

between the source and destination of a request. Constraint

(12) calculates the amount of battery discharge due to the travel

between the destination and the source of two requests.

xprk ∈ {0, 1} ∀p ∈ Pr , ∀r ∈ R,∀k ∈ K (13)

yprr′k ∈ {0, 1}∀p ∈ Prr′ ∀r ∈ Rs,∀r
′ ∈ Re,∀k ∈ K (14)

zurk ≥ 0 ∀t ∈ Re,∀k ∈ K (15)

zdrk ≥ 0 ∀t ∈ Rs,∀k ∈ K (16)

The valid domains of the binary variables are given by

constraints (13)–(16), which guarantee valid domains for the

other decision variables.

4. Hierarchical planning method

In this section, a hierarchical planning method is proposed

to solve the joint task assignments, path planning, and

conflict problem for just-in-time scheduling. This method

is inspired by the work of Hooker and Ottosson (2003)

and decomposes the integrated optimization problems into

an aggregated upper-level master problem and a lower-level

subproblem. The upper-level problem is to make decisions for

AGV task assignment/sequence, which determines a candidate

elite solution set where the collision constraints for AGVs are

neglected. The lower-level subproblem is to solve the optimal

path planning problem with collision constraints under the

conditions of the tentative solution at the upper level. The

conflict problem is considered in both the master problem

and subproblem, the collision between AGVs can be reduced

by changing the detailed paths for vehicles or the scheme of

task assignment and sequence. In summary, the objective is

to minimize the AGV transportation time, which is the sum

of the total travel time and the delay time (waiting or detour

time for avoiding collisions). The detailed steps are described

as follows:

Step 1. The upper level: Task assignment and sequence to

AGVs where the collision constraints are removed from the

original problem, and the transportation time of each task for

each AGV is defined as the minimal time from the starting

node to the delivery node. The master problem is regarded as

the task assignment/sequence problem with constraints such as

heterogeneous AGVs and batteries. In this study, a tentative elite

solution set ϕi sorted in the ascending order of the objective

function value is generated by HDSTA where the solution in the

elite solution set is denoted by pn.

Step 2. The lower level: Select the specific paths to perform

the assigned tasks for the AGVs under the condition that a

tentative solution pn is derived from a master problem. For

each solution, pn ∈ ϕi selected in the ascending order, the

subproblem, which is concerned with the path planning problem

to select the optimal paths with collision constraints for AGVs, is

solved by the select procedure, while a list of conflict results with

memories is generated, called Tabu List 3i. If the result of the

selected procedure is conflict-free paths (termination criterion

1), the algorithm is completed; otherwise, recording conflict

results to 3i. In the iteration, the solution with the minimum

objective function values is recorded as the tentative optimal

solution pbest and its delay time is defined by tp.

Step 3. Algorithm termination criterion 2: The maximum

allowable delay time is defined by ε. If tp derived in Step 2 is

less than ε, the algorithm is completed.

Step 4. Regenerate the tentative elite solution set ϕi

considering the information is recorded in the tabu list 3i

by HDSTA. If there is no improvement in the objective

function value after five iterations, the algorithm is completed

(termination criterion 3); otherwise, updating 3i and returning

to Step 2.

The main scheme of hierarchical planning is illustrated in

Algorithm 1. The accurate information about all AGVs and tasks

are known, and the path expert database must be computed

offline in advance.

An HDSTA with a path-select procedure and tabu list is

proposed to find the optimal solution. The algorithm starts

with a dynamic serve framework by generating a reschedule

at the appropriate time interval methodology, based on the

concept of dynamic scheduling, when there is a requirement

for an additional task or AGV charging (lines 1–5). Then,

the initialization of the tentative elite solution set ϕi using

HDSTA (line 6) was carried out. For each solution pn ∈ ϕi,

detailed paths are generated using the path select procedure
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Require: set of AGVs K, set of tasks T,

path expert database Ns

1: if there is a change in transport or

charging requires begin

2: Extract finished tasks from the running

schedule

3: Combine the remaining tasks and new

tasks

4: Update K, T

5: end

6: Initialize tentative elite solution set

ϕi by HDSTA

7: while (y1 = 1 or y2 = 1or y3 = 1)

8: for each pn ∈ ϕi

9: [p,T, tp, Sp] ← SP (pn)

10: if tp = 0 then

11: D← pn; Pbest ← p; Tbest ← T; y1 ← 1

12: break for;

13: end if

14: if tp < tbest then

15: tbest ← tp;Pbest ← p;Tlist ← [pn, Sp];D←

pn;Tbest ← T

16: end if

17: end for

18: if tbest < ε then

19: y2 ← 1

20: end if

21: if y1 = 0 or y2 = 0 then

22: update the elite solution set ϕi by

HDSTA

23: update l

24: if l > 5

25: y3 ← 1

26: end if

27: end if

28: end while

29: S← (D, Pbest)

return S

Algorithm 1. Main scheme of hierarchical planning.

(SP). The transport time, delay time, and conflict points are

calculated, and a tabu list is generated (lines 8–17). If a solution

exists in the elite solution set that conflict-free paths can

be generated in path planning is marked as y1(lines 10–13).

The optimal solution in the elite solution set whose delay

time is less than ε is marked as y2 (lines 18–20). If the

objective function values showed no improvement after multiple

iterations are marked as y3 (lines 24–26), the iteration of the

elite solution set is updated by HDSTA by incorporating the

Tabu List constraints until one of the termination conditions

are met and generating an integrated scheduling solution

FIGURE 2

State space representation.

Require: path expert database Ns,

dispatching D

1: Tc ← 0

2: repeat

3: for each dk ∈ D

4: for each t ∈ Tk

5: rku ← Path(otu, 1); rku′ ← Path(ot
d
, 1)

6: rt ← rku; rt ← rku′; Rk ← rt

7: end for

8: R ← Rk

9: end for

10: [Tc, Ci] ← Con (R)

11: if Tc 6= 0

12: for each Ci

13: R′ ← Replace (Rk)

14: T
′

c ← Con (R′)

15: if T
′

c < Tc

16: Tc ← T
′

c

17: R ← R′

18: end if

19: end for

20: end if

21: return Tc, R

Algorithm 2. Select procedure for AGV routing.

containing the sequential assignment solution and the detail

path solution.

4.1. HDSTA

The state transition algorithm (STA) (Yang et al., 2013) is a

kind of intelligent optimization algorithm originally proposed
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Require: graph G, set of depots

X = {x1, x2, x3 . . . xs}

1: Initialize matrix Hs

2: repeat

3: CLOSE list ← 0; final ← 0; Mark = ∅

4: OPEN list ← start

5: while

6: while OPEN list 6= 0

7: if the number of the latest node in

OPEN list = 1

8: Current node ← the latest node in

OPEN list

9: else Current node ← the first node

10: Mark ← OPEN list; Mark ← CLOSE list

11: end if

12: if current node = end point

13: break final ← CLOSE list

14: end if

15: for each neighbor (Current node)

16: if neighbor /∈ Obstacle

17: new cost = f(neighbor)

18: if new cost < cost allel neighbor

/∈ CLOSE list

19: OPEN list ← neighbor

20: else CLOSE list ← neighbor

21: end if

22: CLOSE list ← current node

23: end if

24: end for

25: end

26: if Mark 6= ∅

27: OPEN list ← Mark (i); CLOSE list ←

Mark (j)

28: else break

29: end if

30: end

31: final = sort (final)

32: NS ← final

33: until the specified termination

criterion is met

34: return NS

Algorithm 3. Improved A
∗ algorithm for establishing the path expert

database.

by Zhou et al. (2012) with good global search capability and

convergence property. In our proposed HDSTA, the integrated

problem is decomposed into individual elements and the

individual S is defined by three “state spaces” related to its

tasks sequence, AGV dispatch, and the corresponding routes, as

depicted in Figure 2.

The task sequence state space Q registers for each task.

The space Q consists of some types of tasks, with the subspace

qd ∈ Q representing one type of task collection. The first type is

charging requirement, while the others depend on the number of

heterogeneous AGV types. It is worthmentioning that, to ensure

performing urgent tasks first, the sequence of the task in each

subspace must observe the rule of task priority. The dispatching

state space D contains the task assignment for all AGVs, and the

subspace dk ∈ D represents the dispatching of AGV k ∈ K.

Finally, the AGV routing R corresponds to all paths, while the

subspace r
uk
k
∈ R represents the path of the uth task of the kth

AGV, respectively.

The integrated scheduling state space of AGVs is decoded

for three subproblems, namely, task sequence, dispatching,

and routing. Regularly representing an individual solution

with appropriate random numbers is a very effective method

to solve combinatorial optimization problems. However, to

solve scheduling optimally in an integrated manner, intrinsic

connections and constraints between the subproblems must

be established.

An illustration of the integrated method is given in Figure 3.

A sequence space consists of three types of requirements: a

charging request (denoted in red), a piggyback transportation

requirement (denoted in yellow), and a pallet transportation

requirement (denoted in green). By randomly assigning tasks

in each subspace to the matching AGVs, the corresponding

dispatching space is generated. Each time the generated

dispatching space performs the routing procedure, that is, to

select the optimal path with the least collision in the path

expert database and generate the conflict result feedback C.

The optimization objective result S is the sum of total travel

time Cost based on the current solution of dispatching space

and conflict result C. The feasible solution of scheduling

consists of a dispatching scheme and a detailed routing

scheme. The role of sequence space is to define various

requirements with priority and increase the search range of

the algorithm.

In the task sequence state space Q, a candidate solution set

is generated by the three special operators, a swap operator,

shift operator, and symmetry operator (Yang et al., 2013),

which are very effective to solve discrete optimization problems.

Moreover, a candidate solution set is created by the times of

the transformation called the search enforcement (SE) and the

translation operator is performed only if a better new trail

is found.

In the AGV dispatching space, the same four operators are

applied to produce a candidate solution set, which is referred

to as self-learning. However, the search space of the basic

state transformation algorithm is normalized or specialized and

cannot directly solve the problem with multiple subspaces. In

the dispatching space, the communication strategy between the

subspace dk is necessary to exchange information for increasing

the search intensity. Thus, we employed two move operators,
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illustrated by Figure 4. (1)—the single insertion operator (SI):

displaces the last task element of one subspace of dispatching

to a random position in another subspace of dispatching and

(2) the position-based crossover operator (PBC): exchange

task elements of the same position randomly in two different

subspaces of dispatching.

4.2. Select procedure

The method of AGV routing based on the path expert

database is proposed for the first time. In the industrial context,

collisions can be avoided by hardware, and conflict-free path

planning is not our purpose as it takes a lot of computing

FIGURE 3

A description of the integrated scheduling problem.

FIGURE 4

A description of move operators.
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time and easily falls into locking in large-scale problems. The

proposed method is to select a detailed path with the least

conflicts from the path expert database according to the current

dispatching and recording of the information of the conflict.

In this section, we give a path expert database Ns and task

assignment for all AGVs, D = d1, d2, d3 . . . dk in this section.

Let Tc denote the punishment time of the conflict process. As

mentioned earlier, each task t consists of a pickup request otu and

a delivery request ot
d
. To represent a path-planning solution, we

assign to the route rt of each task two paths from the path expert

database. The rku and r
k
u′
are said to be traveling paths for pickup

and delivery, respectively, by AGV k, and the nth path of the

route rij from depot i to depot j in the path expert database is

defined as Path
(

i, j, n
)

∈ Ns. The selection procedure for AGV

routing to optimize path planning and obtain punishment time

is shown in Algorithm 2.

Set Tc to zero at the beginning (line 1). Then, a loop is

executed to assign paths to each subspace dk (lines 3–9). Each

task t ∈ Tk is assigned to the first path in the path expert

database by the loop (lines 4–7). The time coordinates and

punishment time of conflicts are calculated based on the time

window, referred to as “CON” (line 10). When the conflict time

is not zero, replace the best path with another path in the path

expert database, referred to as “Replace,” and update the routing

data if the new path is better than all the queried paths (lines

11–20). Finally, the procedure returns the best solution (line 21).

In the dispatching space, the computational procedure does

not consider the conflict situation. Thus, we establish a tabu

list to record the conflict situation and then feed it back to

dispatching and eliminate the unfeasible solutions in the next

state to reduce conflicts whenever possible.

For example, in the current dispatching space, subspace

d1{2, 1, 3, 5} and subspace d2{8, 7, 6, 4} have a conflict in

the routing procedure and the conflict situation is for AGV 1

in performing task 2 and AGV 2 in performing task 8. The

conflict results d1{2, x, x, x } and d2{8, x, x, x } are recorded

for infeasible solution domains, where x is an arbitrary task.

The result represents the infeasible solution that AGV 1 first

performs task 2 while AGV 2 first performs task 8. In the

following stage, the infeasible solutions are removed.

4.3. Path expert database

To the best of our knowledge, the establishment of the path

expert database in the offline state for path planning is proposed

for the first time. The optimal path between depots is several;

besides, there are many good paths as well.

The concept of a path expert database is a collection that

contains all optimal paths and good paths with sequences

between depots for path replacement in case of a conflict.

The path expert database can be established by manually

experience or algorithm programs depending on the different

specifications of the warehouse. In this section, we propose an

improved A∗ algorithm to generate a path expert database as

shown in Algorithm 3.

The initial matrix of depots is defined by Hs (line 1). The

algorithm loops over each route r ∈ Hs. A loop program

calculates the paths between each depot (lines 2–33). Let the

CLOSE list and the OPEN list denote a collection of nodes that

have already been estimated and the collection of nodes that

waiting for estimating. The path result is recorded in “final”

and the points of the same valuation are recorded in “mark”

(lines 3–4). The algorithm executes a loop that finds the optimal

path between the two depots based on the A∗ algorithm and

records the other points of the same valuation in each iteration

(lines 6–25). If the collection “mark” is not blank, remount the

information of points recorded successively to find all good

paths between two depots (lines 26–29)—a record of all the

path results (lines 31–32) and the procedure returns path expert

database NS finally (line 34).

5. Computational experiments

To evaluate the performance of the proposed method,

computational experiments are performed in a dynamic

scenario and under different scenarios with varying fleet sizes

and numbers of tasks. We implemented the proposed dynamic

scheduling method on a computer with an Intel (R) Core (Tm)

CPU i7-9700 4.8 GHz and 8 GB RAMwith a 64-bit Windows 10

operation system, while the scheduling rule is implemented in

Python v3.6. The study adopts the warehouse production data

located in Changsha, China. The layout of this warehouse is

illustrated in Figure 5, which consists of 12 buffer area depots,

12 shop depots, 15 automatic vertical warehouse depots, and 5

charging stations. From the feedback from the practitioners, the

average number of requests waiting for assigning is about 30 in

a horizon, a horizon with more than 60 requests is regarded as a

busy period.

The position of the depots (or stations) in the layout

is fixed. Therefore, we made use of a distance matrix to

compute the travel time of AGVs. We generated a path expert

database through the program while offline and also note again

that the collision-free trajectories are not considered in our

experiments, since those collisions between the AGVs can be

avoided by hardware.

5.1. Dynamic scheduling

A FlexSim-based digital simulation system is established

to dynamically analyze the operation of AGV systems
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FIGURE 5

Warehouse layout.

FIGURE 6

FlexSim-based digital simulation system.

under the industrial warehouse instances, as shown

in Figure 6.

The description of the dynamic scheduling problem is

shown in Table 1. The integrated scheduler algorithm processes

a total of 60 tasks arriving at three different random intervals

of time. Initially, 25 tasks are scheduled. While executing

the initial schedule, 15 new tasks are added to the system

at time t = 14min. This results in a dynamic rescheduling

of the system. While executing the current schedule, 20

more new tasks were added to the system at time t =

22 min.

As stated in the methodology, this is based on the concept of

scheduling and rescheduling under an appropriate time intervals

methodology of dynamic scheduling. Figure 7 shows the Gantt

chart of the initial schedule. The dashed line at time t = 14min

represents the interruption and rescheduling, the points when

new tasks are added to the system. The uncompleted tasks

currently at the execution stage at the interruption and the
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rescheduling points are task 1, task 8, task 7, and task 4. The

tasks in execution will continue with the preemption in the

next planning time horizon until the operation is completed.

Figure 8 shows the Gantt chart for the generated new schedule,

in which the new tasks are added after the interruption of the

previous schedule. The operations at tasks 1, 8, 7, and 4 marked

TABLE 1 The description of the dynamic scheduling problem.

Schedule Start time (min) New tasks

Initial 0 Task 1, Task 2, . . . , Task 25

Interrupt 1 14 Task 26, Task 27, . . . , Task 40

Interrupt 2 22 Task 41, Task 42, . . . , Task 60

by the parallel slanted lines are the remaining operation from

the previous schedule. On this schedule, all tasks in the system

are either completed or the last task is under execution before

the interrupt point in time t = 22min. Figure 9 shows the Gantt

chart for the generated new schedule. The tasks completed at the

current interrupt and the rescheduling point are tasks 28, 26, 31,

33, 29, 36, 27, 37, and 34. Dynamic path planning adjusts the

path without interrupting the current task execution process.

5.2. Analysis of the scheduling results

The efficacy of our method is verified by computational

experiments using real-world data with varying fleet sizes and

numbers of tasks. The number of AGVs to be dispatched is 5,

FIGURE 7

Gantt chart for dynamic scheduling 1.

FIGURE 8

Gantt chart for dynamic scheduling 2.
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10, and 15, respectively. The number of tasks to be allocated

in the case is 50, 60, 70, 80, 90, and 100, respectively. Each

case randomly generates five groups of tasks and runs them

10 times, for a total of 50 runs of the program. The average

value is taken as the result. At present, the advanced AGV

systems in industrial warehouses adopt the scheduling method

of sequential optimization, of which the method proposed by

Lian et al. (2020) is the most representative. Therefore, this

method is selected for comparative verification of the analyses of

real warehouse cases. Problems not considered in this method,

such as the heterogeneity of the AGVs and battery constraint,

are improved before the comparative verification in this study.

In the case study, the comparison results of the task completion

time and the delay time of the two methods are shown in

Figures 10–12.

The results show that the integrated scheduling method

proposed in this study has better performance and better

solutions are found in all cases. In particular, the average task

completion time is 13.62% less and the average delay time is

76.69% less than the sequential optimization of the scheduling

method. The average delay time difference between the two

methods is only 219 s when the number of tasks is 50 using

5 AGVs, but it increases to 3,591 s when the number of tasks

increases to 100 using 15 AGVs. With the increase in task

scale, the probability of conflicts between AGVs also increases

dramatically. The sequential optimization scheduling method

cannot avoid the impact of conflicts from the task allocation

process, while the proposed integrated scheduling can avoid

most conflicts by changing the task assignment and specific

execution path.

FIGURE 9

Gantt chart for dynamic scheduling 3.

FIGURE 10

Comparative analysis of task completion time and delay time with 5 AGVs.
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5.3. Comparison of algorithms

To verify the performance of HDSTA, a larger-scale

case template needs to be established. We generate 10

instances for each scenario with 50–150 tasks and AGVs

to be scheduled, ranging from 5 to 25; each instance

runs ten times to compute the mean. In each instance,

HDSTA with the adaptive large neighborhood search

algorithm (HALNS) (Dang et al., 2021) was compared

with the preplanning algorithm (PPA) (Maza and Castagna,

2005). HALNS is a hybrid algorithm of the adaptive large

neighborhood search algorithm and the linear programming

algorithm, which is proposed to solve the heterogeneous

AGV scheduling problem with charge capacity constraints.

However, this method does not consider the problem of

conflict and deadlock. For comparison, we developed

the conflict detection method to compute the delay time

of its optimal solution. PPA is a strategy to generate

conflict-free paths.

Table 2 compares the task completion time and scheduling

computation time for varying scenarios with different numbers

of AGVs and different numbers of tasks, where the task

completion time is directly proportional to the operation cost,

which can visually reflect the collaborative operation efficiency

of AGVs, and the computation time is an important index

of dynamic scheduling, which can reflect the computation

efficiency of AGV systems. Table 2 compares the performance

and computation time of PPA, HALNS, and HDSTA for

150 sets of tasks in 15 case types. For example, when the

task volume is 50 and the number of AGVs is 5, 9, and

11, respectively, the task completion times of the scenarios

calculated by optimal scheduling with the HDSTA algorithm

are 3,738, 3,811, and 3,845 s and the computation times are

2.23, 2.33, and 2.37 s, respectively. The results of 150 sets

FIGURE 11

Comparative analysis of task completion time and delay time with 10 AGVs.

FIGURE 12

Comparative analysis of task completion time and delay time with 15 AGVs.
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TABLE 2 Results of the varying scenarios.

NO. Number
of tasks

Number
of AGVs

PPA HALNS HDSTA

Computation
time (s)

Task
completion
time (s)

Computation
time (s)

Task
completion
time (s)

Computation
time (s)

Task
completion
time (s)

1 50 5 7.61 3,747 4.24 3,744 2.23 37,38

2 50 9 7.73 3,830 4.36 3,862 2.33 3,811

3 50 11 8.13 3,853 4.68 3,876 2.37 3,845

4 60 3 11.41 4,522 6.88 4,529 2.84 4,522

5 60 8 12.14 4,615 7.20 4,628 2.83 4,608

6 60 13 12.81 4,693 8.36 4,854 2.90 4,685

7 80 4 19.91 6,570 16.07 6,569 3.55 6,558

8 80 6 22.89 6,683 18.15 6,711 3.91 6,654

9 100 7 38.92 8,421 31.94 8,408 5.64 8,311

10 100 15 43.85 8,636 30.11 8,756 6.22 8,541

11 120 15 50.21 12,850 41.65 13,365 8.60 12,305

12 120 18 54.33 12,902 56.84 14,025 8.84 12,654

13 120 19 55.12 13,357 58.52 14,359 8.92 13,147

14 150 22 98.21 18,724 84.74 19,015 13.45 17,521

15 150 23 116.89 19,031 91.61 19,584 14.16 16,984

of tasks for 15 case types are analyzed and compared with

PPA and HALNS. The average task completion time of the

HDSTA solution proposed in this study is lower by 3.44

and 7.27% and the computation time is less by 84.15 and

81.92%.

6. Conclusion

This article studied the problem of scheduling a

heterogeneous fleet of AGVs. A MILP model was formulated

to minimize the sum of the costs of requests and the tardiness

costs of conflicts. The hierarchical planning method is

used to decompose the complex and integrated scheduling

problem. We propose that HDSTA combine select procedures.

The major novelty of this study is the ability to solve the

dynamic integrated scheduling problem for heterogeneous

AGV fleets with battery constraints. We performed

numerical experiments to validate our model according to

the real-world conditions of the automated warehouses in

Changsha, China.

In the future, we may extend our research

to improve our approach to multiple pickups

and deliveries along the same route (multi-load

AGVs) and the inclusion of path planning in the

scheduling process.
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