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The emergence of multimodal medical imaging technology greatly increases

the accuracy of clinical diagnosis and etiological analysis. Nevertheless, each

medical imaging modal unavoidably has its own limitations, so the fusion

of multimodal medical images may become an e�ective solution. In this

paper, a novel fusion method on the multimodal medical images exploiting

convolutional neural network (CNN) and extreme learning machine (ELM)

is proposed. As a typical representative in deep learning, CNN has been

gaining more and more popularity in the field of image processing. However,

CNN often su�ers from several drawbacks, such as high computational costs

and intensive human interventions. To this end, the model of convolutional

extreme learning machine (CELM) is constructed by incorporating ELM into

the traditional CNN model. CELM serves as an important tool to extract and

capture the features of the source images from a variety of di�erent angles.

The final fused image can be obtained by integrating the significant features

together. Experimental results indicate that, the proposed method is not only

helpful to enhance the accuracy of the lesion detection and localization, but

also superior to the current state-of-the-art ones in terms of both subjective

visual performance and objective criteria.

KEYWORDS

image fusion, modality, multimodal medical image, convolutional neural network,

extreme learning machine

Introduction

As is well known, the accuracy of lesion detection and localization is crucial

during the whole clinical diagnosis and treatment. So far, the rapid growth of medical

imaging technologies such as computed tomography (CT), magnetic resonance imaging

(MRI), positron emission tomography (PET) and single-photon emission computed

tomography (SPECT) has provided us much richer information on the physical

condition. CT can accurately detect the slight differences of the bone density in a

transection plane, which is regarded as an ideal way to observe the lesions of the bone.

Nevertheless, its capacity of the tissue characterization is weak. The information of the
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soft tissue can be better visualized in MRI images, but the

movement information such as the body metabolism cannot

be found. Unlike MRI, PET images can reflect the activity

of the life metabolism through the accumulation of certain

substance so as to achieve the purpose of diagnosis, but they

are often with lower resolution. The main advantage of SPECT

is to demonstrate the changes in blood flow, function and

the metabolism of organs or diseases, which is beneficial to

the early and specific diagnosis of the disease. Obviously, due

to the respective different mechanism, each imaging modality

unavoidably has its characteristics and inherent drawbacks. To

this end, the fusion of the medical images with multiple different

modalities may be an effective solution, because it can not only

combine the advantages together to accurately implement the

localization and description of the lesion, but also reduce the

storage cost of the patient information database.

Recently, a variety of fusionmethods onmultimodal medical

images have been proposed during the past decades. Basically,

these methods can be mainly grouped into the following

categories, namely spatial domain-based methods, transform

domain-based methods, soft computing-based methods, and

deep learning-based ones.

The representative spatial domain-based methods include

simple averaging, maximum choosing, principal component

analysis (PCA) (He et al., 2010) and so on. Although most of

the above methods have comparatively high operating speed

and simple framework, they often tend to suffer from contrast

reduction and spectrum distortion in the final fused image.

Therefore, the pure spatial domain-based methods are rarely

used at present.

Unlike spatial domain-based methods, the core scheme

of transform domain-based methods usually consists of three

steps. Firstly, the source image is converted to the frequency

domain to get several sub-images which commonly contain

one approximation image with low-pass coefficients and several

detail images with high-pass coefficients. Secondly, certain

rules are adopted to complete the fusion of sub-images

at corresponding stages. Finally, the final fused image is

reconstructed. The classical methods include, but are not limited

to, Laplacian pyramid transform, discrete wavelet transform

(DWT), contourlet transform, shearlet transform and so on,

which have pioneered the use of transform domain-based

concept. However, with further in-depth research on themedical

image fusion, the defects of the above classical methods are

gradually revealed. Under this background, a series of improved

versions have been presented in the past decade. Du et al.

(2016) introduced union Laplacian pyramid to complete the

fusion of medical images. Some improved versions of DWT

such as dual tree complex wavelet transform (DT-CWT)

(Yu et al., 2016), non-subsampled rotated complex wavelet

transform (NSRCxWT) (Chavan et al., 2017), discrete stationary

wavelet transform (DSWT) (Ganasala and Prasad, 2020a; Chao

et al., 2022) were presented to complete the fusion of medical

images. Compared with DWT, these three new versions share

both the redundancy feature and the shift-invariance property,

which effectively avoid the Gibbs phenomenon in DWT.

Similarly, in order to overcome the absence of shift-invariance

in the original contourlet transform and shearlet transform,

the corresponding improved versions namely non-subsampled

contourlet transform (NSCT) and non-subsampled shearlet

transform (NSST) were proposed successively. In comparison

to the aforementioned transform domain-basedmethods, NSCT

andNSST have bothmanifested competitive fusion performance

due to their flexible structures. Zhu et al. (2019) combined

NSCT, phase congruency and local Laplacian energy together

to present a novel fusion method for multi-modality medical

images. Liu X. et al. (2017), Liu et al. (2018) proposed two

NSST-based methods to fuse the CT and MRI images.

In addition to spatial domain-based methods and transform

domain-based methods, extensive work has also been conducted

with soft computing-based methods dedicated to multimodal

medical image fusion. A great many representative models,

including dictionary learning model (Zhu et al., 2016; Li et al.,

2018), gray wolf optimization (Daniel, 2018), fuzzy theory (Yang

et al., 2019), pulse coupled neural network (Liu X. et al., 2016; Xu

et al., 2016), sparse representation (Liu and Wang, 2015; Liu Y.

et al., 2016), total variation (Zhao and Lu, 2017), guided filter (Li

et al., 2019; Zhang et al., 2021), genetic algorithm (Kavitha and

Thyagharajan, 2017; Arif and Wang, 2020), compressed sensing

(Ding et al., 2019), structure tensor (Du et al., 2020c), local

extrema (Du et al., 2020b), Otsu’s method (Du et al., 2020a) and

so on, were successfully used to fuse the medical images.

Since the transform domain-based methods and soft

computing-based methods have both manifested to be

promising in the field of medical image fusion, some novel

hybrid methods have also been presented in recent years.

Jiang et al. (2018) combined interval type-2 fuzzy sets with

NSST to complete the fusion task of multi-sensor images.

Gao et al. (2021) proposed a fusion method based on particle

swarm optimization optimized fuzzy logic in NSST domain.

Asha et al. (2019) constructed a novel fusion scheme based on

NSST and gray wolf optimization. Singh and Anand (2020)

employed NSST to decompose the source images, and then

used sparse representation and dictionary learning model to

fuse the sub-images. Yin et al. (2019) and Zhang et al. (2020)

each proposed a NSST-PCNN based fusion method for medical

images. The guided filter was combined with NSST to deal with

the issue of multi sensor image fusion (Ganasala and Prasad,

2020b). Zhu et al. (2022) combined the advantages of both

spatial domain and transform domain methods to construct

an efficient hybrid image fusion method. Besides, the collective

view of the applicability and progress of information fusion

techniques in medical imaging were reviewed respectively in

Hermessi et al. (2021) and Azam et al. (2022).

In recent years, the deep learning-based methods play

significant roles in the field of medical image fusion, and have
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been gaining more and more popularity in both the academic

and industry community. In 2017, convolutional neural network

(CNN) was firstly introduced into the area of image fusion

by Liu Y. et al. (2017). Fan et al. (2019) deeply researched

the semantic information of the medical image with different

modalities, and proposed a semantic-based fusion method for

medical images. Aside from CNN, another representative deep

learning model namely generative adversarial network (GAN)

was used to deal with the issue of image fusion in 2019 (Ma

et al., 2019). The unsupervised deep networks for medical image

fusion were presented in references (Jung et al., 2020; Fu et al.,

2021; Xu and Ma, 2021; Shi et al., 2022). Goyal et al. (2022)

combined transform domain-based methods and deep learning-

based methods together to present a composite method for

image fusion and denoising.

After consulting a great deal of literature, we found that how

much information from the original source medical images is

retained in the final fused image greatly determines the image

quality, which is crucial to the further clinical diagnosis and

treatment. So far, the single transformed domain-based methods

and relevant hybrid ones have been widely employed to deal with

the fusion issue of medical images. However, the transformed

domain-based methods may introduce the frequency distortion

into the fused image. With the rapid development of the deep

learning theory and its reasonable biological background, more

and more attention is being paid to the deep learning-based

methods such as CNN. Therefore, we desire to develop a novel

fusion method based on CNN to fuse the medical images. It is

noteworthy that each single theory always has its advantages and

disadvantages and deep learning is no exception, which is usually

accompanied by a huge amount of computational costs. To this

end, we need to construct or adopt some model to reduce the

computational complexity as much as possible.

In this paper, a novel fusion method on the multimodal

medical images exploiting CNN and extreme learning machine

(ELM) (Huang et al., 2006, 2012; Feng et al., 2009) is proposed.

On the one hand, since the nature of the medical image fusion

can be regarded as the classification problem, the existing

successful experiences of CNN can be fully applied. On the other

hand, due to a great many parameters, the computational cost of

CNN is high. ELM is a single hidden layer feed-forward network,

and its algorithm complexity is very low. Besides, since ELM

belongs to a convex optimization problem, it will not fall into

the local optimum. Therefore, ELM is utilized to improve the

traditional CNN model in this paper.

The main contributions of this paper can be summarized

as follows.

• A novel method based on CNN and ELM is proposed to

deal with the fusion issue of multimodal medical images.

• It is proved that, apart from the area of multi-focus image

fusion, the CNN model can also be used in the field of

multimodal medical image fusion.

FIGURE 1

Typical CNN structure.

• The traditional CNN model is integrated with ELM

to be a modified version called convolutional extreme

learning machine (CELM) which has not only much better

performance, but also much faster running speed.

• Experimental results demonstrate that the proposed

method has obvious superiorities over the current typical

ones in terms of both gray image fusion and color image

fusion, which is beneficial to obviously enhancing the

precision of disease detection and diagnosis directly.

The rest of this paper is organized as follows. The involved

theories of CNN and ELM are reviewed in Related work

section followed by the proposed multimodal medical image

fusion framework in Proposed method section. Experimental

results with relevant analysis are reported in fourth section.

In Conclusions section, the concluding remarks are given in

the end.

Related work

The models relevant to the proposed method are introduced

in this section. The two important concepts, namely CNN and

ELM are briefly reviewed as follows.

Convolutional neural network

As a representative neural network in the field of deep

learning, CNN aims to learn a multistage feature representation

of the input data, and each stage usually consists of a series of

featuremaps connected via different types of calculations such as

convolution, pooling and full connection. As shown in Figure 1,

a typical CNN structure is composed of five types of components

including the input layer, convolution layers, pooling layers, full

connection layer, and the output layer.

In Figure 1, C, P and F denote the convolution, max-pooling

and full connection operations, respectively, which can generate

a series of feature maps. Each coefficient in the feature maps is

known as a neuron. Clearly, CNN is an end-to-end system. The

roles of the three types of layers, namely convolution, pooling
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and full connection, can be summarized as feature extraction,

feature selection, and the classifier.

Here, the input data is a two-dimensional image. The

neurons between the adjacent stages are connected by the

operations of convolution and pooling, so that the number of

the parameters to be learned declines a lot. The mathematical

expression of the convolution layer can be described as:

yj=bj+
∑

i

kij ∗ xi (1)

where kij and bj are the convolution kernel and the bias,

respectively. The symbol ∗ denotes the 2D convolution. xi is the

ith input feature map and yj is the jth output one.

In fact, during the convolution course, the non-linear

activation is also conducted. The common activation functions

include sigmoid function, rectified linear units (ReLU), and so

on. Here, ReLU is adopted whose mathematical expression can

be written as:

yj= max

(

0,bj+
∑

i

kij ∗ xi

)

(2)

In CNN, the convolution layer is usually followed by the

pooling layer. The common pooling rules include max-pooling

and average-pooling, which can select the maximum or the

average value of a certain region to form new feature maps. Due

to the special mechanism of the pooling layer, it can bring some

desirable invariance such as translation and rotation. Moreover,

it can also decrease the dimension of the feature maps which

is favorable for reducing the computational costs as well as the

memory consumption.

Through the alternation of multiple convolution and

pooling layers, CNN relies on the full connection layer to classify

the extracted features to obtain the probability distribution

Y based on the input. In fact, CNN can be viewed as a

converter where the original matrix X can be mapped into a new

feature expression Y after multiple stages of data transformation

and dimension reduction. The mathematical expression can be

written as:

Y(i) = P(L =li|H0; (k, b)) (3)

where H0 is the original matrix, and the training objective

of CNN is to minimize the loss function L(k, b). k and b are

the convolution kernel and the bias, respectively, which can be

updated layer by layer via the following equations.

ki=ki−η
∂E(k, b)

∂ki
(4)

bi=bi−η
∂E(k, b)

∂bi
(5)

E (k, b)= L (k, b)+
λ

2
kTk (6)

where λ and η denote the weight decay parameter and the

learning rate, respectively.

According to the mechanism of CNN mentioned above,

the important features of the image can be classified.

Some fused methods for multi-focus images based on

CNN have been published in recent years. Although

CNN-based fusion methods have been gaining more and

more popularity, their inherent problems such as being

prone to local minima, intensive manual intervention

and the waste of the computing resources still cannot

be ignored.

Extreme learning machine

Different from the conventional neural networks, ELM is a

single hidden layer feed-forward neural network. It is generally

known that most current neural networks have many knotty

drawbacks. (a) The training speed is slow. (b) It is easy for

them to be trapped into the local optimum. (c) The learning

rate is very sensitive to the parameters selection. Fortunately,

ELM is able to generate randomly the weights between the

input and the hidden layer as well as the threshold of the

neuron in the hidden layer, and the weights adjustment is

totally unnecessary. In other words, the optimum solution can

be obtained, provided the neuron number in the hidden layer

is given.

Suppose N training samples (xi, ti) and a single

layer feed-forward neural network with L neurons in

the hidden layers and M ones in the output layers.

The concrete steps of the learning via ELM are

as follows.

Step 1: The node parameters are allocated randomly, which

is independent of the input data.

Step 2: Computing the output matrix h(x) = [g1(x), . . . ,

gL(x)]
T of the hidden layers for x. Obviously, the size of

h(x) is N×M, which is the mapping result from N input

data to L neurons in essence.

Step 3: Computing the output weights matrix β = [β1, . . . ,

βL]
T . β=HTT. H = [hT(x1), . . . , h

T(xN )]
T , and T = [t1,

t2, . . . , tN ]
T is the training objective. The output weights

matrix β can be obtained by using the regularized least

squares method as follows.

β=

(

I

C
+HTH

)−1

HTT (7)

where C is the regularization coefficient.

Besides, a hidden neuron of ELM can be a sub-network of

several neurons. The scheme of the ELM feature mapping is

shown in Figure 2.
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FIGURE 2

Scheme of the ELM feature mapping.

Proposed method

In this section, the proposed fusion method for multimodal

medical images based on CNN and ELM is presented in detail.

The concrete content can be divided into three subsections,

including the structure of convolutional extreme learning

machine (CELM), network design, and the fusion schemes.

Structure of CELM

As described in Related work section, we can reach several

conclusions as follows.

• It is feasible to utilize CNN to deal with the issue of

image fusion.

• There are still inherent drawbacks in the traditional CNN

model, so it has large development potentiality.

• ELM not only owns many superiorities over other current

neural networks, but also shares great similarities with

CNN in structure.

Therefore, it is sensible to integrate CNN with ELM to

combine the both advantages together, whichmay also introduce

a novel and more effective solution to the fusion of multimodal

medical images. To this end, the CELM model is proposed in

this paper, whose structure is shown in Figure 3.

As shown in Figure 3, C and P denote the convolution and

pooling operations, respectively, and the mechanism of ELM has

been added into the CNN structure. CELM is composed of an

input layer, an output layer, and several hidden layers where

the convolution layers and the pooling layers alternately appear.

FIGURE 3

Structure of CELM.

The convolution layer consists of several maps recording the

features of the previous layer via several different convolution

kernels. The pooling layer introduces the translation invariance

into the network, and the dimension of the feature map in the

previous layer will also decrease. Meanwhile, the number of the

feature maps in the pooling layer always equals to the one in the

previous convolution layer. It is noteworthy that, except for the

first convolution layer, the neurons of the feature map in the

convolution layer are all connected to all the feature maps in

the previous pooling layer, while the ones in the pooling layer

are only connected to the corresponding feature maps in the

previous convolution layer. As for the original full connection

layer in the original CNN model, it has been replaced by the

global average pooling layer (Lin et al., 2014), which is favorable

for sharply cutting down the number of parameters.

With regard to the feature extraction, ELM can randomly

generate the weights between the input layer and the first

convolution layer as well as the ones between the pooling layer

and the following convolution layer, as shown in Figure 3. Here,

we suppose that there are two original multimodal medical

images denoted byA and B, respectively. If the source images are

color ones, we can convert them into gray ones or deal with them

in different color spaces, which will be involved in a later section.

In CELM, the weights are viewed to be agreeing with the

normal distribution, and the weight matrix can be obtained

as follows.

P=
[

p̂1,p̂2, . . . ,p̂i, . . .p̂N
]

, 1 ≤ i ≤ N (8)

where P is the initial weight matrix, N is the number of

convolution kernels, and the size of each element in Equation

(8) is r × r. Therefore, if the size of the previous layer is k × k,

the size of the corresponding feature map would be (k – r + 1)

× (k – r + 1).

The convolution node on the point at (x, y) on the ith feature

map can be obtained as

cx,y,i (2)=
∑r

m=1

∑r

n=1
2x+m−1,y+n−1·p

i
m,n (9)

where “Θ” denotes the source image A or B.

As for the pooling layer, the max-pooling strategy is adopted

except the last layer. The pooling node on the point at (u, v) on
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FIGURE 4

Diagram of the global average pooling layer.

the jth pooling map can be obtained as:

cu,v,j (2)= max
[

cx,y,i
]

, x, y = u− z, . . . , u+ z (10)

where z denotes the pooling size.

Due to involving a large number of parameters, the original

full connection layer in CNN is substituted for the global average

pooling one here, so that we can directly treat the featuremaps as

the category confidence ones, and save the computational costs

and storage space. The diagram of the global average pooling

layer is shown in Figure 4.

Network design

In this work, multimodal medical image fusion is regarded

as a classification problem. CELM is able to provide the output

ranging from 0 to 1 according to a series of image patches {pA,

pB}. As is known, the essence of image fusion is to extract the

important information from the source images and then fuse

it into a single one. Fortunately, CELM can just lead us to find

the representative information via classification. Specifically, the

output near to 1 indicates the information in pA has better

reference value, while the information in pB seems more typical

if the output is close to 0. Therefore, the pair of the patches {pA,

pB} from the same scene can be used as the training samples in

CELM. For example, if the information in pA is more valuable

than that in pB, the corresponding label is set to 1, otherwise the

label is set to 0. For sake of maintaining the image information

integrity, the whole source medical images are input into the

CELM as a whole rather than dividing them into a series of

patches. The results in the output layer can provide the scores

reflecting the information importance in the source images.

As for the details of the network, two important points

need to be made. (a) The network framework can be

mainly categorized into three types according to the reference

(Zagoruyko and Komodakis, 2015), namely siamese, pseudo-

siamese and two-channel. The last type just has a trunk rather

than branches. The difference between siamese and pseudo-

siamese lies in whether the weights of the branches of them

FIGURE 5

CELM diagram used for multimodal medical image fusion.

are the same or not. Here, the siamese type is chosen as the

network framework in this paper, the reason for which can

be summarized as follows. Firstly, due to the weight sharing,

the network training course is easy and timesaving. Secondly,

take the fusion course of two source images for example, two

branches with the same weights indicate the same schemes

of feature extracting are used for these two images, which is

just consistent with the process of image fusion. (b) The final

fusion performance has something to do with the size of the

input patch. For example, when the patch size is set to 64 ×

64, the classification ability of the network is relatively high

since much more image information is taken into consideration.

According to Farfade et al. (2015), there is the 2-power law

relation between the kernel stride and the number of the max-

pooling layer. In other words, if there are four max-pooling

layers, the corresponding stride is 24 = 16 pixels. Obviously,

the final fused image will suffer from blocky effects. Therefore,

in order to guarantee the classification ability and remove the

blocky effects as much as possible, the patch size is set to 32× 32

in this paper.

The CELM diagram used for multimodal medical image

fusion is shown in Figure 5.

Frontiers inNeurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1050981
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Kong et al. 10.3389/fnbot.2022.1050981

As indicated in Figure 5, each branch consists of three

convolution layers, two max-pooling layers and a global average

pooling layer. The kernel size and the stride of the convolution

layer are set to 3× 3 and 1, while the corresponding values of the

max-pooling layer are set to 2× 2 and 2. Here, the global average

pooling is used for realizing the function of the original full

connection layer in CNN, and the 256 feature maps are obtained

for classification.

Fusion schemes

In this paper, the training datasets of CELM are from

the website www.ctisus.com, which is the premier radiological

website dedicated to multimodal scanning. This website has

an incredible library of content ranging from multimodal scan

protocols, lectures, case studies, medical illustrations, and a

monthly quiz. CTisus.com provides the latest in radiology

technology and 3D imaging information, and uploads new

content daily.

After constructing the CELM, the fusion issue of the

multimodal medical images can be achieved. The specific

implementation process consists of two stages, namely 1-stage

and 2-stage. Here, we only take the fusion of two images into

consideration, and the method can be extended to the case of

the fusion of more than two images.

During the 1-stage, the concrete steps are as follows.

Input: Patches of the multimodal medical images to

be fused.

Output: The 1-stage fused image.

Initialization: The CELM depicted in Figure 5.

Step 1.1: The patch of 32× 32 pixels are fed into the CELM.

Step 1.2: By using the two convolution layers, we can obtain

64 and 128 feature maps, respectively. The kernel sizes of the

two convolution layers are set to 3 × 3, and the strides of the

convolution layers are set to 1.

Step 1.3: The kernel sizes of the two max-pooling layers are

both set to 2× 2, and the strides of the convolution layers are set

to 2. And 128 feature maps can be obtained.

Step 1.4: The 128 feature maps are fed into another third

convolution layer with the size of 3 × 3 to generate 256

feature maps.

Step 1.5:The global average pooling layer is used to deal with

the 256 feature maps in Step 1.4.

Step 1.6: Guarantee that all the pixels of the source images

are performed by CELM, and the output can be obtained as:

label(i, j) =

{

1, if A
(

i, j
)

is better than B
(

i, j
)

0, otherwise
(11)

F(i, j) =

{

A
(

i, j
)

, if label
(

i, j
)

= 1

B
(

i, j
)

, if label
(

i, j
)

6= 1
(12)

where “label” is the classification result of CELM. A, B and

F denote the two source images and the final fused one,

respectively. (i, j) is the coordinate of the pixel in the image.

It should be noted that there will be inconsistency during

the fused image, namely a pixel from the source image Amay be

surrounded by a great many counterparts from B.

In order to overcome the problem mentioned above, a

consistency matrix denoted by C is defined here to describe the

ownership of the pixels. If the pixel F(i, j) is from A, the value

of the corresponding element C(i, j) is set to 1, otherwise the

value is 0. Then, a filter whose size and stride are 3 × 3 and

1 respectively is used. In the 3 × 3 window, three cases may

appear. (a) If the sum of the surrounding eight elements in C

is greater than or equal to five, the corresponding pixel in A

will be selected as the counterpart in F. (b) If the sum of the

surrounding eight elements in C is less than or equal to three,

the corresponding pixel in B will be selected as the counterpart

in F. (c) If the sum of the surrounding eight elements inC is four,

the original value in F will remain unchanged.

After the 1-stage, the initial fused image can be

obtained. However, unlike the fusion of other types of

images, higher requirements and standards are needed

in the fusion course of multimodal medical images to

enhance the precision of lesion detection and diagnosis.

In the 2-stage, the connection between the two source

images and the initial fused one is analyzed and

discussed further. The diagram of the 2-stage is shown in

Figure 6.

As shown in Figure 6, A, B, F and FF denote the two

source images, the initial fused one and the final fused one,

respectively. “sub” is the subtraction operator. “F-A” stands

for the subtraction result between F and A. Similarly, “F-B”

stands for the subtraction result between F and B.MF andMFF

denote the binary mapping of the images F and FF. MM is the

abbreviation of mathematical morphology.

In this paper, the simple subtraction operator is used to

measure the similarity between the initial fused image and the

source one. The concrete steps of the 2-stage are as follows.

Input: Two source images denoted by A and B, and the

initial fused image F.

Output: The 2-stage fusion result FF.

Initialization: The two source images and the initial fused

one are given.

Step 2.1: The subtraction operation is conducted between A

and F to generate the image F-A. Similarly, the image F-B can be

also obtained.

“F-A” and “F-B” can describe the extent of feature extracting

from the other original source image.

Step 2.2: Compute the value of root mean square error

(RMSE) between “F-A” and “B” to obtain RMSEF−A,B.

Meanwhile, RMSEF−B,A can also be computed. Here, the size

of the window used to compute RMSE is 5× 5.
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FIGURE 6

Diagram of the two-stage.

Step 2.3: Construct a new matrix MF with the same size as

F. The elements ofMF can be determined as:

MF(i, j) =

{

1, if RMSEF−B,A>RMSEF−A,B

0, otherwise
(13)

where MF(i, j) = 1 indicates that the difference between

F-B and A is more obvious than that between F-A and B. In

other words, more information should be fused in A than that

in B, otherwise we may should place more emphasis on B rather

than A.

Step 2.4:With the help ofMM,MF is optimized by a series of

opening and closing operators to smooth over the object outlines

and the connection between each other. Here, the structure

element is a square identity matrix of the size 5 × 5. The

modified mapping denoted byMFF can be obtained.

Step 2.5: MFF and F are both taken into account to

determine the final fused image FF. Please note that compared

with the requirements in the 1-stage, the modification condition

is more rigorous here. The reason for it lies in that the initial

fused image have been already obtained in the 1-stage, while the

main objective of the 2-stage aims to further optimization. The

elements of FF can be optimized as:

FF(i, j) =











1, if MFF
(

i, j
)

= 1 and sum
(

i, j
)

= 8

0, if MFF
(

i, j
)

= 0 and sum
(

i, j
)

= 0

F(i, j), otherwise

(14)

where “sum” denotes the sum of the elements surrounding

(i, j) in MFF. The window is of size 3 × 3. As Equation

(14), if and only if the elements in the window are all from

the same source image, the corresponding value in the initial

fused image may be modified. Otherwise, the element will still

remain unchanged.

It is also noteworthy that if the source images are color ones,

we need to convert them into gray ones or deal with them in

different color spaces. The color is usually characterized by three

independent attributes, which interact on each other to form

a spatial coordinate called color space. The color space can be

divided into two categories including primary color space, and

color brightness separation color space according to the basic

structure. RGB and YUV are the typical representatives of the

above categories respectively.

RGB mode is an additive one with luminescent screen,

while CMYK mode is a printing subtractive one with reflective

color. IHS mode suffers from spectral information distortion,

which easily leads to medical accidents. Unlike the above three

common modes, YUV mode can deal with brightness or color

without mutual influences, so it depends on neither light nor

pigment. Moreover, YUV includes all color modes the human

can see in theory, and it is able to make up for the drawbacks of

RGB, CMYK and IHS. Therefore, YUV mode is chosen as the

color space in this paper.

During the fusion course of medical source images, we

may encounter color images, such as SPECT-TI and SPECT-Tc

based ones. Under the circumstances, the RGB source image

is converted into the YUV version first. Three components

including Y, U and V can be obtained. The Y channel describes

the brightness information of the image whereas the other two

channels cover the color information. The Y component is fused

using the proposed scheme followed by the conversion from

YUV to RGB to get the final fused image F.

Experimental results with
relevant analysis

In order to verify the effectiveness and the superiorities of

the proposed method, a series of simulation experiments are

performed. Concretely, the section is composed of six parts.

The information on the source images to be fused, the methods

which are used to be compared with the proposed one, and

the experiment settings are given in detail in Experimental
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FIGURE 7

Six pairs of multimodal medical source images. Pair I (A,B). Pair II

(C,D). Pair III (E,F). Pair IV (G,H). Pair V (I,J). Pair VI (K,L).

setups section. Objective evaluation metrics section lists the

objective quantity metrics used in the following experiments.

In Experiments on gray and color source images section, the

comparisons on the gray images and color ones are conducted

in terms of both subjective visual performance and objective

quantity results. As the extensive research, the application of

the proposed method in other types of source images is also

investigated in Applications of the proposed method in other

types of source images section followed by the average running

time of the proposed method in Average running time of

the proposed method section. In the end, the discussions on

the potential research directions of the proposed method are

given in Discussions on the potential research directions of the

proposed method section.

Experimental setups

Six pairs of multimodal medical images are used in the

following experiments, which are shown in Figure 7. There

are several points requiring to be noted. (a) For simplicity,

the corresponding pairs of source images are named as Pair

I–VI. (b) All the images share the same size of 256 × 256

pixels, and can be downloaded from the Harvard university site1

or the Netherland TNO site2 (c) From the color perspective,

the images in pair I–IV are gray ones covering 256-level gray

scale, while the images in pair V–VI such as SPECT ones

are in pseudo-color. (d) The images with different modalities

own a great deal of complementary information, which is

1 http://www.med.harvard.edu/AANLIB/home.htm

2 http://www.imagefusion.org

beneficial for increasing the accuracy of the lesion detection

and localization.

The proposedmethod is compared with seven representative

and recently published ones, which are the adaptive sparse

representation (ASR)-based (Liu and Wang, 2015) one, the

convolutional sparse representation (CSR)-based one (Liu Y.

et al., 2016), the non-subsampled rotated complex wavelet

transform (NSRCxWT)-based one (Chavan et al., 2017), the

guided filtering fusion (GFF)-based one (Li et al., 2013), the cross

bilateral filter (CBF)-based one (Kumar, 2015), CNN-based one

(Liu Y. et al., 2017) and gradient transfer and total variation

(GTTV)-based one (Ma et al., 2016). Generally speaking, ASR,

CSR and NSRCxWT belong to the scope of TDB, while the other

four methods are SCB ones. In order to guarantee the objectivity

during the whole process of simulation experiments, the free

parameters of the seven methods used to be compared are all

set as the original references reported.

Objective evaluation metrics

As is well known, it is one-sided for us to evaluate the

fusion performance only by subjective inspection. The objective

quantity evaluation also plays a significant part during the whole

process of image fusion. In Liu et al. (2012), the 12 metrics

which are recently proposed and typical are fully analyzed and

discussed. On the whole, they can be categorized as four types,

namely information theory-based metrics, image feature-based

metrics, image structural similarity-based metrics, and human

perception inspired fusion metrics. In this paper, four metrics

each of which is from four different types above respectively are

selected to perform the objective evaluation on the final fused

results, including spatial frequency (QSF) (Zheng et al., 2007),

Piella’s metric (QPiella) (Piella and Heijmans, 2003), mutual

information (QMI) (Hossny et al., 2008), and Chen-Varshney

metric (QCV ) (Chen and Varshney, 2007).

Experiments on gray and color
source images

From the modality perspective, the source images are of six

different combinations as follows.

• Pair I (MR-T2 and MR-T1)

• Pair II (CT and MR-T2)

• Pair III (MR-PD and MR-T2)

• Pair IV (CT and MR)

• Pair V (MR-T2 and SPECT-TI)

• Pair VI (MR-T2 and SPECT-Tc)

The fusion results based on the eight different methods are

shown in Figure 8.
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FIGURE 8

Fusion results based on eight di�erent methods. (A) ASR, (B) CSR, (C) NSRCxWT, (D) GFF, (E) CBF, (F) CNN, (G) GTTV, (H) Proposed.
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As for the fused results on Pair I, the ASR-based and CBF-

based methods suffers from poor contrast. A great deal of

artifacts can be easily found in the fused image based on CSR.

Besides, the information of the source images doesn’t obtain a

fully expression in the fused images based on GFF, CNN and

GTTV (please see the red rectangles), which is very unfavorable

to the lesion detection and localization. In comparison, the fused

images based on NSRCxWT and the proposed one have much

better visual performance. In Pair II, a striking comparison can

be easily observed that the outline information in Figure 7C is

not adequately described by the other seven methods except

the proposed one. In other words, the bright white outline is

supposed to appear continuously and obviously in the fused

image. As to Pair III, the center-right region can be used as

a reference (see the red rectangles). The fused images based

on ASR, GFF and GTTV have a relatively low contrast level.

What is worse, some artifacts even appear in the fused results

based on CSR and CBF. Compared with the above five methods,

NSRCxWT, CNN and the proposed one all have satisfactory

visual performance. However, through careful observation, it

can be found that the proposed method has more superiorities

over other two ones in terms of the image texture and the

information representation. In Pair IV, the original information

of the source CT image is almost lost in the fused images

based on ASR, CNN and GTTV. In the fused image based on

NSRCxWT, there is also an obvious lack of the source MRI

information (see the red rectangles). Similarly, the information

locating at the bottom right corner in the CBF-based result is

also missing. A terrible indented edge can be noticed in the

fused result based on CSR (see the magnified region in the

upper right corner). Compared with the other six methods, GFF

and the proposed method have much better visual performance,

but the latter owns much clearer contours than the former,

which can be found in the red rectangles. The experiments on

Pair V and Pair VI involve the fusion between the gray image

and the color one, and their fused results are also in color.

Compared with the gray counterparts, color images are able to

offer much more information with no doubt. Pair V describes

the case of anaplastic astrocytoma. The significant lesion regions

obtain better descriptions in the fused image based on the

proposed method than other ones. Pair VI addresses another

case. Here, for sake of distinguishing the differences among the

eight methods, two regions are selected as the references to

evaluate the fusion performance (see the red rectangles). Based

TABLE 1 Objective evaluation on the fused images based on di�erent methods.

ASR CSR NSRCxWT GFF CBF CNN GTTV Proposed

Pair I QSF 34.8118 44.1029 42.4388 35.9596 36.8943 36.2532 34.5648 45.2897

QPiella 0.7094 0.7219 0.7299 0.7224 0.7302 0.7001 0.5910 0.7520

QMI 0.7083 0.8813 1.1378 0.6984 0.7198 0.7799 0.6727 1.1507

QCV 400.0300 367.5945 375.6842 402.3830 414.0351 302.5264 830.0512 423.3613

Pair II QSF 40.8550 50.0756 49.7400 39.9966 47.7477 44.3366 32.0796 49.9253

QPiella 0.7373 0.6991 0.7465 0.6587 0.7377 0.7431 0.5075 0.7783

QMI 0.6974 0.8798 1.0025 0.6704 0.7735 0.9054 0.6418 1.0780

QCV 1,145.383 1,290.245 716.1920 2,142.597 2237.970 971.9320 3,762.081 2535.860

Pair III QSF 39.0054 41.8544 40.3306 38.8861 38.1430 40.5021 27.7984 42.5274

QPiella 0.8974 0.9014 0.9009 0.9053 0.9012 0.8998 0.6221 0.9193

QMI 0.9498 1.0634 0.9922 0.9013 0.8901 0.9977 0.8141 1.0675

QCV 169.2490 161.1503 179.7873 150.0123 187.5749 139.1230 1575.770 177.0231

Pair IV QSF 28.4958 35.3432 36.7455 28.4490 32.4930 28.5946 24.0985 36.9254

QPiella 0.7667 0.8350 0.8295 0.8408 0.8612 0.7688 0.6847 0.8407

QMI 0.5002 0.7131 1.0356 0.5855 0.8597 0.5167 0.4761 1.0553

QCV 1,449.801 2,126.931 2,525.826 1,436.559 2,481.416 1,187.209 1,486.342 2638.738

Pair V QSF 28.1230 31.2896 31.5508 31.0568 31.5580 31.5670 11.9156 32.4373

QPiella 0.8102 0.9198 0.9118 0.9246 0.9213 0.9109 0.3985 0.9265

QMI 0.5846 0.9318 1.0688 0.8039 0.9030 1.0590 0.5759 1.0548

QCV 228.7973 18.3058 16.3897 25.1995 46.7478 16.3897 985.4931 231.8284

Pair VI QSF 27.2272 30.8178 31.3711 30.6399 30.6681 30.6681 11.9758 31.6360

QPiella 0.8237 0.9154 0.9133 0.9226 0.9189 0.9189 0.3655 0.9249

QMI 0.5806 0.9026 1.0588 0.7958 0.8377 0.8377 0.4874 1.0177

QCV 106.9227 8.0261 7.7041 28.8184 37.1281 7.7035 822.7828 127.5496

The bold values indicate the optimal results.
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on the eight fused images, the information of the corresponding

regions is not fully described by ASR, GFF and GTTV. What is

worse, in the right red rectangles, the artifacts can be observed

in the fused images based on CSR, NSRCxWT, CBF and CNN.

In comparison with other seven methods, the two regions in

the fused image based on the proposed method are much

better described.

Of course, there may be individual divergences during the

evaluating process. To this end, the four metrics mentioned in

subsection B are used to evaluate the fusion effects from more

balanced and objective perspectives, and the numerical results

are reported in Table 1, in which the value shown in bold in each

row indicate the best result among the eightmethods. Obviously,

as for the first three metrics QSF , QPiella and QMI , the proposed

method is almost always ranked the first. Owing to the special

mechanism of GTTV, its QCV value is abnormal.

Applications of the proposed method in
other types of source images

Different types of images often have diverse characteristics.

In order to verify and evaluate the comprehensive performance

of the proposed method, extensive investigations on its usage in

other types of source images are conducted in this subsection.

Here, another two types of source images are selected, namely

a pair of multi-focus source images and a pair of visible and

infrared source ones, which are denoted by Pair VII and Pair

VIII, respectively. These two pairs of source images are shown

in Figure 9.

Apart frommultimodal medical images, multi-focus images,

gray and infrared images are also research hotspots in the field

of image fusion. Therefore, these typical types of images are

selected as the source images, and the corresponding fusion

results are shown in Figure 10. In addition, the objective

evaluation results are reported in Table 2. As can be observed,

the fused images based on the proposed method are of

satisfactory quality.

Average running time of the
proposed method

Typically, the visual effect as well as the metric values seems

to be the focus of our attention. However, in the practical

situations, the computational cost especially the average running

time is also a very important factor we are interested in. In

this subsection, the experimental results on Pair I are taken

into consideration.

The hardware platform concerning the experiments above is

as follows. A computer is equipped with an IntelCore i7-7700

3.60 GHz CPU and 16 GB memory. Besides, a GPU module

FIGURE 9

Another two types of source images. (A) Left-focus source

image, (B) Right-focus source image, (C) Infrared source image,

(D) Visible light source image.

GTX1060 is also employed here. All the simulation experiments

are performed with matlab 2014b. In order to guarantee the

objectivity of the experimental results, the same experiments are

performed thrice via the proposed method, and then the average

running time is calculated to be the final result. The statistics

show that it only takes 1.32 s to achieve the final fused image

via the proposed method, which is perfectly acceptable to the

applications of the lesion detection and localization.

Discussions on the potential research
directions of the proposed method

Although the proposed method is proved to be effective to

deal with the fusion issue of the multimodal medical images, it

doesn’t mean that there is no room for development of CNN

theory. On the contrary, lots of researches and investigations

are still required to be done in the future. To the best of our

knowledge, the following several points are worth researching.

• Optimization of CNN architecture. It is well known

that the birth of CNN is of epoch-making significance

of the milestone for the area of image processing.

However, the traditional CNN architecture has its own

inherent drawbacks, which has been mentioned in Related

work section. Therefore, the further researches on the

optimization of CNN architecture are very necessary. On

the one hand, CNN is a representative model in the deep

learning field. The relation between the network depth of
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FIGURE 10

Fusion results on two pairs of source images with eight di�erent methods. (A) Fusion results on Pair VII (from left to right: ASR, CSR, NSRCxWT,

GFF, CBF, CNN, GTTV, Proposed). (B) Fusion results on Pair VIII (from left to right: ASR, CSR, NSRCxWT, GFF, CBF, CNN, GTTV, Proposed).

TABLE 2 Objective evaluation on the fused images based on di�erent methods.

ASR CSR NSRCxWT GFF CBF CNN GTTV Proposed

Pair VII QSF 23.9632 24.1251 24.1067 24.4411 23.1825 24.3852 22.2385 24.8856

QPiella 0.9377 0.9328 0.9311 0.9325 0.9388 0.9323 0.9060 0.9421

QMI 1.0345 1.0905 1.1473 1.1031 1.0791 1.2059 1.1002 1.2634

QCV 54.6205 63.0834 64.7638 64.8442 64.2539 64.6459 93.4914 63.2364

Pair VIII QSF 30.2317 35.6011 35.5563 30.5951 33.6958 30.1220 22.2862 35.9478

QPiella 0.8227 0.8178 0.8045 0.8270 0.8341 0.7967 0.5837 0.8345

QMI 0.3698 0.6208 0.6356 0.3808 0.3833 0.6467 0.3255 0.6033

QCV 837.8217 1,298.0269 1,317.6476 1,209.4535 1,101.0403 1,325.8068 1,245.9047 1,390.4678

The bold values indicate the optimal results.

CNN and the final performance is always an interesting

and meaningful topic. On the other hand, in this paper, the

introduction of another theory is proved to be effective to

overcome the above drawbacks of CNN to a certain extent,

so the combination between CNN and other theories could

be the future direction of development.

• As other typical fusion methods, the main structure is

commonly composed of fusionmodels and fusion schemes.

These two parts both play an instructive role in the whole

process of image fusion. As for the fusion models, it has

been involved in (a). Similarly, the investigations on the

fusion schemes should also be emphasized in the future.

Limitations of the proposed method

Despite its effectiveness, the proposed method also has its

inherent limitations as follows.

Firstly, due to the nature of deep learning, the size

of the training datasets determines the performance of the

proposed method to a large extent. However, compared

with the current well-known image datasets, the size of

the medical image datasets suitable for training is usually

small, so that the learning ability of the proposed network

is limited. To solve this problem, the deep cooperation

with domestic and foreign well-known medical institutions is

necessary, and the construction of large medical image database

is expectable.

Secondly, as the important component, ELM can

significantly improve the execution efficiency of the proposed

method, but its nonlinear representation ability is not well.

Therefore, how to improve the classical ELM to optimize the

representation ability of nonlinear features becomes a research

direction in the future.

Conclusions

In this paper, a novel fusion method called CELM

is proposed to deal with the fusion issue of multimodal

medical images. CELM combines the advantages of both

CNN and ELM. Compared with other typical fusion

methods, the proposed one has obvious superiorities in

terms of both subjective visual quality and objective metric
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values. In addition, the potential research directions of

the proposed method are also given and discussed, the

contents of which will be the emphasis of our next work

in future.
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