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The use of upper limb rehabilitation robots to assist the a�ected limbs for

active rehabilitation training is an inevitable trend in the field of rehabilitation

medicine. In particular, the active motion intention-based control of the

upper limb rehabilitation robots to assist subjects in rehabilitation training

is a hot research topic in human-computer interaction control. Therefore,

improving the accuracy of active motion intention recognition is the

premise of the human-machine interaction controller design. Furthermore,

there are external disturbances (bounded/unbounded disturbances) during

rehabilitation training, which seriously threaten the safety of subjects. Thereby,

eliminating external disturbances (especially unbounded disturbances) is the

di�culty and key to the human-machine interaction control of the upper limb

rehabilitation robots. In response to these problems, based on the surface

electromyogram signal of the human upper limb, this paper proposes a

fuzzy neural network active motion intention recognition method to explore

the internal connection between the surface electromyogram signal of the

human upper limb and active motion intention, and improve the real-

time and accuracy of recognition. Based on this, two types of human-

machine interaction controllers, which can be called as zeroing neural

network controller and noise-suppressing zeroing neural network controller

are designed to establish a safe and comfortable training environment to avoid

secondary damage to the a�ected limb. Numerical experiments verify the

feasibility and e�ectiveness of the proposed theories and methods.

KEYWORDS

SEMG signal, zeroing neural network, motion intention recognition, human-machine

interaction controller, noise-suppressing

1. Introduction

The global situation of population aging tends to be increasingly serious.

Several countries such as the United States, China, the United Kingdom, and

Japan have become the countries with the largest number of elderly people in the

world. At the same time, the number of physical disabilities caused by stroke,
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spinal cord injury, and brain trauma is increasing rapidly.

Among them, stroke is the main disease that causes local

skeletal muscle motor dysfunction in people’s upper limbs.

Stroke has the characteristics of high disability rate, obvious

younger trend, and great harm, which seriously endangers the

physical and mental health of patients, and brings a heavy

economic burden to patients’ families and society (Huo et al.,

2016; Young and Ferris, 2017; Venkatesh et al., 2019). Because

the injured limb has a certain active movement ability, it can

actively drive the bones and muscles of the injured limb for

rehabilitation training activities (Fournier et al., 2018; Orekhov

et al., 2020). However, the injured limb after stroke is often

accompanied by abnormal muscle activities such as motor

incoordination, spasm, fatigue, and tremor, which are prone to

humans. Therefore, the phenomenon of machine confrontation

will cause secondary injury to the affected limb and bring huge

safety hazards to patients’ rehabilitation training.

The upper limb rehabilitation robot assists in rehabilitation

training activities of the affected upper limb after stroke.

Repetitive task-oriented training is the goal to formulate

rehabilitation treatment plans, which can improve the motor

function of the affected limb, enhance sensory input, strengthen

the brain’s functional reorganization ability, and stimulate brain

cells mobility to improve the motor function of the affected limb

and the self-care ability of daily life. There are many algorithms

have been developed to control the rehabilitation robots to assist

subject movement in current research. For instance, a control

method that combines proportional-derivative (PD) control,

sliding mode control (SMC) and fuzzy logic control is developed

to achieve high position tracking performance for the upper limb

exoskeleton in Teng et al. (2020). However, in the process of

rehabilitation training, the affected limb is often accompanied

by uncoordinated motor function and poor control, which

leads to human-machine confrontation and even secondary

injury (Wu et al., 2018a,b). To ensure the smooth progress of

rehabilitation training and avoid human-machine confrontation

and its adverse consequences, the interactive control between

the upper-limb rehabilitation robot and the affected limb must

be indispensable in the process of rehabilitation training. Good

human-machine interaction control will create a safe, natural

and compliant rehabilitation training environment for patients,

which can not only avoid secondary injury to the affected limb

rehabilitation training due to the time-varying information of

working conditions, but also promote the active participation

of patients in rehabilitation. The confidence of training greatly

improves the rehabilitation effect (Zhang and Cheah, 2015;

Aach et al., 2016; Deng et al., 2020). Due to the strong

randomness of human movement behavior, the control system

of upper limb rehabilitation robot should have the ability

to quickly adjust the system parameters, which can provide

the patient with the best rehabilitation exercise mode in real

time and help the affected limb to restore normal movement

functions.

Real-time and accurate recognition of the current state and

movement intention of the affected limb can help patients

achieve effective information interaction between the affected

limb and the upper limb rehabilitation robot. Therefore,

accurate recognition of the movement intention of the affected

limb is the prerequisite for human-machine interaction control,

and the design of an effective human-machine interaction

control method is the key-point to realize the coordinated

movement of the affected limb and the upper limb rehabilitation

robot. Park et al. developed an adaptive impedance control

method for upper limb exoskeleton robots using biomechanical

signals (Park et al., 2018). Chen et al. proposed an auxiliary

control system embedded with force/torque sensors, and

demonstrated the inherent mapping relationship between

robot and human, and analyzed the mapping relationship of

rehabilitation patients in different modes (Chen et al., 2016).

The results of rehabilitation training show that this method has

made a certain contribution in clinical application. Moreover,

Zhao et al. proposed a critical damping controller for the

cascade-series elastic driver control structure, which gave a

new impedance performance index "Z zone" used to quantify

the achievable impedance amplitude (Zhao et al., 2018). The

feasibility and effectiveness of the proposed method are verified

by simulation and experiment. However, the collection of the

biomechanical signals lags behind the human movement, which

is not flexible and convenient.

Compared with biomechanical signals, the physiological

signals (surface electromyographic (sEMG) signals), with higher

sensitivity and resolution are more suitable for intention

recognition. Cene proposed a human-machine interaction

control method based on the sEMG signals and adaptive

frequency oscillator in Cene and Balbinot (2020). Through

numerical simulation and plane parallel structure upper limb

rehabilitation robot platform experiment, the synchronous

active rehabilitation training method was verified feasibility

and effectiveness. Furthermore, the human-robot cooperative

control method based on sEMG signals is developed to drive

the pneumatic upper limb exoskeleton to act according to the

wearer’s motion intentions (Liu et al., 2020). For pathological

tremor, motion sensors are usually used to detect, activate the

stimulus signal transmitted by the muscle within the range

of the motion threshold to resist vibration and vibration, and

achieve active rehabilitation training with different auxiliary

exercise levels. However, it is inevitable that data acquisition

is affected by different measurement noises during the use of

sensors, because noise is inevitable and always exists in the actual

system. Beyond that, the uncertainty of the model also brings

great challenges to the research on human-computer interaction

control of the upper limb. Peng et al. proposed a sensorless

control strategy that integrates radial basis function neural

network, force estimation, and admittance control in Peng et al.

(2020), which ensures that Baxter robots can interact with

unknown environments under input constraints. The adaptive
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neural controller can ensure that the tracking performance and

tracking error of the system are in the neighborhood of the

stable point. By estimating the external torque exerted by the

end effector, the admittance control method is adopted to adapt

the trajectory to achieve self-adaptability. Kim et al. proposed a

novel time delay control strategy, which significantly improves

the performance of interactive force control and effectively

solves the problems of uncertainty due to physical human-

machine interaction systems and inaccurate force control (Kim

and Bae, 2016). Furthermore, Brahim proposed an inversion

method combined with time delay estimation, which solves

the joint connection and its constraint problems of dynamic

system uncertainty caused the time delay errors (Brahim et al.,

2018). The designed feed-forward loop directly couples the

output of the time delay estimator to the adaptive tracking

control input, which can ensure accurate tracking of the control

trajectory, and is robust to uncertainties and unpredictable

external forces, and can adapt to the changes in parameters.

However, the external disturbances are frequently regarded as a

bounded disturbances in current studies. Actually, the external

disturbances are unknown noises, and the noises strengths

are unpredictable. That is to say, the external disturbances

may be unbounded noises. In summary, as the actual demand

for the performance of rehabilitation robots continues to

increase, human-machine interaction control strategies emerge

in endlessly, but the existing methods still have some problems,

for example, 1) The accuracy of intention recognition needs

to be further improved to ensure the safety of subjects in

the rehabilitation process and enhance sensory input. 2) The

external disturbances (bounded/unbounded disturbances) have

great influence on the model. It is significantly important to

construct a noise-tolerant control method based on a human-

machine model, which can create a safe, comfortable and supple

rehabilitation training environment for the injured limb.

Thereby, to resolve the above problems, the fuzzy neural

network is proposed to identify the active motion intention

of the subjects based on the multi-channel sEMG signals

and takes it as the expected trajectory of the subjects. In

addition, considering the interference of external disturbances

(bounded/unbounded disturbances) on the model, a human-

machine interaction controller that can suppress different

external disturbances is analyzed and developed based on the

active intention of the subjects in this paper. In summary, the

main contributions of this paper are concluded as follows:

1) Based on the multi-channel sEMG signals, the active

motion intention of the subjects is effectively identified,

and the effective information interaction between the

subjects and the upper limb rehabilitation robot is realized,

which lays the foundation for the research of human-

machine interaction controller.

2) Based on the active motion intention of the subjects,

an noise-suppressing zeroing neural network (NSZNN)

controller is developed to eliminate different external

disturbances, which can avoid unnecessary damage caused

by noise/disturbance during rehabilitation training.

3) Experimental results demonstrate that the proposed

human-machine interactive controller has the advantage

over the classical proportional-integral-derivative (PID)

controller, gradient neural network (GNN) controller and

zeroing neural network (ZNN) controller in terms of

prediction accuracy and noise tolerant properties under

different noise-polluted conditions.

The chapters of this paper are arranged as follows: Section 2

is the recognition of upper limb active movement intention, and

a fuzzy neural network is constructed to realize the upper limb

active movement intention recognition; Section 3 is the design

of the human-machine interaction controller, which constructs

two types of human-machine interaction controllers to ensure

the absolute safety and smooth interaction of the affected limb,

and improves the interaction efficiency and rehabilitation effect;

Section 4 is the experimental results verify the feasibility and

effectiveness of the proposed algorithm; Section 5 discusses the

summarize of this paper.

2. Active movement intention
recognition for upper limbs

2.1. Data collection and preprocessing

The sEMG signal can reflect the activity state of the muscle

during exercise to a certain extent (Wang et al., 2019; Chai

et al., 2021; Wei et al., 2021). Through the corresponding time

and frequency domain analysis, the time and frequency domain

characteristics and the corresponding muscle characteristics and

movement correlation can be obtained, and the muscle function

state of the human body during exercise can be obtained.

Through experiments, the corresponding sEMG signals of the

deltoid muscle, biceps brachii, and pronator teres muscle of

the upper limbs of the human body were obtained through

experiments, and the angles of the three joints of the shoulder,

elbow and wrist were measured and recorded at the same time.

In order to ensure the accuracy of the data obtained during the

measurement, the MP160 electromyographic signal acquisition

device developed by the American BIOPAC company is used

to obtain the electromyographic information corresponding to

the muscles of the human upper limbs during exercise, and

the WT901C485 angle sensor produced by China Huitong

Company is used to collect the angles of the upper limbs three

joints. During data collection, the subject is required to perform

the corresponding upper limb flexion and extension exercises,

and the measured data at this time is used as the pre-input data

of the model, as shown in Figure 1.
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FIGURE 1

The environment of multi-channel sEMG and angle signals for

upper limb.

The signal collection process is susceptible to interference

from the external environment. In order to avoid external

interference as much as possible, it is necessary to perform

corresponding dehairing treatment on the skin surface of the

person being measured, and apply appropriate electrode gel

to reduce the impedance between the electrode and the skin.

The silver chloride electrode pads used in the sEMG collection

process will also interfere with the collected data. Therefore,

the distance between two adjacent electrode pads is selected as

2 cm in this experiment. The specific measurement results are

displayed in Figure 2.

sEMG signal is a weak electrical signal generated during

muscle contraction. It has high randomness and instability,

which is easily affected by the external environment. For

example, the tester’s skin, hair and sweat are also easily affected

by power frequency interference caused by the power system

(Han et al., 2015; Nougarou et al., 2019; Huang et al., 2021).

In addition, the position of the electrode patch too close will

also cause superimposed interference on the signal collected

by the adjacent electrode patch. According to the muscle and

skeletal structure of the human upper limbs, the flexion and

extension movement of the shoulder joint mainly relies on the

anterior deltoid and posterior deltoid. In detail, the elbow joint

corresponds to the biceps brachii and triceps brachii, and the

wrist joint depends on the extensor carpi radialis and flexor

carpi radialis. Therefore, the sEMG signals of six muscles, which

includes the anterior deltoid, posterior deltoid, biceps brachii,

triceps brachii, extensor carpi radialis and flexor carpi radialis

need to be collected. Based on this, how to filter the noise

becomes the primary task after the signal acquisition. The energy

of the sEMG signal is higher than the level of electronic noise,

and the frequency range is between 0 and 500 Hz, mainly

distributed between 50 and 150 Hz. The lowest frequency of the

sEMG signal is 20 Hz. This article uses a band-pass filter with

a low cut-off frequency of 20 Hz and a high cut-off frequency

of 500 Hz to filter out some of the noise factors during signal

acquisition. In addition, the commonly used power frequency

interference is set as 50 Hz, which is within the range of the

available signal energy concentration, therefore, a 50 Hz notch

filter is used to eliminate power frequency interference. Besides,

Figures 2A,B show that the raw sEMG signals and joint angle

collected in 60 s, specifically, the sampling frequency of Biopac

system and IMUmodule are 2 kHz and 100 Hz respectively, that

is to say, the sampling time of Biopac system and IMU module

are 0.0005 s and 0.01 s, respectively. To obtain sEMG signals

and joint angle, in this experiment, a healthy male (27 years old,

182 cm, 80 kg) volunteered for upper limb flexion and extension

exercises in the sagittal plane.

Through the above-mentioned filtering steps, the sEMG

signal after the corresponding noise filtering can be obtained.

However, the amplitudes of sEMG signals are random in nature,

and the signal vibrates very frequently at the zero point Zhang

et al. (2012). Therefore, to more clearly present the changing

process of the amplitude, the following full-wave rectification

technology is exploited to process sEMG signals.

sEMGrec(n) = |sEMG(n)| (1)

where sEMG(n) is the original sEMG signal, and is the sEMG

signal after full-wave rectification. By comparing the sampling

rate of the actual joint angle signal, it can be seen that the

sampling rate of the sEMG signal collected in the experiment is

too large, so this article performs sub-sampling on the obtained

sEMG signal,

sEMGss(n) =
1

N
6nN
i=nN−N+1|sEMG(i)| (2)

where N is the number of sampling times of the sEMG

signal, and is the Nth sEMG signal after sub-sampling. After

digital filtering, full-wave rectification and sub-sampling, the

envelop of the sEMG signals still vibrate very much. Generally,

a low-pass filter such as Butterworth or Bessel filters can be

employed to smooth the envelope of the sEMG signals Zhang

et al. (2012). Furthermore, in view of the outward manifestation

of the muscle contraction such as joint angle changing presents

low-frequency characteristics, the following first- order low-pass

Butterworth filter with cut-off frequency 5 Hz is exploited to

filter the high frequencies.

|H(w)|2 =
1

1+ ( wwc
)2n

(3)

where n = 1 is the order of the filter and wc = 5 Hz is

the cutoff frequency. Integrating all the above-mentioned signal

processing processes, the processed sEMG signal can be finally

obtained as shown in Figure 3.
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FIGURE 2

The acquisition of the multi-channel sEMG signals and multi-joint angles, (A) the original sEMG signals of the upper limbs, (B) the movement

angles of the three joints of the upper limbs.

FIGURE 3

The sEMG signals of the upper limb after processing.

2.2. Construction of the fuzzy neural
network

The fuzzy neural network structure combines fuzzy

inferencemechanism and neural network prediction techniques.

The structure of a fuzzy neural network includes an input layer,

a membership function layer, a fuzzy rule layer and an output

layer. Each layer has several neuron nodes, and adjacent nodes

are connected by a certain weight ratio. The input and output

nodes of the neural network are used to realize the input and

output signals of the system. The hidden nodes represent the

membership function and fuzzy rules.

The input of the adaptive neural network structure is the

sEMG signal obtained from the signal processing link. The input

data of the specific model is as follows:

x = [x1, x2, · · ·, xt], t = 10000 (4)

Among them x is the processed muscle sEMG signals

measured within 100s. In this paper, the three joints measured

by the angle sensor are used as the expected output of the

model to compare the prediction results of the adaptive fuzzy

neural network (AFNN) model to further verify the reliability

of the prediction model. The actual three joints measured are as

follows:

θact = [θ1, θ2, · · ·, θt], t = 10000 (5)

where θact is the actual three joints measured in 100 s, and

the sampling frequency is 100 Hz.

The established fuzzy neural network model is as follows:

y = 6L
j=1fjφj(

‖x− µj‖

σj
) (6)

where φj is the membership function set of the input

variables x, µj is the center of the membership function, σj is the

variance vector of the membership function, and fj is the weight

of the membership function φj.

This paper selects the Gaussian function when the prediction

result is optimal as the center of the membership function. The

specific mathematical expression of the membership function is

as follows:

φj = e
−(

xi−µij
σi j

)2
(7)

and

µij =
1

1+ e
(
bijxij+c2ij

σi j
)

(8)
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Combining the above formulas, the AFNN model can be

expressed in the following form:

y =
6L
j fj5

nj
i e

−(
xi−µij

σij
)

6L
j 5

nj
i e

−(
xi−µij

σij
)

(9)

where 1 ≤ nj ≤ N is the dimension of the membership

function φj,N is the dimension of the input variable, and L is the

number of nodes in the fuzzy rule layer of the neural network.

AFNN model usually combines the membership function in the

model into fuzzy rules. The Takagi-Sugeno (T-S) fuzzy model

is a nonlinear model with strong adaptive ability composed of

fuzzy inference and fuzzy rules. The fuzzy regular expression is

as follow:

RL : if x1 = A1l, x2 = A2l, · · ·, xk = Akl, then yl = P0l

+P1lx1 + · · ·,+PMlxM (10)

where AMl is the fuzzy set of the fuzzy neural network

system; PMl is the parameter of the fuzzy system; yl represents

the output result obtained by the fuzzy rule.

2.3. Active movement intention
recognition

Using MATLAB2016a simulation software, the simulation

experiment of AFNN prediction model algorithm is carried out

based on the sEMG signals of the human upper limbs and the

angle measurement data of joints, and obtain the comparison

between the predicted value and the actual value of the joints,

which is shown in Figure 4.

To verify the feasibility and validity of the proposed

model, the root mean square error (RMSE) and coefficient of

determination (R2) are exploited to quantify the accuracy of the

model. Where, the RMSE can be computed as

RMS =

√

√

√

√

1

�

�
∑

1

(θai − θei ) (11)

where � is the total number of samples, θai is the collected

joint angle by IMU system at ith, and θei is the estimated

angle by CNN model at ith. The RMSE directly compares the

estimated angle with the actual angle, which can intuitively

reflect the estimation accuracy of the model. Furthermore, R2

can be calculated as follows:

R2 = 1−
Var(θa − θe)

Var(θa)
(12)

where θa the collected actual joint angle by IMU system,

θe is the CNN model estimation, and Var(·) is the variance of

the sample. Different from the RMSE, R2 is more robust to the

numerical range of labels. The closer R2 is to 1, the better the

model accuracy, and the R2 < 0 means that the model error is

higher than the variance of the target value.

It can be seen from Figure 4A that the AFNN can be

effectively used to estimate the shoulder joint angle. Although

there are certain degree of deviations at 15, 20, and 27 s,

the overall predicted trend of the shoulder joint conforms to

the actual shoulder joint movement angle. The RMSE and R2

of the shoulder joint are calculated to be 4.8393 and 0.9883,

respectively, which infers that AFNN can accurately estimate the

angle of the shoulder joint. Furthermore, Figure 4B shows the

elbow joint estimation results. It can be seen that the AFNN can

also accurately estimate the elbow joint angle. The RMSE and R2

of the elbow joint are 8.6652 and 0.9751, respectively. It is worth

noting that the valley value cannot reach the actual situation and

the peak fluctuation situation occurs. This is because the elbow

reached a critical range, themuscles may occur tremors resulting

in increased estimation error. As displayed in Figure 4C, the

estimation error of the wrist joint is relatively large, especially

at the wave trough. Moreover, the RMSE and R2 of the wrist

joint are 10.8265 and 0.9554, respectively, which proves that the

AFNN can still be used to estimate the angle of the wrist joint.

Based on the above-mentioned intention recognition results

for the three joints of the upper limbs, it can be seen that

the proposed AFNN algorithm is relatively accurate for the

intention recognition of the upper limbs. The effective control

of the upper limb rehabilitation robot is realized by designing

a human-machine interaction controller to provide patients

with a safe rehabilitation training environment. However, in

order to realize human-machine interaction, high-precision

intention recognition methods are indispensable. Therefore, the

fuzzy neural network motion intention recognition algorithm

constructed in this paper lays an algorithm framework for the

design of interactive controllers.

3. Human-machine interaction
controller based on ZNN and NSZNN

In this section, based on Lagrangian dynamics and the

intention of active movement of the upper limb shoulder, elbow

and wrist joints, a human-machine interaction controller is

designed to effectively control the upper limb rehabilitation

robot. Under the premise of human-machine information

interaction, rehabilitation robots can drive patients to perform

rehabilitation training. Recently, due to the conspicuous

performances like adaptivity, distributed storage function, and

parallel computing schemes, zeroing neural network-based

(ZNN-based)models with superior robustness and effectiveness,

which can be seen as a special case of recurrent neural network

(RNN), have been widely utilized to solve zero finding problems

(Jin et al., 2016, 2017, 2018, 2019; Sun et al., 2020, 2022).
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FIGURE 4

Comparison of predicted and actual values of the upper limb multi-joints, (A) shoulder joint, (B) elbow joint, and (C) wrist joint.

FIGURE 5

Human upper limb skeleton.

Based on the fuzzy neural network motion intention recognition

algorithm in Section 2, a ZNN-based controller is designed to

realize the control of the upper limb rehabilitation robot without

noise interference. Under the noise interference, to eliminate the

noise interference of the upper limb rehabilitation robot in the

actual rehabilitation training environment, a noise-suppressing

zeroing neural network (NSZNN) model is designed to control

the upper limb rehabilitation robot. The human upper limb

skeleton diagram is displayed in Figure 5.

The specific mathematical expression of the Lagrangian

dynamics model of the upper limbs is:

M(θ)θ̈ + C(θ , θ̇)θ̇ + G(θ) = τa (13)

where M(θ) is the inertial matrix, C(θ , θ̇)is the centrifugal

force and Coriolis force matrix, G(θ) is the gravity term matrix,

θ̇ is the angle of the three joints of the upper limb, θ̈ is the

angular acceleration of the three joints of the upper limb, τa is

the joint torque of the three joints during exercise. Based on the

Lagrangian dynamics model (Equation 13) of human-machine

coupling and the active movement intention of the upper limb, a

human-machine interactive controller is designed to effectively

control the upper limb rehabilitation. Under the premise of

human-machine information interaction, rehabilitation robots

can drive patients to perform rehabilitation training. The details

of technical flowchart can be seen in Figure 6.

The control goal of the upper limb rehabilitation robot

is to ensure that the error tends to zero. That is, the actual

trajectory of the upper limb rehabilitation robot is close to the

desired trajectory, and the error between the actual trajectory

and the desired trajectory is close to zero. Based on the above

analysis, the upper limb control problem is transformed into

an time-varying zeroing finding problem, and the mathematical

expression is as follows:

f (χ(t), t) = 0 (14)

where f (χ(t), t) ∈ Rn is a nonlinear mapping function.

For ∀t ∈ [0,+∞), there is a corresponding χ(t) ∈ Rn.

Assuming that the theoretical solution is χ∗(t) at this time, there

is f (χ∗(t), t) = 0 . At the same time, in order to ensure that

the error function e(t) of the model converges to zero and χ(t)

approaches its theoretical solution χ∗(t), the key idea of the

ZNN model is to establish the following error function:

e(t) = f (χ∗(t), t)− f (χ(t), t) = 0 (15)

In order to ensure the error function (Equation 15)

converges to zero, that is, at this time χ(t) converges to

its theoretical solution x∗(t), the zeroing dynamic model is

established as:

ė(t) = −γ e(t) (16)

where γ as a positive real number, which can manually

control its convergence rate.
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FIGURE 6

Technical flowchart of closed-loop control system.

Suppose χ(t) is a state variable, u(t) is a control input, and

e(t) is an output of the nonlinear system. The (14) can be defined

as the following classical nonlinear system:

{

χ̇(t) = u(t)

y(t) = f (χ(t), t) = −e(t)
(17)

At this time, the time-varying controller can be obtained by

analyzing and calculating (16) and (17) to ensure that the error

function at this time converges to zero. Combining the error

function with the zeroing neural dynamic model can get the

following equation:

Z(χ(t), t)χ̇(t) = −[γ f (χ(t), t)+
∂f (χ(t), t)

∂t
] (18)

where Z(χ(t), t) is a full rank matrix. Since the ZNN

model cannot effectively suppress the noise interference in the

rehabilitation process, and the integration technique is usually

used in the control theory to deal with the noise interference,

this paper introduces the integral term for (16) to obtain the

following noise-suppression zeroing neural network (NSZNN)

model:

ė(t) = −γ e(t)− λ

∫ t

0
e(s)ds (19)

where γ > 0, λ > 0, the convergence speed and noise

suppression ability can be changed by adjusting the value of

the two parameters. In fact, from a control viewpoint, the

ZNN controller can be regarded as a general proportional-

derivative (GPD) controller, and the NSZNN controller can

be seemed as a general Proportional-integral-derivative (GPID)

controller, which leverages time-derivative information for

effective prediction and error-integration information for noise

elimination. When the error function e(t) satisfies the condition

of Equation (19), the state variable χ(t) of Equation (17)

globally/exponentially converges to its theoretical solution x∗(t),

the NSZNN controller in the formula (Equation 17) can be

expressed as follows:

u(t) = −Z−1(χ(t), t)[γ f (χ(t), t)+λ

∫ t

0
f (χ(s), s)ds+

∂f (χ(t), t)

∂t
]

(20)

The dynamic model of the upper limb is established as

follows:

M(qRi )q̈Ri + C(qRi , q̇Ri )q̇Ri + G(qRi ) = τi (21)

where M(qRi ) represents the mass matrix, C(qRi , q̇Ri )

represents the centripetal force and Coriolis force matrix, and

G(qRi ) represents the gravity matrix. Combine the upper limb

dynamics model with the ZNN controller and the NSZNN

controller to obtain the upper limb controller is:

τZNNi = θ̇di + γ (θdi − θi) (22)

and

τNSZNNi = τZNNi + λ6k
j=0(θ

d
i − θi) (23)

where θdi is the desired action angle, and θi is the actual

action angle.

4. Experimental analyzes

In this section, some experimental examples simulate

the human-machine interaction control of the upper limb

rehabilitation robot. The implementation process of the human-

machine interaction control for upper limb rehabilitation robot

is displayed in Table 1. First, based on the sEMG signals of

multiple muscles of the upper limbs, the multi-input multi-

output AFNN model is used to identify the active movement

intention of the human upper limbs shoulder joints, elbow joints
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TABLE 1 The implementation process of the human-machine

interactive control for upper limb rehabilitation robot.

Step 1 Multi-channel sEMG signal and multi-joint angle acquisition

Step 2 Processing of the raw sEMG signals (full-wave rectification, sub-sampling)

Step 3 Identify subjects’ active motion intentions

Step 3.1Input: the processed sEMG signals x = [x1 , x2 , ...xt]

Step 3.2data normalization

Step 3.3Building fuzzy neural network: y = 6L
j=1fjφj(

‖x−µj‖

σj
)

Step 3.4Training network: while (i = 1, i<=maxstep & E>1e-10, i++ )

Modify the parameters (fj , bi,j , ci,j) in network

end while

Step 3.5Data inverse normalization

Step 3.6Output: estimated multi-joint angle y =
6L
j fj5

nj
i e

−(
xi−µij

σij
)

6L
j 5

nj
i e

−(
xi−µij

σij
)

Step 4 human-machine interaction control

Step 4.1Desired trajectory: subjects’ motion intention y

Step 4.2Building the Lagrangian dynamics model of the upper Limb:

M(θ)θ̈ + C(θ , θ̇)θ̇ + G(θ) = τa

Step 4.3Design the human-machine interaction controller:

τNSZNN
i = θ̇d

i + γ (θd
i − θi)+ λ6k

j=0(θ
d
i − θi)

Step 4.4Determination of parameters γ > 0, λ > 0

Step 4.5Solving nonlinear dynamic system with controller τNSZNN
i

if ||e||2 < µ

Perform the next step (Step 4.6)

else

Return to the previous step (Step 4.4)

end

Return

Step 4.6control sequence τNSZNN
i and the actual state trajectory θi

and wrist joints. Second, the angle information of the different

joints is calculated under the active movement intention based

on the active movement intention and the human upper limb

Lagrangian dynamic model. Besides, to verify the feasibility and

efficiency of the proposed controller, some numerical results are

described in this section. It is worth noting that the parameters of

various models are set as follows. The parameters PID controller

are set to kp = 10, Ki = 0.5 and Kd = 0.2, respectively; The

parameters of the NSZNN controller are set to γ = 100 and

λ = 200, respectively. Similarly, The parameter of the ZNN

controller and GNN controller are set to γ = 100.

4.1. Experimental results without noise

In the absence of noise interference, the ZNN controller is

used to effectively control the upper limb rehabilitation robot,

and the NSZNN controller is used to effectively control the

upper limb rehabilitation robot with different noises. In order to

better show the performance of the model, the PID controller

(), GNN controller (Zhang et al., 2009), ZNN controller and

NSZNN controller are utilized to monitor the upper limb

rehabilitation robot. By comparing the experimental errors

of the four controllers, it shows that the NSZNN controller

has the feasibility and superiority when used to control the

upper limb rehabilitation robot. In addition, further research

has been conducted on the adjustable parameters of the

NSZNN controller, which achieves the characteristics of manual

regulation. Under the same initial parameters, the designed

NSZNN controller, ZNN controller, GNN controller and PID

controller are exploited to monitor the upper limb shoulder,

elbow, and wrist joint. The experimental results are shown in

Figure 7.

It can be seen from the above experimental results that

because of the initial value setting, the designed NSZNN

controller, ZNN controller, GNN controller and PID controller

all have large deviations within 0.5 s at the beginning, but as

time reaches 1 s, the four kinds of controllers can track the

trajectory of the three joints of the upper limbs. In addition,

the average RMSEs of the PID controller, GNN controller, ZNN

controller, and NSZNN controller are 0.0084, 0.0053, 0.0024,

and 0.0008, respectively. It proves the total effect of the three

joints under the control of NSZNN controller is not much

different than that of the ZNN controller. Beyond that, the

NSZNN controller and the ZNN controller have similar effects

on the control of the three joints, and the RMSE value is

much smaller than the GNN controller and PID controller.

The accuracy of the NSZNN controller is increased by more

than 85% and 90%compared with GNN controller and PID

controller, respectively.

In the actual rehabilitation training process, the

environment and other factors often cause corresponding

interference to the rehabilitation process. In order to simulate

the actual rehabilitation training process, constant noise, linear

noise, and random noise are added to simulate the interference

source.

4.2. Experimental results with constant
noise

With the constant noise, the control effect comparison

diagram of the NSZNN controller, ZNN controller, GNN

controller and PID controller on the three joints of the upper

limb is shown in Figure 8.

Through the analysis of the above experimental results,

it can be seen that the NSZNN controller, ZNN controller,

GNN controller and PID controller with constant noise can

achieve stable control of the three joints of the upper limb,

which is consistent with the actual range of motion of the

limb. But in the comparison of the angle of the shoulder joint,

it can be clearly found that there are significant fluctuations
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FIGURE 7

Comparison of the upper limb multi-joint angles without noise, (A) shoulder joint, (B) elbow joint, and (C) wrist joint.

FIGURE 8

Comparison of the upper limb multi-joint angles with constant noise, (A) shoulder joint, (B) elbow joint, and (C) wrist joint.

in the GNN controller and PID controller for shoulder joint

control at 0–5 s. However, as time goes by, the fluctuations

gradually decrease and are consistent with the actual measured

movement angle. Although the movement trend is in line with

the actual movement trend of the shoulder joint, the GNN

controller and PID controller has an obvious peak at the peak

point; the designed NSZNN controller and ZNN controller

can achieve accurate control of the shoulder joints, and there

is no initial value fluctuation under GNN control, and the

entire control process is relatively stable. And compared with

ZNN controller, the NSZNN controller has the best tracking

effect. Four controllers are relatively stable for the control of

the elbow joint and the wrist joint, but there is a certain

degree of excessive peak value under the GNN controller

and PID controller. It can be clearly seen in the comparison

chart of the control effect of the wrist joint that the NSZNN

controller and ZNN controller, which can accurately track the

desired trajectories. In addition, the NSZNN controller may

perform better than the others. In fact, the GNN controller

and PID controller has an obvious deviation. That is, the GNN

controller and PID controller may not solve the problem with

constant noise.

4.3. Experimental results with linear noise

Under the linear noise circumstance, the numerical results

are shown in Figure 9. It can be seen that ZNN controller,

GNN controller and PID controller have weaker ability to

suppress linear noise, and both have obvious deviations. The

NSZNN controller performs relatively stable during the entire

trajectory tracking process. Through the comparison of the

lower shoulder joint of the four controllers, it can be directly

seen that the movement trend of the lower shoulder joint

under GNN controller and PID controller is consistent with the

actual range of shoulder joint motion. However, there is a large

deviation in the tracking process, compared with the peak value

of the shoulder joint with ZNN controller. The overall trend is

consistent with the actual range of movement of the shoulder

joint, and the NSZNN controller can track the desired trajectory

more stably throughout the process. From the enlarged diagram

of different figures, there is no large deviation compared to

the ZNN controller and the GNN controller, and the trajectory

is accurately achieved track. It can be found that the GNN

controller and PID controller also exhibits a large deviation

and the deviation becomes larger and larger over time, while
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FIGURE 9

Comparison of the upper limb multi-joint angles with linear noise, (A) shoulder joint, (B) elbow joint, and (C) wrist joint.

FIGURE 10

Comparison of the upper limb multi-joint angles with random noise, (A) shoulder joint, (B) elbow joint, and (C) wrist joint.

the overall tracking effect of ZNN controller is relatively stable.

Although the peak value is too high, the NSZNN controller

performs best. Under the premise of accurate tracking, the whole

process is relatively smooth, and there is no large degree of

deviation. In other words, the NSZNN controller can effectively

suppress linear noise, which infers that the NSZNN controller

may be exploited to actual rehabilitation.

4.4. Experimental results and with
random noise

Under the random noise situation, the numerical results are

shown in Figure 10. Although the four controllers can achieve

stable tracking of the three-joint trajectory under random

noise, it shows that the four controllers have a certain degree

of suppression of random noise, it can be seen from the

control effect of the shoulder joint that there is a small degree

of excessive peak value under the GNN controller and PID

controller. The ZNN controller and the NSZNN controller

are relatively stable, which can be clearly found through the

enlarged diagram that NSZNN controller and ZNN controller

have higher accuracy and stability than GNN controller and

PID controller. The NSZNN controller performs better than the

ZNN controller under the random noise case. On the whole, the

four controllers have achieved relatively stable tracking error for

the elbow and wrist joints, and there is no significant fluctuation

in the whole process. However, it can be clearly seen from the

detailed enlarged view that the NSZNN controller and the ZNN

controller can achieve trajectory tracking more accurately than

GNN controller and PID controller, especially in the first 5 s, the

NSZNN controller and the ZNN controller are more stable and

the GNN controller and PID controller has a certain fluctuation.

4.5. Discussions and comparisons of
di�erent controllers

By comparing the angle tracking effects of the NSZNN

controller, the ZNN controller, the GNN controller and the

PID controller on the upper limb without noise, it can be seen

that the NSZNN controller, ZNN controller, GNN controller

and PID controller can complete relatively stable trajectory

tracking. In order to simulate the interference in the actual limb

rehabilitation training process, constant noise, linear noise, and

random noise are added to simulate interference sources. The
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TABLE 2 Comparison of three-joint RMSEs under di�erent noises.

PID Controller GNN Controller ZNN Controller NSZNN Controller

Shoulder Elbow Wrist Shoulder Elbow Wrist Shoulder Elbow Wrist Shoulder Elbow Wrist

Without noise 0.0113 0.0055 0.0085 0.0080 0.0025 0.0055 0.0034 0.0011 0.0026 0.0007 0.0009 0.0009

Constant noise 0.0739 0.0521 0.0652 0.0645 0.0489 0.0605 0.0184 0.0143 0.0179 0.0072 0.0045 0.0015

Linear noise 0.4531 0.4558 0.4552 0.4483 0.4357 0.4478 0.1278 0.1238 0.1276 0.0721 0.0040 0.0012

Random noise 0.0421 0.0312 0.0352 0.0385 0.0228 0.0342 0.0109 0.0067 0.0106 0.0053 0.0046 0.0016

data in Table 2 further show that the four kinds of controllers

have a certain degree of suppression of the three kinds of

noises. Both the NSZNN controller and the ZNN controller

have better noise-tolerant ability than the GNN controller and

the PID controller, and the NSZNN controller has the best

control effect. Among the three types of noise, the linear noise

fluctuates greatly for the ZNN controller, the GNN controller

and PID controller, while the overall performance of the NSZNN

controllers are relatively stable. At this time, the RMSE of the

ZNN controller is reduced by 2–3 times and 3–4 times compared

with the GNN controller and PID controller, respectively.

Beyond that, The NSZNN controller is increased by 2–10 times

on the basis of the ZNN controller, which shows the excellent

noise-suppression ability of the NSZNN controller. In addition,

the NSZNN controller and the ZNN controller can achieve

accurate trajectory tracking with the constant/random noise.

The GNN controller and PID controller have relatively large

deviations, and the noise suppression effect is worse than the

traditional ZNN controller and the NSZNN controller. In other

words, in practical application, the ZNN controller and the

NSZNN controller can be used directly, which might have good

noise-suppression ability. It may convenient for engineering

implementation and clinical application.

Long short term memory (LSTM) network is an important

neural network, which can be called as a recurrent neural

network (RNN) (Bao et al., 2021). To demonstrate the

effectiveness and superiority of the proposed NSZNN controller,

numerical results are shown in Figure 11. The LSTM model

consists of three LSTM layers, a dropout layer with 0.1

probability, five fully connected layers, and a softmax layer.

The maximum number of iterations is set to 1,000. Figure 11

represent the shoulder joint angle, elbow joint angle and

wrist joint angle of upper limb under the random noises

via the NSZNN controller and the LSTM network controller,

respectively. It can be inferred that the investigated NSZNN

controller can effectively suppress the interference of random

noises. Beyond that, the convergence and robustness of the

NSZNN controller are superior to the LSTM model with

random noise interference. In addition, to further compare

the convergence ability of NSZNN controller and LSTM with

different noises, the RMSE of NSZNN controller and LSTM

model with different noises are calculated in this subsection, and

the results are listed in Table 3. It can be seen from Table 3 that

the NSZNN controller has better convergence performance than

the LSTMmodel with different noises. Furthermore, the RMSEs

of the NSZNN controller and the LSTM model with linear

noise are correspondingly increased, which proves that the linear

noise has the strongest interference on the model. However,

the proposed NSZNN controller can still effectively suppress

the interference of linear noise. The RMSEs of three joints are

0.0721, 0.0040, and 0.0012, respectively. It further illustrates the

convergence and robustness of the developed NSZNN controller

are superior to other traditional models.

5. Conclusions and future work

Aiming at the design of the human-machine interaction

controller of the upper limb rehabilitation robot, this paper

establishes a multi-input and multi-output AFNN model based

on the sEMG signals to effectively predict the joint angles of

the upper limb shoulder, elbow and wrist joints. Furthermore,

to avoid secondary injury during the rehabilitation training

process, a human-machine interaction controller based on

the intention of human active movement is designed, which

includes the ZNN controller and the NSZNN controller. It

builds a safe, active and compliant rehabilitation training

environment for patients. Experimental results prove that

the ZNN controller is effective in tracking the real-time

expected trajectory of the human upper limb shoulder joint,

elbow joint and wrist joint without noise circumstance. In

addition, considering that there are interfering factors such

as joint damping, muscle contraction, and external friction

in actual rehabilitation training, which brings the risk of

secondary injury to the patient’s rehabilitation training. The

NSZNN controller is designed, which provides patients with a

safe rehabilitation training environment. Experimental results

demonstrate that the NSZNN controller is still feasible,

effective and superior under different noise interference. Besides,

the developed ZNN-based models will be exploited to the

performance of the related applications, for instance, lower

limb rehabilitation robot (Shi et al., 2020), industrial robot (Li

et al., 2017), and redundant manipulators (Xie et al., 2022)

and so on.
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FIGURE 11

Compare NSZNN with LSTM of the multi-joint angles with random noise, (A) shoulder joint, (B) elbow joint, and (C) wrist joint.

TABLE 3 The RMSEs of the LSTM and the NSZNNmodels with di�erent noises.

Constant noise Random noise Linear noise

Shoulder Elbow Wrist Shoulder Elbow Wrist Shoulder Elbow Wrist

LSTM 0.1222 0.1031 0.1525 0.1497 0.1953 0.2671 0.4269 0.5880 0.6825

NSZNN 0.0072 0.0045 0.0015 0.0053 0.0046 0.0016 0.0721 0.0040 0.0012
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