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Anomaly detection is a classical problem in computer vision, namely the

determination of the normal from the abnormal when datasets are highly

biased toward one class (normal) due to the insufficient sample size of the

other class (abnormal). We introduce a novel model that utilizes two decoders

to share two encoders, respectively, forming two sets of network structures

of encoder-decoder-encoder called EDE, which are used to map image

distributions to predefined latent distributions and vice versa. In addition, we

propose an innovative two-stage training mode. The first stage is roughly the

same as the traditional autoencoder (AE) training, using the reconstruction

loss of images and latent vectors for training. The second stage uses the idea

of generative confrontation to send one of the two groups of reconstructed

vectors into another EDE structure to generate fake images and latent vectors.

This EDE structure needs to achieve two goals to distinguish the source of the

data: the first is to maximize the difference between the fake image and the

real image; the second is to maximize the difference between the fake latent

vector and the reconstructed vector. Another EDE structure has the opposite

goal. This network structure combined with special training methods not

only well avoids the shortcomings of generative adversarial networks (GANs)

and AEs, but also achieves state-of-the-art performance evaluated on several

publicly available image datasets.

KEYWORDS

anomaly detection, autoencoder (AE), unsupervised learning, adversarial network,
image identification

1. Introduction

Anomaly detection is an important data mining method, which plays a very
important role and significance in understanding data mining data. As early as Hawkins
(1980) gave an accurate definition of outliers, that is: “Outlier data is so obviously
different from most observed data that it is suspected that it is sample data generated
by different mechanisms.” Various application scenarios such as health detection
systems, intrusion detection systems, bank risk assessment systems, and industrial fault
monitoring systems will generate a large amount of high-dimensional complex data.
Different from ordinary data mining, abnormal points or abnormal objects often carry
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more important and valuable information. For example,
intrusion detection behavior in network security (Kwon et al.,
2019), cash-out fraud in electronic digital payment systems
(Abdallah et al., 2016), disease identification in medical field
(Schlegl et al., 2019), and dangerous behavior detection in
surveillance systems (Kiran et al., 2018). In the practical
application of these systems, the occurrence of abnormal data
means that there may be unfavorable situations, and it is
necessary to conduct reasonable analysis and research on
abnormal data in time to prevent and solve problems.

Over the past few years, many approaches have been
developed in the field of anomaly detection. The most
commonly used techniques include proximity-based and
cluster-based techniques. The proximity measure of two data
objects refers to a function of the proximity between the
corresponding attributes of the two data objects. Distance
is the most widely used and earliest proximity measure, so
there are anomaly detection methods that define anomalies
by the distance of the nearest neighbors. In addition to
distance, another classic proximity measure is density, which
was proposed by Breunig et al. (2000) to measure the degree
of anomaly with the local outlier factor (LOF) for anomaly
detection. Kernel density estimation (KDE) (Rosenblatt, 1958)
is a common non-parametric method for detecting outliers.
Latecki et al. (2007) proposed an outlier detection method using
a kernel function. The outlier detection process is performed
by comparing the local density of each point with the local
density of its neighbors. In addition, most traditional anomaly
detection techniques belong to the category of unsupervised
learning, which mainly considers the distribution characteristics
of the data. This is very similar to the working principle of the
clustering algorithm, so the improved clustering algorithm can
also be used as a means of anomaly detection. The main idea is to
identify anomalies by comparing the differences between objects
and clusters. Many related scholars have researched many
classical clustering-based anomaly detection methods, such as
DBSCAN (Ester et al., 1996), CLARANS (Ng and Han, 1994),
CHAMELEON (George et al., 1999), BIRCH (Zhang et al.,
1996), STING (Wang et al., 1997), WaveCluster (Sheikholeslami
et al., 1998), CLIQUE (Agrawal et al., 1998), and FindCBOLF
(He et al., 2003).

Due to the curse of dimensionality, many traditional
anomaly detection methods are weak in modeling complex
high-dimensional distributions. With the rapid development
of deep learning, many scholars have developed methods
to combine it with anomaly detection. The core idea of
the one-class model coincides with the purpose of anomaly
detection, that is, in the training phase, the model only
learns the distribution characteristics of normal data. After
the training is completed, the model identifies all data
that does not belong to the normal class as abnormal
data. Classic examples are one class SVM (Schölkopf et al.,
1999) and support vector data description (SVDD) (Tax and

Duin, 2004). With the development of subsequent research,
deep anomaly detection models represented by autoencoder
(AE) (Zhou and Paffenroth, 2017) and generative adversarial
networks (GANs) have become mainstream methods (Kwon
et al., 2019), but they all have their own limitations.
AE-based anomaly detection models only focus on image
reconstruction and cannot identify small anomalies, resulting
in poor anomaly detection results. GAN-based anomaly
detection models are generally difficult to train and difficult to
converge.

In this paper, we propose a new method named anomaly
detection with shared AEs based on the AE architecture (Zhou
and Paffenroth, 2017), whose learning is inspired by GANs. Our
core idea is to perform adversarial training on the proposed EDE
structure, so that it learns to amplify the reconstruction error
of abnormal data, and takes into account the reconstruction
error of the latent vector. Compared with the method there, the
performance is improved and stability is obtained. The main
contributions of this paper are as follows:

• We propose an encoding-decoding-re-encoding network
structure based on a shared AE, which takes into account
both the reconstruction loss of the image and the
reconstruction loss of the latent vector. This enables the
model to find more anomalies.
• We also propose a two-stage training method that

avoids the shortcomings of AEs and GANs. The
second stage of adversarial training makes the training
difficulty of the model lower, and it has better anomaly
detection performance.

2. Related work

We emphatically introduce various anomaly detection
methods based on two deep models.

2.1. Autoencoders approaches

Deep AEs play an important role in anomaly detection
methods (Zhou and Paffenroth, 2017). Classic examples are
AE, variational AE (VAE) (Kingma and Welling, 2013), and
deep convolutional AE (DCAE) (Masci et al., 2011). Since these
models only use normal samples for training, the reconstruction
error of abnormal samples is much larger than that of normal
samples, so as to achieve the purpose of abnormal detection. The
abnormal samples can be detected by setting the reconstruction
error as the abnormal score. In addition, there have been
many recent advances in the research of anomaly detection
combined with AEs. Fan et al. (2020) proposed a novel hybrid
unsupervised method, which first integrated a convolutional
AE and Gaussian process regression to extract features and
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FIGURE 1

GANomaly architecture illustrating the information flow.

remove anomalies from noisy data. Puzzle-AE (Salehi et al.,
2020) combines the idea of Puzzle-solving with the AE so that
the AE will learn more meaningful features during training
to avoid overfitting. Shvetsova et al. (2021) proposed a new
and powerful method for image anomaly detection. It relies
on classical AE methods and a re-designed training pipeline
to handle complex images, as well as robust methods for
computing image anomaly scores.

2.2. GAN-based anomaly detection

Generative adversarial networks (GANs) (Goodfellow et al.,
2014) is a deep learning model that produces fairly good
outputs through the mutual game learning of two modules
including the generative model and discriminative model in the
framework. The combination of GAN and anomaly detection
was first proposed by Schlegl et al. (2017). They train the
GAN using normal images and then use the test set for
validation after training. After inputting the test image into
the GAN, by comparing the difference between the test image
and the reconstructed image, it can be judged whether the
image is normal or abnormal, and the abnormal area can also
be judged. Akcay et al. (2019) proposed a network structure
called GANomaly (Rosenblatt, 1958) to improve the above
research. For abnormal data, the latent space vector obtained
by the GANomaly structure is quite different from the latent
space vector obtained after the first encoding, so that abnormal
samples can be detected. One-class novelty detection using gans
with constrained latent representations (OCGAN) (Perera et al.,
2019) uses a denoising AE model to reconstruct the latent
space vector and has better results after limiting the latent space
vector. Perceptual image anomaly detection (PIAD) (Tuluptceva
et al., 2019) proposes a new proximity metric that represents the
perceptual proximity between images and is robust. In addition,
this paper introduces a new method of choosing weights to make
hyperparameter tuning more convenient. In AnoNAGN (Chen
et al., 2020), a novel decoder-encoder framework is proposed to
achieve a higher stability and lower training loss by employing a
non-adversarial generative network.

3. Proposed method

3.1. Problem definition

We aim to train an unsupervised anomaly detection network
that is trained using only normal samples while being able to
distinguish between normal and abnormal samples when testing
the network. The formal definition of this problem is as follows:

We give a large training dataset D that only contains M
normal images, D = {x1, x2, ..., xM}, and a small testing
dataset D̂ containing M∗ both normal and abnormal images,
D̂ =

[(
x̂1, y1

)
,
(
x̂2, y2

)
, ...,

(
x̂M∗ , yM∗

)]
, where yi ∈ [0, 1]

denotes the image of label. In specific training, the size of the
training dataset needs to be much larger than the testing dataset
such that M � M∗.

Given a dataset, we first need to model D to learn its
manifold, and then identify abnormal samples in D̂ as outliers
during the inference phase. The model f learns the normal data
distribution and minimizes the output anomaly score A(x). For
any test image x̂, if its abnormal score is too high, it may be
judged as abnormal. The specific judgment criterion is based on
the threshold φ of the abnormal score. If A (x) > φ, the image
is judged as an abnormal image.

3.2. Network architecture

The GANomaly model (Rosenblatt, 1958) consists of four
network structures, which are two encoders, one decoder and
one discriminator, as shown in Figure 1. The model takes into
account the differences between latent vectors and performs
well in image anomaly detection, which makes many researchers
improve on this model (Perera et al., 2019; Tuluptceva et al.,
2019; Chen et al., 2020; Salehi et al., 2020; Shvetsova et al.,
2021). The most important framework of the model is two
encoders and one decoder, which are used to perform mutual
transformation between the image and the latent vector, so
as to identify abnormal data whose differences are amplified
during the transformation process. The discriminator is used to
distinguish the real image from the generated image.
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In fact, the most important process in the GANomaly model
is encoding, decoding, and re-encoding. Inspired by this, we
propose an EDE structure, which only contains two encoders
and one decoder. However, a single EDE structure needs to
repeatedly adjust the relevant parameters to achieve better
results, and it is difficult to meet the current needs of image
anomaly detection. So we add an additional decoder to the EDE
structure, and let the two decoders share the two encoders at
the same time, and finally form the model of two EDE network
structures, as shown in Figure 2.

Two of the encoders use a similar structure, with four
layers of convolutional layers. And the activation function
uses LeakyReLU except for the Tanh used in the last layer.
Some of the convolutional layers are followed by a batch
normalization operation. The two decoders are similar in
structure to the encoder except that each layer is replaced
by ConvTranspose and an additional batch normalization, as
shown in Figure 3.

3.3. Two-phase training

We propose a novel two-stage training method to achieve
good performance with the network structure. In the first
stage, we train two EDE structures to reconstruct images and
latent vectors. In the second stage, we train these two EDE
structures in an adversarial manner, where the purpose of
EDE2 is to try to fool EDE1, and the purpose of EDE1 is to
distinguish whether the data is real data or reconstructed data
from EDE2.

3.3.1. Phase 1: Reconstruction training
In the first stage, we need to train the EDE structure to

reconstruct the input image and latent vector. First, the input
image x is encoded by the encoder E1 and compressed into a
latent vector z. The latent vector z is sent to the two decoders
D1 and D2, respectively for decoding, and two reconstructed
images x1 and x2 are obtained. Finally, we send the obtained
two reconstructed images x1 and x2 to the encoder E2 for re-
encoding, and get two reconstructed latent vectors z1 and z2.
The training objectives of this stage are:

LEDE1 = α||x− x1||2 + β ||z − z1||2 (1)

LEDE2 = α||x− x2||2 + β ||z − z2||2 (2)

Where α, β are the weighting parameters adjusting the
impact of individual losses to the overall objective function.

3.3.2. Phase 2: Adversarial training
In the second stage, we exploit the adversarial idea to train

two EDE structures. The training goal of EDE1 is to distinguish
between real data and data from EDE2. EDE2 is just the opposite
and needs to deceive EDE1 as much as possible. First, the z2

obtained in the first stage is sent to the decoder D1 for decoding,
and a new reconstructed image x′1 is obtained. Similarly, we send
x′1 to the encoder E2 again to encode, and get a new latent vector
z′1. The training objectives of this stage are:

min
EDE2

max
EDE1

α
∣∣∣∣x− x′1

∣∣∣∣+ β
∣∣∣∣z − z′1

∣∣∣∣
2 (3)

FIGURE 2

Proposed architecture illustrating the information flow.
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FIGURE 3

The specific structure of the encoder (A) and decoder (B).

The respective loss functions of the two EDE structures are:

LEDE1 = − α
∣∣∣∣x− x′1

∣∣∣∣
2 − β

∣∣∣∣z − z′1
∣∣∣∣

2 (4)

LEDE2 = + α
∣∣∣∣x− x′1

∣∣∣∣
2 + β

∣∣∣∣z − z′1
∣∣∣∣

2 (5)

The parameters α and β are the same as those
expressed above.

3.3.3. Loss function
In our proposed structure, each EDE serves a dual purpose.

EDE1 needs to minimize the reconstruction loss of x and z in
phase 1. Meanwhile, EDE1 also needs to maximize the difference
between x and x′1, and the difference between latent vectors z and
z′1 in phase 2. The purpose of EDE2 in phase 1 is the same as that
of EDE1, both to minimize the reconstruction error of x and z.

But in phase 2, it is exactly the opposite of EDE1, which needs
to minimize the difference between x and x′1, and the difference
between z and z′1. The dual training objective for each EDE is a
combination of the above loss functions, where the proportion
of each part evolves over time:

LEDE1 =
1
n
(
α||x− x1||2 + β ||z − z1||2

)
−

(
1−

1
n

)
(
α
∣∣∣∣x− x′′1

∣∣∣∣
2 + β

∣∣∣∣z − z′′1
∣∣∣∣

2
)

(6)

LEDE2 =
1
n
(
α||x− x1||2 + β ||z − z1||2

)
+

(
1−

1
n

)
(
α
∣∣∣∣x− x′′1

∣∣∣∣
2 + β

∣∣∣∣z − z′′1
∣∣∣∣

2
)

(7)

Where n denotes a training epoch. The two-phase training
process is summarized in Algorithm 1.

Frontiers in Neurorobotics 05 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1046867
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-16-1046867 December 22, 2022 Time: 23:21 # 6

Jia and Liu 10.3389/fnbot.2022.1046867

3.3.4. Anomaly score
During the detection phase, our model uses the following

anomaly scores:

A
(
x̂
)
= ω1||z − z2||2 + ω2

∣∣∣∣z − z′1
∣∣∣∣

2

Where ω1 + ω2 = 1 are weight parameters, which can
adjust the ratio of true positives to false positives, thereby
adjusting the sensitivity. In practical applications, we can adjust
these two parameters to obtain anomaly detection results with
different sensitivities in one experiment. TheAlgorithm2 shows
the testing process of the model.

Input: Normal images Dataset

D = {x1, x2, ..., xM}, Number epochs

N, Weighting parameters α, β

Output: Trained EDE1, EDE2

E1, E2, D1, D2 ← initialize

weights

n ← 1

repeat

for m = 1 to M do

zm ← E1(xm)

x1
m ← D1(zm)

x2
m ← D2(zm)

z1
m ← E2(x1

m)

z2
m ← E2(x2

m)

x1
m
′
← D1(z2

m)

z1
m
′
← E2(x1

m
′)

LEDE1 ←
1
n
(
α
∣∣∣∣xm − x1

m
∣∣∣∣

2 + β
∣∣∣∣zm − z1

m
∣∣∣∣

2
)

−
(
1− 1

n
) (

α
∣∣∣∣xm − x1

m
′
∣∣∣∣

2+

β
∣∣∣∣zm − z1

m
′
∣∣∣∣

2
)

LEDE2 ←
1
n
(
α
∣∣∣∣xm − x1

m
∣∣∣∣

2 + β
∣∣∣∣zm − z1

m
∣∣∣∣

2
)

+
(
1− 1

n
) (

α
∣∣∣∣xm − x1

m
′
∣∣∣∣

2+

β
∣∣∣∣zm − z1

m
′
∣∣∣∣

2
)

E1, E2, D1, D2 ← update weights

using LEDE1 and

LEDE2

end for

n ← n+ 1
until n = N

Algorithm 1. Model training algorithm.

Input: Testing Dataset

D̂ = {
(
x̂1, y1

)
,
(
x̂2, y2

)
, ...,

(
x̂M∗ , yM∗

)
},

Threshold φ, Weighting

parameters ω1,ω2

Output: Prediction label of testing

dataset Dpre = {y1pre, y2pre, ..., yM∗pre}

for i = 1 to M∗ do

zi ← E1(xi)

x2i ← D2(zi)

z2i ← E2(x2i)

z′1i ← D1(z2i)

z′1i ← E2(z′1i)

A
(
x̂i
)
← ω1||zi − z2i||2 + ω2

∣∣∣∣zi − z′1i
∣∣∣∣

2
if A

(
x̂i
)
≥ φ then

yipre ← 1

else

yipre ← 0

end if

end for

Algorithm 2. Model testing algorithm.

4. Experiments

4.1. Datasets

In this section, we briefly introduce each
dataset used for evaluation. In Figure 4, some
representative examples from the considered dataset
are shown.

4.1.1. COIL-100
The COIL-100 dataset is a dataset composed of different

objects imaged at different angles in a 360◦ rotation. It contains
128 × 128 color images of 100 objects (each with 72 poses),
and 49,152 features (red, green, and 128 × 128 pixel value in
the blue channel).

4.1.2. MNIST
The MNIST dataset is very classic in the field of machine

learning. It consists of 60,000 training samples and 10,000 test
samples, each of which is a 28 × 28 pixel grayscale handwritten
digit picture. The complexity of the MNIST dataset is more
challenging than COIL-100.

4.1.3. fMNIST
fMNIST is an image dataset that replaces the MNIST

handwritten digits set. It is the same size and format as
the original MNIST, with 70,000 grayscale images of fashion
products, and the image size is 28× 28.

4.1.4. CIFAR-10
It is a set of color image data and is a commonly used

public benchmark dataset in the fields of machine learning and
computer vision. It contains 10 different categories of images,
each category contains 6,000 32 × 32 × 3 color images with
a total of 784 pixels. Among the many datasets for anomaly
detection, CIFAR-10 is the most challenging dataset due to its
content diversity and complexity.
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FIGURE 4

Representative images from four datasets. Each column presents the same class.

TABLE 1 Average receiver operating characteristic curve (ROC) area
under curve (AUC) for anomaly detection on fMNIST and COIL-100.

Model MNIST fMNIST COIL-100

GPND 0.932 0.933 0.979

OCGAN 0.977 0.924 0.995

PIAD 0.979 0.949 1.000

AnoNAGN 0.985 0.995 1.000

Proposed
method

0.992 0.997 1.000

Bold values indicate that this value is the highest.

4.1.5. CIFAR-100
This dataset is similar to CIFAR-10 and consists of 60,000

32 × 32 × 3 color images. The 100 classes in the CIFAR-100
are grouped into 20 superclasses. There are 600 images per class.
Each image comes with a “fine” label (the class to which it
belongs) and a “coarse” label (the superclass to which it belongs).
There are 500 training images and 100 testing images per class.

4.2. Experimental setup and evaluation
methodology

To test the proposed method, we use a well-accepted
anomaly detection method (Schlegl et al., 2017; Perera et al.,
2019; Tuluptceva et al., 2019; Chen et al., 2020): we use a one-
vs.-all protocol to treat a certain class in a multi-class dataset as
a normal class, then treat all other classes as anomalous classes,
and finally traverse all the classes in a loop. In the training
process, we only use the normal class data to train the model.
In the testing process, we mix the normal class data with the
abnormal class data as the test set. At the same time, we also
noticed that there are two methods of dividing the training set
and the test set in the literature.

(1) Use 80% of the normal class data for training and the
remaining 20% of the normal class data for testing. The

abnormal class test data are randomly selected, and their
number is the same as the 20% normal class data.

(2) Experiment using the training and test sets given by the
dataset. The training split of the normal class is used
for training and validation. Test data for all classes is
used for testing.

In our experiments, we adopted two partitioning
methods for different datasets according to the methods
of mainstream literature.

4.3. Experimental results

We first picked several classical methods as standards,
such as VAE (Kingma and Welling, 2013) and one class-
support vector machine (OC-SVM) (Schölkopf et al., 1999).
Meanwhile, a variety of state-of-the-art method about
anomaly detection are selected for comparison with our
proposed method, including AnoGAN (Schlegl et al.,
2017), pixel CNN (Van den Oord et al., 2016), Deep-
SVDD (Ruff et al., 2018), OCGAN (Perera et al., 2019),
PIAD (Tuluptceva et al., 2019), robust deep auto-encoding
gaussian process regression for unsupervised anomaly
detection (DAGPR) (Fan et al., 2020), generative probabilistic
novelty detection with adversarial autoencoders (GPND)
(Pidhorskyi et al., 2018), Puzzle-AE (Salehi et al., 2020),
AnoNAGN (Chen et al., 2020), and anomaly detection in
medical imaging with deep perceptual autoencoders (ADDPA)
(Shvetsova et al., 2021).

We use the first method of splitting the training and
testing sets in section “4.2 Experimental setup and evaluation
methodology” to conduct experiments on the MNIST, f-MNIST,
and COIL-100 datasets (Perera et al., 2019; Tuluptceva et al.,
2019; Chen et al., 2020). For the COIL-100 dataset, we
randomly select one class as the normal class and the other
classes as the abnormal class for anomaly detection, and
then repeat this process 30 times (Pidhorskyi et al., 2018).
For the f-MNIST and MNIST dataset, we loop each class
as a normal class for anomaly detection. Table 1 shows
the comparison results of our method with other methods.
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TABLE 2 Anomaly detection results for MNIST dataset.

Model 0 1 2 3 4 5 6 7 8 9 Mean

VAE 0.997 0.999 0.936 0.959 0.973 0.964 0.993 0.976 0.923 0.976 0.970

OCSVM 0.988 0.999 0.902 0.950 0.955 0.968 0.978 0.965 0.853 0.955 0.951

AnoGAN 0.966 0.992 0.850 0.887 0.894 0.883 0.947 0.935 0.849 0.924 0.913

PixelCNN 0.531 0.995 0.476 0.517 0.739 0.542 0.592 0.789 0.340 0.662 0.618

Deep-SVDD 0.980 0.997 0.917 0.919 0.949 0.885 0.983 0.946 0.939 0.965 0.948

OCGAN 0.998 0.999 0.948 0.963 0.975 0.980 0.991 0.981 0.939 0.981 0.975

PIAD 0.996 0.999 0.985 0.981 0.960 0.976 0.995 0.984 0.982 0.989 0.985

DAGPR 0.993 0.993 0.979 0.959 0.949 0.934 0.970 0.951 0.943 0.938 0.961

Puzzle-AE 0.996 0.999 0.971 0.970 0.977 0.984 0.992 0.983 0.941 0.986 0.980

AnoNAGN 0.998 0.999 0.987 0.986 0.965 0.989 0.998 0.992 0.970 0.979 0.983

ADDPA 0.997 0.999 0.986 0.984 0.964 0.983 0.996 0.989 0.976 0.981 0.986

Ours 0.986 0.999 0.999 0.999 0.988 0.999 0.998 0.992 0.979 0.999 0.994

Bold values indicate that this value is the highest.

TABLE 3 Anomaly detection results for CIFAR-10 dataset.

Model Plane Car Bird Cat Deer Dog Frog Horse Ship Truck Mean

VAE 0.700 0.386 0.679 0.535 0.748 0.523 0.687 0.493 0.696 0.386 0.583

OCSVM 0.630 0.440 0.649 0.487 0.735 0.500 0.725 0.533 0.649 0.508 0.586

AnoGAN 0.671 0.547 0.529 0.545 0.651 0.603 0.585 0.625 0.758 0.665 0.618

PixelCNN 0.788 0.428 0.617 0.574 0.511 0.571 0.422 0.454 0.715 0.426 0.551

Deep-SVDD 0.617 0.659 0.508 0.591 0.609 0.657 0.677 0.673 0.759 0.731 0.648

OCGAN 0.757 0.531 0.640 0.620 0.723 0.620 0.723 0.575 0.820 0.554 0.657

PIAD 0.837 0.876 0.753 0.602 0.808 0.713 0.839 0.842 0.867 0.849 0.799

DAGPR 0.751 0.737 0.595 0.564 0.692 0.572 0.692 0.531 0.767 0.793 0.669

Puzzle-AE 0.789 0.780 0.700 0.549 0.755 0.660 0.748 0.733 0.833 0.700 0.725

AnoNAGN 0.962 0.638 0.725 0.643 0.873 0.638 0.883 0.584 0.935 0.645 0.750

ADDPA 0.865 0.922 0.768 0.587 0.851 0.777 0.889 0.891 0.914 0.922 0.839

Ours 0.925 0.867 0.757 0.894 0.940 0.754 0.963 0.818 0.917 0.834 0.867

Bold values indicate that this value is the highest.

FIGURE 5

The ROC curve of the model in the plane and deer categories in CIFAR-10.
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TABLE 4 Anomaly detection results for CIFAR-100 dataset.

Model Shark Cups Apples Clock Bed Bee Bear Cloud Fox Bus Mean

VAE 0.588 0.432 0.658 0.512 0.676 0.491 0.614 0.523 0.621 0.439 0.555

OCSVM 0.612 0.429 0.615 0.533 0.682 0.478 0.716 0.548 0.579 0.469 0.566

AnoGAN 0.658 0.531 0.563 0.537 0.734 0.583 0.569 0.601 0.648 0.647 0.607

PixelCNN 0.754 0.431 0.695 0.558 0.549 0.553 0.437 0.449 0.603 0.527 0.556

Deep-SVDD 0.748 0.637 0.656 0.584 0.593 0.634 0.537 0.681 0.723 0.606 0.640

OCGAN 0.739 0.581 0.632 0.638 0.697 0.614 0.686 0.601 0.808 0.599 0.660

PIAD 0.829 0.859 0.768 0.614 0.789 0.687 0.817 0.851 0.831 0.865 0.791

DAGPR 0.748 0.729 0.689 0.609 0.731 0.593 0.683 0.615 0.763 0.751 0.691

Puzzle-AE 0.801 0.769 0.724 0.637 0.749 0.681 0.782 0.701 0.812 0.685 0.734

AnoNAGN 0.833 0.713 0.904 0.756 0.848 0.718 0.853 0.776 0.953 0.724 0.808

ADDPA 0.841 0.893 0.714 0.761 0.855 0.711 0.914 0.823 0.924 0.917 0.835

Ours 0.931 0.872 0.809 0.857 0.938 0.739 0.897 0.819 0.961 0.871 0.869

Bold values indicate that this value is the highest.

Our method outperforms the state-of-the-art methods by
0.7 and 0.2% on the MNIST and f-MNIST datasets, and
achieves an area under curve (AUC) of 1 on the COIL-100
dataset.

For the MNIST and CIFAR-10 datasets, we use the
second method in section “4.2 Experimental setup and
evaluation methodology” to split the training set and the
dataset. We conduct three experiments for each class of
the dataset and select the average AUC values shown in
Tables 2, 3.

Since the pictures in the MNIST dataset are single-channel
grayscale images and the data dimension is not high, most
models can achieve good results. But our model leads in
8 out of 10 categories and achieves a performance lead of
0.8% on average AUC.

For the CIFAR-10 dataset, the diversity and complexity
of images is greatly improved, which makes most models
perform poorly. However, our method still achieves a
performance advantage compared with the most novel
methods, which is largely due to the model taking into
account the reconstruction loss of the latent space vectors.
Among them, when some categories (such as cat, deer,
and frog) are used as normal categories, the performance
improvement of our model is obvious. The average AUC
value also achieved a 2.8% lead. Figure 5 shows the
ROC curves of the model when detecting two types of
anomalies.

TABLE 5 Ablation study for proposed model performed on MNIST.

AE 0.957

One EDE 0.961

Two EDE without adversarial training 0.974

Two EDE + Adversarial training 0.989

In addition, in order to prove the effectiveness of the
proposed model for anomaly detection tasks in complex images,
we also conducted experimental verification on CIFAR-100. We
randomly select 10 of the 20 superclasses in CIFAR-100, and
randomly select one subclass from these 10 superclasses as
normal class, and the other four subclasses as abnormal class
for experiment. Since the subclasses within a superclass all have
varying degrees of similarity, this is a great challenge for most
anomaly detection models. Table 4 shows the AUC values and
the average AUC values of various models tested in the CIFAR-
100 dataset. The performance of most models in this data set has
declined, but our model is more robust and still takes the lead in
five categories, including difficult categories (such as clock and
bee), and the average AUC value achieved a 3.4% lead.

To investigate the effectiveness of each additional
component of the proposed work, we performed an ablation
study using the MNIST dataset. Specifically, we consider four
cases. In the first case, we only consider AEs. In the second case,
we use a set of EDE structures without adversarial training.
In the third case, we use two sets of EDE structures without
adversarial training. In the last scenario, we use the proposed
full model. The average AUCs for each class of MNIST datasets
are listed in Table 5.

5. Conclusion

We introduce a deep anomaly detection method by building
a model with two EDE structures and using a two-stage training
method. For the former, the emergence of the EDE model makes
the training goal not only focus on the reconstruction of the
image, but also reduce the loss of the latent vector. The two-
stage method uses the idea of adversarial training to avoid the
shortcomings of AEs and GANs.
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We demonstrate our method outperforms other state-of-
the-art deep learning methods on multiple image datasets above.
For future work, we can generalize the model to high-resolution
images and more general domains such as medical imaging or
security imaging. We also want to explore the applicability of
the model to anomaly detection in videos. In addition, other
generative tasks are also optional research directions, such as
image reconstruction.
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