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Cloth manipulation planning on
basis of mesh representations
with incomplete domain
knowledge and voxel-to-mesh
estimation
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Engineering, Shinshu University, Nagano, Japan

Cloth manipulation is common in both housework and manufacturing.

However, robotic cloth manipulation remains challenging, especially for less

controlled and open-goal settings. We consider the problem of open-goal

planning for robotic cloth manipulation, with focus on the roles of cloth

representation and epistemic uncertainty. Core of our system is a neural

network trained as a forward model of cloth behaviour under manipulation,

with planning performed through backpropagation. We introduce a neural

network-based routine for estimating mesh representations from voxel input,

and perform planning in mesh format internally. We address the problem

of planning with incomplete domain knowledge by introducing an explicit

epistemic uncertainty penalty, using prediction divergence between two

instances of the forward model network as a proxy of epistemic uncertainty.

This allows us to avoid plans with high epistemic uncertainty during planning.

Finally, we introduce logic for handling restriction of grasp points to a discrete

set of candidates, in order to accommodate graspability constraints imposed

by robotic hardware. We evaluate the system’s mesh estimation, prediction,

and planning ability on simulated cloth for sequences of one to three

manipulations. Comparative experiments confirm that planning on basis of

estimated meshes improves accuracy compared to voxel-based planning, and

that epistemic uncertainty avoidance improves performance under conditions

of incomplete domain knowledge. Planning time cost is a few seconds. We

additionally present qualitative results on robot hardware. Our results indicate

that representation format and epistemic uncertainty are important factors to

consider for open-goal cloth manipulation planning.

KEYWORDS

manipulation planning, cloth manipulation, deformable objects, neural networks,
robotics, representation learning
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Introduction

This work pursues versatile, open-goal planning abilities for
robotic cloth manipulation (CM). Humans manipulate cloth
with ease, but the actual planning process is notoriously hard
to verbalise or formalise. Ubiquitous in household chores, CM
is an important target for household robotics. However, its
automation remains rare, even in controlled industrial settings.
This low rate of automation is due to the fact that common
manipulation methods assume object rigidity, an assumption
cloth violates. To realise broadly applicable, generalised CM
skills in robotic systems, we should address CM’s inherent
complexities in a structured way.

Building on previous work, our approach emphasises
flexibility and uncertainty. Our manipulation planning task
assumes open start and goal shapes. While the task is not
modelled after any specific household task, the requirements it
presents capture some of the uncertainty and variability that
household support robots will have to be able to deal with in
order to operate effectively. Figure 1 shows an example plan
being executed by a physical robot.

Some CM tasks can be solved with relative ease using
specialised hardware. However, in a household setting it
is preferable to solve many problems with few pieces of
robotic hardware. We assume a dual-handed setup without
specialisation to CM, consistent with the common conception
of loosely humanoid support robots. We consider two arms to
be the minimum for efficient CM, as many basic manipulations
become significantly more difficult when performed single-
handedly.

We also address the issue of planning with incomplete
domain knowledge. Cloth items’ shape configurations have
essentially infinite degrees of freedom. Explicitly representing
item shapes at a decent level of precision yields high dimensional
state spaces. Furthermore, high system flexibility requires a
sufficiently broad action repertoire. Consequently, we have to
operate in a sizable state-action space. Sampling such a large
space exhaustively to generate training data is impractical and
wasteful. Sampling only regions of interests is preferable, but
necessitates a strategy for planning on basis of incomplete
domain knowledge. The present work addresses this challenge
using an explicit penalty to steer planning toward regions of low
epistemic uncertainty.

Related work

Here we discuss work related to ours by task setting or
approach. As of yet there is no dominant strategy for robotic
cloth manipulation. We discuss some of the strategies proposed
so far, with a focus on flexibility and operation speed.

Fixed routines (Koishihara et al., 2017; Maitin-Shepard
et al., 2010) and routines with simple branching (Yuba et al.,

2017) have application in industrial settings and for particularly
common manipulations, but lack the flexibility to accommodate
variable start or goal states. Flexibility requires thinking ahead,
which naturally suggests simulation-based solutions (Kita et al.,
2014; Li et al., 2015). However, simulation-based approaches
face challenges in achieving practical processing times.

Reinforcement learning and forward
models

One promising avenue for reconciling flexibility with
practical operating speeds is seen in approaches employing
neural networks (NNs). NNs have been applied in the context of
CM for grasp point detection in a bed-making task (Seita et al.,
2018) and prediction of forces exerted on human subjects in a
dressing task (Erickson et al., 2018). NNs are also widely used
in systems trained through Reinforcement Learning (RL), as
have been applied to feedback-based folding (Petrík and Kyrki,
2019), and cloth smoothing (Wu et al., 2020). Methods using
RL to learn from demonstrations have also been proposed over
the past years, for, e.g., fabric smoothing (Seita et al., 2019) and
dynamic manipulation (Jangir et al., 2020).

We employ NNs trained as forward models (FMs). We will
refer to such NNs as FMNNs for short. The use of FMNNs
for control tasks has been explored on various domains (Ebert
et al., 2018; Henaff et al., 2017; Janner et al., 2019; Lesort
et al., 2018; Wahlström et al., 2015), albeit in most cases on
tasks of lower dimensionality than CM requires. The distinction
between planning and model-driven control can be blurry,
but control tasks typically assume shorter time-steps and fixed
goals. The assumption of fixed or open goals, in particular,
has consequences for the design of the system around the FM.
FMs in the context of control tasks are often embedded in
a RL context. A FMNN can replace the task environment in
model-free RL to improve sample efficiency (Henaff et al., 2017;
Wahlström et al., 2015), or be used as part of a model-based
RL algorithm (Clavera et al., 2020). While such strategies are
suitable for control tasks, planning as pursued here requires a
higher level of flexibility. RL requires that a reward structure
is set at training-time. Consequently, the majority of RL-based
work assumes fixed goals. A rare exception is found in Jangir
et al. (2020), where policy and reward functions are made
conditional on a low-dimensional goal variable, making it
possible to vary some aspects of the goal at run-time. However,
whether this strategy could be extended to high-dimensional
goal definitions is unclear.

Here, instead of learning a policy, we use the fact that
NNs are differentiable to obtain gradients for the action inputs,
allowing for fast action search on basis of a goal given at run-
time. The differentiability of FMNNs has also been exploited in
various fixed-goal RL approaches (Clavera et al., 2020; Henaff
et al., 2017; Pereira et al., 2018). Our approach is similar to that
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FIGURE 1

Execution of a two-step manipulation plan. (A) Estimate of initial state and first planned manipulation (dotted green line). (B) Execution of first
manipulation. (C) Planned intermediate goal and second planned manipulation (dotted green line). (D) Execution of second manipulation.
(E) Goal state.

of Henaff et al. (2017): backpropagation through the FMNN
provides gradients for the action inputs, that guide action search
toward high-quality actions. Also similar, albeit with a non-
NN FM, is the approach of Watter et al. (2015). A second
similarity with a subset of these systems is the use of latent state
representations.

The task we target differs from typical RL tasks in robotics
in a number of quantitative aspects. We noted the high
dimensionality of adequate cloth shape representations. Ours
is 3072D, which exceeds typical state dimensionalities in the
current RL literature by a large margin. On the other hand, the
number of steps we reason over is small, capping out at 3 in
the present work where the control literature often considers
tens of steps. However, the amount of time covered by a single
pass through our FM is unusually long, spanning grasping,
displacement, and release of the cloth item. The present work
can in part be seen as an exploration of the effectivity of FMNNs
in the high-dimensionality, long-timestep, short-rollout regime,
which is an important domain for high-level planning.

Forward models in cloth manipulation

For CM specifically, a few FMNN-based approaches have
been proposed over the past years. Yang et al. (2017) report
application to fine control in a CM task, albeit with fixed
goal states. We previously proposed a system for open-
goal, multi-step, dual-handed, FM-based CM planning, on
basis of voxel input (Arnold and Yamazaki, 2019a; Tanaka
et al., 2018). Kawaharazuka et al. (2019) apply a similar
approach to string and cloth manipulation tasks involving
momentum, using 2D images as input. Subsequently, Yan
et al. (2020) proposed a method using a forward model
in latent space, introducing contrastive learning to structure
the latent space. States are represented as RGB images,
and (single-step) manipulations are planned by random
sampling. The method is applied to single-handed manipulation
of ropes and cloth, with various goal shapes for rope.
For complex goal shapes as we consider here, one-step
greedy action generation is limiting. Hoque et al. (2020)
propose a method using RGBD state representation and
multi-step manipulation planning by CEM (Cross-Entropy

Method), and apply it to cloth smoothing and basic single-
handed folds.

Although spatial dimensionality and channel counts vary,
all the above methods have in common that they use
rasterisations (voxel volumes, images) of the workspace for
state representation. These representations all have similar
shortcomings. They are limiting in that they do not capture
a topological understanding of the cloth’s shape configuration.
One of our contributions is that we perform FM-based
manipulation planning on basis of explicitly topological
representations (mesh models). Consequently, our approach
must incorporate mesh estimation.

Mesh estimation

For mesh-based planning to be of use in robotic CM requires
fast and robust mesh-estimation routines. Willimon et al.
(2012) and Han et al. (2018) propose estimation routines for
deformable objects, but the amount of deformation considered
is limited. Sun et al. (2015) generate high quality 2.5D
representations of wrinkled cloth in the context of a cloth
flattening task, but here too the range of shapes considered
is limited. Kita et al. (2014) and Li et al. (2014) consider
more complex shapes, but their active observation strategies
involve lifting and rotating the object, making these approaches
unsuitable for our task scenario. We previously proposed
an NN-based approach (Arnold and Yamazaki, 2019b). We
integrate a variant of this approach in our planning system.

Incomplete domain knowledge

We introduce measures to improve robustness under
conditions of incomplete domain knowledge. Sampling the
full state-action space to collect training data is costly and
wasteful, as many state-action pairs are not particularly useful
or interesting. This issue is compounded in dual-handed
manipulation, due to increased dimensionality of the action
space. Our solution for planning with incomplete domain
knowledge employs dual instances of the FMNN. The use of
network ensembles to boost performance or improve robustness
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has a long history (Granitto et al., 2005; Hansen and Salamon,
1990). Examples of ensemble methods are also found in the
RL literature. Janner et al. (2019) and Clavera et al. (2020) use
ensembles of FMs to counteract model bias. In these algorithms,
trajectories for policy training are sampled from a randomly
selected model instance from the ensemble. As noted above, our
approach does not involve policy training, and consequently our
use of multiple FMs differs from the RL setting. We will use
a pair of FMNNs to calculate an explicit, differentiable proxy
for epistemic uncertainty, and use this as a penalty to guide
back-propagation-based plan search.

Contributions

Here we discuss the present work’s main contributions.

Cloth representation

In Arnold and Yamazaki (2019a), cloth states are
represented in voxel format. Voxel representations are
comparatively easy to obtain, invariant to differences in colour
and patterning of cloth items, and robust against variable light
conditions. Furthermore, they can be processed by conventional
neural network architectures directly.

The voxel-to-voxel approach, as well as pixels-to-pixels
approaches (Henaff et al., 2017; Hoque et al., 2020; Wahlström
et al., 2015), are attractive for their conceptual simplicity: no
special-purpose, engineered representation formats need to be
considered. When latent representations are used, discovering
a suitable representation format is left to the training process.
However, the inherent ambiguity of a voxel representation limits
how much fidelity can be attained. Topologically different cloth
shapes can produce similar voxel representations. Consequently,
voxel-based planning can produce outcomes that resemble
the goal in voxel representation, yet diverge topologically.
Additionally, for back-propagation-based planning, action
gradients are not always informative if the states are given
in image or voxel formats [as noted in (Yan et al., 2020) for
the image case].

Bringing topological information into the planning process
can be expected to improve fidelity. We employ deterministic
and probabilistic mesh representations, with the latter allowing
us to capture aleatoric uncertainty. This allows the system
to pursue goal shapes with high accuracy where possible,
and more loosely when uncertainty is high. Probabilistic
meshes represent uncertainty at per-vertex, per-dimension
granularity, so uncertainty can vary over different parts
of the object. Furthermore, unlike voxel- and image-based
state representations, the action gradients produced by mesh
representations are guaranteed to be informative, as the error
signal corresponds straightforwardly to mesh similarity.

A mesh-based approach is particularly advantageous in
settings where significant occlusion occurs. Meshes allow
leveraging of shape information from simulation data that
is lost to occlusion in image-based state representation.
Our mesh estimation system takes voxel input with
occlusion present, but is trained to estimate complete
meshes. Positions of occluded vertices cannot in general
be determined exactly, but the positions of the visible
vertices, as well as the occluded vertices’ invisibility itself,
constrain the range of possible positions for occluded vertices.
The system implicitly learns these constraints to locate
occluded vertices, and because we let the mesh representation
quantify positional uncertainty per vertex, the remaining
uncertainty is quantified in a principled manner. Finally,
the fact that goal states are specified in mesh form has
the advantage that it allows us to specify target positions
for occluded parts, which is not possible in image-based
goal specification.

Mesh estimation

To obtain mesh representations, we integrate the approach
of Arnold and Yamazaki (2019b). Estimation consists of two
steps. First we generate a probabilistic estimation using a simple
NN architecture, and then we refine the estimate through an
optimisation process incorporating prior knowledge of the cloth
topology. We leverage the predictive abilities of the FMNN to
resolve ambiguity of voxel representations in the estimation
process. If a shape is the result of a manipulation generated by
the system, we use the predicted outcome of the manipulation
as additional prior knowledge to disambiguate the present
state in the optimisation process. Hence shape information
flows both ways between the mesh estimation system and
planning system.

Incomplete domain knowledge

For many task domains, only part of the state-action space
is of practical interest. In a CM setup, many parametrisations of
the manipulation format will make no useful change to many or
most cloth shapes. Which parametrisations have useful effects
will depend on the current shape of the cloth, so engineering
the state-action space upfront to exclude uninteresting cases
is infeasible. More fundamentally, it can be hard to formalise
what is or is not useful. However, we can collect sets of relevant
examples. A collection (dataset) of examples that samples only
part of the full domain can be considered to (implicitly and
fuzzily) define a “region of interest” (ROI) on that domain.
A versatile planning system must be able to find good actions or
action sequences on basis of experience that is restricted to this
ROI. It should avoid uninteresting regions of the space, without
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requiring explicit definition of the ROI. However, FMNNs are
vulnerable to incomplete domain knowledge, for two main
reasons. First, for methods that rely on error gradients (as
pursued here), gradients for unknown regions of the state-
action space are unreliable, potentially causing plan search to
spend time and computational resources chasing meaningless
gradients without approaching the ROI. Secondly, the NN
may spuriously predict outcomes resembling the goal state for
state-action sequences leading through unknown regions of the
domain. This can lead to generation of spurious plans that
fool the system into expecting the goal state as outcome. This
problem is closely related to the issue of adversarial examples
(Goodfellow and Szegedy, 2014; Szegedy et al., 2013). In image
recognition, input spaces (the space of all possible images of
a given resolution) are so vast that training data can only
sample a limited subspace of it (e.g., a set of real-world images).
Such NNs are typically trained and tested on image sets that
are assumed to sample roughly the same parts of the input
space. Such NNs can and do produce unexpected classifications
for unfamiliar inputs. Inputs intentionally designed to elicit
erroneous classifications are known as “adversarial examples”
(Szegedy et al., 2013), and are an active field of study. In
neural network-based planning, training with datasets that
only partially sample the input space can similarly lead to
the existence of adversarial examples, in the form of what we
might call “adversarial plans”, as we demonstrate in Arnold and
Yamazaki (2019c).

The existence of adversarial plans can be a significant
problem for these methods, and in some sense more so
than in image recognition. Adversarial examples in image
recognition are the product of “adversarial attacks”: attempts
by an outside force to deceive the system. In a “white box”
attack,1 the attacker may for example use a gradient descent
approach to search the input space for images that deceive
the NN into producing an erroneous classification (Athalye
et al., 2018; Goodfellow and Szegedy, 2014; Kurakin et al.,
2016). Now consider NN-based planning. These systems work
by actively searching the NN’s input space for inputs that
minimise a given loss. This means that if adversarial plans exist
within the plan space, they appear as additional local optima,
and plan search will pursue them just like it pursues valid
plans. In other words, NN-based planning implements its own
white box attack. We refer to the unintentional generation of
adversarial plans as "self-deception". Because the search process
will approach adversarial plans just as it approaches valid plans,
adversarial plans need not even be common in the plan space
to pose a problem.

Ensuring that the NN is trained on complete domain
knowledge precludes self-deception, but many domains are
too large for exhaustive sampling to be practical, especially

1 White box attack: an attack where the adversary has full access to the
NN.

if data is to be sampled on robot hardware. This makes
planning on basis of incomplete domain knowledge a
problem of significant practical importance. We aim to
realise versatile planning on basis of incomplete domain
knowledge, using a dual-network approach for explicit
epistemic uncertainty avoidance.

Accommodation of grasp point
detection routines

Reality imposes complex restrictions on which actions are
physically possible or effective. In CM, we need to account for
graspability. Grasp point detection is a challenging problem
under active research (Li et al., 2019). Moreover, graspability
depends on the specifics of the object and the robotic system. To
accommodate this, we design our system to work with discrete
sets of candidate grasp points provided by a subroutine. For
our experiments, we assume non-specialised robot hardware
equipped with gripper tips narrow enough to slide under a piece
of cloth. Under these assumptions, cloth can be grasped easily by
exposed corners, so we assume a simple candidate grasp point
detection routine focusing on corners.

On a more abstract level, the assumption of a discrete set
of grasp points produces a problem setting where each state
presents with a variably sized set of continuous values for
(part of) the action input (variably sized because the number
of grasp point candidates varies with the cloth shape). This
type of action space is rarely considered. Action domains of
common RL benchmark tasks consist of a fixed discrete set of
actions (e.g., moves in grid mazes), or a set of continuous action
values (e.g., inverted pendulum balancing). Uncommonly, we
see compound action domains consisting of discrete and
continuous components (Henaff et al., 2017). Our case does
not fit into any of these categories, but this type of action
domain occurs naturally in tasks in which robots manipulate
complex environments. Addressing this type of input regime
in an FMNN-based planning system broadens applicability to
practical tasks.

System architecture

This section gives a global overview of the structure of the
system, followed by detailed descriptions of its parts.

Overview

Core of the system is an FMNN of the behaviour
of a cloth item under manipulation. Given a cloth state
and a manipulation, the FMNN predicts the resulting post-
manipulation state. Manipulations are represented at coarse
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FIGURE 2

(A) A deterministic mesh representation (DMR). Left: Top-down 3D rendering of the mesh. Right: x, y, and z coordinates mapped as colour
gradients in uv-space. Grey values for z-coordinates boosted for visibility. The grid texture on the 3D rendering is added for visualisation
purpose only. The texture is not present in cloth observations and does not correspond to the mesh resolution. (B) A probabilistic mesh
representation (PMR). Left: Top-down 3D rendering of the µ-component of the mesh. Lilac shading around the cloth indicates the σx and σy

components, and lilac cast on the cloth indicates the σz component. Right: µx, µy, µz, σx, σy, σz components mapped as colour gradients in
uv-space. Grey values for µz and σz boosted for visibility. (C) A voxel representation. Colour indicates mean voxel value over each voxel column
parallel to the viewing angle.

FIGURE 3

Calculation of trajectories. (A) Dual-handed case. Trajectories (blue lines) and release points (r1, r2) are calculated from grasp points (gC1 ,g
C
2 )

and displacement vector
→

d. In this case,
→

d describes the displacement of the point in between the two grasp points. (B) Single-handed case. In
this case,

→

d describes the displacement of the sole grasp point gC1 , so release point r1 is found by adding
→

d to gC1 . The grey shape in the
background is the 2D projection of the cloth.

temporal granularity. A single manipulation grasps the cloth at
one or two points, moves these points over a given distance,
releases them, and waits for the cloth to settle in a stable
state. This coarse granularity allows us to cover temporally
extended manipulation sequences with a limited number of
passes through the model.

The forward model operates on latent representations
that encode mesh representations of cloth states. Meshes
are obtained using an estimation routine taking voxel
representations as input. The estimation routine consists
of a voxel-to-mesh network (VtM net) that estimates a
probabilistic mesh, and an optimisation process (“refinement”)
that combines this probabilistic mesh with prior knowledge of
the cloth topology and (if available) the preceding prediction
of the current state, in order to generate a plausible
deterministic mesh.

Plan generation takes the present state of the cloth and
the intended goal state as input (both in mesh format). We
find manipulation inputs that produce the latter from the
former, by following manipulation input gradients obtained by
backpropagation through the FMNN. Generation of multi-step

plans (i.e., manipulation sequences) is achieved by recurrently
chaining the FMNN.

Training the system involves two separate training
processes. The first trains the FMNN, along with encoder and
decoder modules for mapping full-size mesh representations
to latent representations and vice versa. The second trains
the VtM network to estimate probabilistic meshes from voxel
representations. Both processes use the same dataset, which is
generated in simulation. Data generation simulates the scenario
of performing sequences of random manipulations on a square
cloth the size of a hand towel, on a flat work surface.

Representations

Cloth shape and position
We use three shape representations: voxel, deterministic

mesh, and probabilistic mesh. We abbreviate the latter two as
DMR and PMR, respectively. Voxel representations are binary
matrices of resolution 32 × 32 × 16. DMRs are real-valued
matrices of size 32 × 32 × 3, assigning (x, y, z) coordinates to
each vertex of a 32 × 32 mesh topology. PMRs resemble their
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deterministic counterpart, but represent each vertex position
as a multivariate normal distribution. They are real-valued
matrices of size 32 × 32 × 6, with each 1 × 1 × 6 subvolume
containing a set of means (µx, µy, µz) and standard deviations
(σx, σy, σz) probabilistically describing the position of a single
vertex in the mesh. The σ values define the diagonal of the
multivariate normal distribution’s covariance matrix. A more
complete representation would specify the full covariance
matrix, but we wish to constrain the number of outputs to be
learned. Example visualisations of a DMR, PMR, and a voxel
representation are given in Figure 2.

Cloth shapes are always centred in the XY plane. We find
the cloth centre point by projection onto the XY plane to obtain
a 2D image, and calculating coordinate averages over all pixels
corresponding to the cloth. Centre point coordinates are stored
separately, and the cloth is then shifted in the XY plane to
bring the centre point to (0, 0). By splitting states into a shape
component and a position component, we obtain position-
invariant shape representations, allowing generalisation over
positions. Position information can be important when, e.g.,
planning under restriction of a limited work surface or motion
range. We do not consider such constraints here, but we
note that by adding the predicted offsets to predicted vertex
coordinates, we can recover a mesh prediction that is located in
the workspace, and define additional planning losses thereon as
suits a given scenario.

Manipulation
Manipulations are real-valued vectors of length six. The first

four values define two grasp points, gG
1 and gG

2 , using geodesic
coordinates (u, v), with the cloth running from (-1, -1) to (1, 1).
The second grasp point can take null values, indicating a single-
handed manipulation. The last two values in the vector are a
displacement vector

−→
d given in 2D Cartesian coordinates.

Given a cloth state, this representation determines grasp
point trajectories as follows. Using the mesh representation of
the cloth state, we map geodesic grasp points gG

i to Cartesian
grasp points gC

i . For two-handed grasps, we then compute point
p as

p = gC
1+gC

2
2 +

−→
d
2 =

gC
1+gC

2+
−→
d

2 . (1)

Let m be a line through p perpendicular to
−→
d . The x

and y coordinates for Cartesian release points ri are found by
mirroring gC

i over line m on the XY-plane. For single-handed
grasps, the x and y coordinate of the single release point r1 is
given by gC

1 +
−→
d . Figure 3 illustrates the calculation for a dual-

and single-handed manipulation.
The z coordinate for ri is given by gC

i .z +min
(
zdrop, k/2

)
,

where gC
i .z is the z-coordinate of point gC

i and k is the distance
between gC

i and ri in the XY-plane. We find the unique circle
c centred at height gC

i .z, perpendicular to the XY plane, and
passing through gC

i and ri. The shortest arc segment of c

connecting gC
i and ri defines the trajectory for point i. System

parameter zdrop controls the maximum height (relative to the
grasp point) from which the cloth is released. For trajectories
whose apex is less than zdrop above gC

i .z, the drop height instead
equals the height of the apex.

The manipulation format improves on that of Arnold and
Yamazaki (2019a) in terms of flexibility and similarity to human
cloth manipulation. Trajectories produced by this format rarely
cause the cloth to slide over the work surface, and better
resemble human cloth manipulation. Consider for example the
manipulation that folds a flaring skirt in two over its vertical axis,
grasping it at the waistband and lower edge. The grasp points
will lie at different distances from the fold line (m), and the
grasp points will be moved by different distances in the same
direction in the XY plane. The new format concisely represents
such folds. This format produces trajectories resembling those
considered in Van den Berg et al. (2010), although our motion
in the z dimension is rounded instead of triangular.

Using geodesic coordinates for grasp points is advantageous,
because geodesic space directly corresponds to the cloth surface,
whereas most points in the Cartesian workspace do not
correspond to positions on the cloth surface. Defining grasp
points in Cartesian space would thus inflate the search space.
Geodesic coordinates of all mesh vertices are known and fixed,
so given a DMR of the cloth, conversion between Cartesian
and geodesic grasp point coordinates is trivial. For executing
manipulations, coordinates are converted into Cartesian form.

Grasp point detection

To constrain grasp points to actually graspable points of
potential interest, we introduce a simple detection routine. We
first project the cloth onto the XY plane to obtain its top-
down silhouette. We then use corner detection (Shi and Tomasi,
1994) to obtain the corner points of the silhouette, and discard
concave corners. The resulting set of convex corners comprises
the graspable point set for the cloth shape. These points will
generally be easy to grasp with a variety of robot hands by
horizontally approaching the cloth along the table surface.

As noted above, grasp points are represented as geodesic (u,
v) coordinates in the manipulation definition. Detected grasp
points are converted to geodesic space by assigning the (u, v)
coordinates of the cloth vertex nearest to the grasp point.

Our choice of grasp point candidates provides sufficient
shape variation to produce a challenging task domain, while also
facilitating hardware experiments. However, the system does
not depend on the details of the routine, so different detection
routines can be substituted here to suit different robot platforms
or tasks. While we use an image-like cloth representation for
grasp point detection here, a mesh estimation of the current
cloth shape exists whenever grasp point detection is performed.
Hence more advanced detection routines could exploit the
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TABLE 1 pEM*D network architecture parameters.

Module E M D

Input 32× 32× 3 (si) 512 (ĉi)+ 512
(ti)+ 6 (m

′

i)
512 (ĉin)

Neuron layers 4 16 4

Hidden layer
sizes

2048, 1024 1024+ 6 (m
′

i) 1024, 2048

Output 512 (ĉi) 512 (ĉi+1)+ 512
(ti+1)+ 2
(4âi+1)

32× 32× 6 (ŝin)

mesh estimate in addition to image data to find different or
additional graspable points (e.g., exposed corners inside the
cloth silhouette).

Data collection

We collect manipulation examples using the ARCSim
simulator (Narain et al., 2012; Narain et al., 2013). We
construct a scene containing a square cloth laid out flat on
a level work surface. Manipulation sequences of length three
are applied, and the resulting cloth states are stored. We
generate single- and dual-handed manipulation examples in a
ratio of 1:2. Manipulations are randomly generated under the
following restrictions.

1. Graspability restriction. Grasp points are restricted to
the set generated by the detection routine described above.
Assuming the routine accurately captures the grasping abilities
of the target platform, this restriction allows us to constrain data
collection to pertinent examples.

2. Fold restriction. Manipulations that have little or no effect
on the cloth shape are of limited interest. To avoid (a large
proportion of) such cases we restrict displacement vectors as
follows. We define reference point q as

(
gC

1 + gC
2
)
/2+ 0.8

−→
d

for dual-handed manipulations or gC
1 + 0.8

−→
d for one-handed

manipulations. Only manipulations for which q lies on the cloth
(i.e., falls within the projection of the cloth) are included in the
dataset. Preliminary experimentation indicated that the majority
of manipulations that meet this condition produce folds.

3. Displacement distance restriction. Manipulations with
very short displacement distances tends to make no appreciable
change to the cloth shape, because such folds undo themselves
during shape stabilisation. We enforce that the length of
displacement vector

−→
d should be at least 0.35 times the length

of the cloth, and let actions with displacement vectors lengths
below this threshold represent null-manipulations instead.

These restrictions help to produce a dataset that contains a
higher proportion of interesting samples, with fewer examples
that are overly crumpled or simple position shifts. This data
is more representative of human cloth folding behaviour than
unrestricted sampling, and lets us zoom in on manipulations

of higher practical value. However, data collected under
these restrictions amounts to incomplete domain knowledge,
necessitating countermeasures.

ARCSim employs adaptive remeshing, changing the mesh
topology dynamically to best express the shapes of cloth items
as they deform. Our system assumes a fixed topology. We
convert meshes to our fixed topology via interpolation in post-
processing.

We generate a dataset of 3693 sequences, containing a
total of 11079 manipulation examples. The dataset is split
into training, test, and validation sets of 3493, 100, and 100
sequences, respectively.

Probabilistic EM∗D net

This NN forms the core of the system, and extends our
previously proposed architecture. We focus on the points of
improvement, and refer to Arnold and Yamazaki (2019a) for
any aspects not covered. The pEM∗D net consists of an encoder
module E, a manipulation module M (the FMNN), and a
decoder module D, with functions defined as follows. Encoder
net E maps DMR si to its latent representation (LR) ĉi:

E (si) = ĉi. (2)

LRs are real-valued vectors of length 512. Manipulation
net M maps a tuple consisting of LR ci, memory trace ti, and
manipulation mi to a LR ĉi+1 of the predicted outcome shape,
a new memory trace ti+1, and a prediction of centre point shift
4âi+1:

M
(̂

ci, ti, m
′

i

)
=
(̂

ci+1, ti+1,4âi+1
)
, (3)

where m
′

i is mi with its grasp points shifted by −ai, with ai

denoting the centre point for si. As centre point movement
is relative to the pre-manipulation cloth state, no centre point
location needs to be included in M’s input. Memory traces, too,
are real-valued vectors of length 512. We let t0 be the zero vector.
Decoder net D maps a LR ĉi of a cloth state to its PMR ŝi:

D
(̂

ci
)
= ŝi. (4)

Predictions for multi-step plans are generated by
propagating through M recurrently, with different manipulation
inputs at every pass. For notational convenience we define the
following shorthand:

EMnD (si, m) = D
(̂

ci+n
)
, (5)

ĉi+1 = π1

(
M
(̂

ci, ti, m
′

i

))
,

where m is a manipulation sequence of length n, and πi is the ith

projection (i.e., πi selects the ith element of its argument tuple).
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FIGURE 4

(A) Global structure of the pEM*D net. (B) Dual network architecture with explicit epistemic uncertainty penalty, rolled out for 3-step plans.
Green items indicate network inputs and (externally supplied) goal state. Black items are neural network modules. Blue items are state
predictions. Red items are losses. Purple items comprise the epistemic uncertainty penalty calculation.

Size parameters of the pEM∗D net are given in Table 1, and
its structure is illustrated in Figure 4A.

Connectivity in the M module mixes regular propagation,
residual propagation, and skip connections. Propagation from
the first 512 neurons in layer i to the first 512 neurons in
layer i+1 is residual (i.e., values from the first 512 neurons are
copied to the next layer, followed by regular fully connected
propagation). Each layer i for which i is even and 0 < i < 14
has skip connections projecting into the first 512 neurons of
layer i+2. This heterogenous connectivity is based on the idea of
letting M iteratively transform the state representation passing
through its residually connected channel.

A simple local response normalisation is applied over the
activation vector in all layers except for the hidden layers of the
M module and the output layer of the D module:

acto =
acti√

1|acti|
2
2

, (6)

where acti and acto are ingoing and outgoing activation, and
|·|2 is the L2 norm.

Hidden layers use the hyperbolic tangent activation
function. In the decoder module, output neurons representing
µ components use the identity function, and output neurons
representing σ components use

acto = eacti + 0.01, (7)

where acti and acto are ingoing and outgoing activation. This
function has a minimum output value of 0.01, which helps
stabilise training, as likelihood loss can fluctuate dramatically
when σ grows too small. With regards to its probabilistic output,
the pEM∗D net follows Mixture Density Networks (Bishop,
1994), although we use only one distribution per variable.

Given the centre point of the initial state, we can
find predicted cloth locations by adding the 4âi output of
subsequent iterations through the M module:

âi = a0
i∑

j = 1
4âj. (8)

Values âi could be used to define additional planning losses
to constrain plan search.

Probabilistic EM∗D net training

We train modules E, M, and D end-to-end, thereby forcing
E and D to learn a latent representation format that facilitates
application of manipulations by M. The compound net is
trained on batches of 64 manipulation sequences of random
length between 1 and 3 steps. We use two losses, one measuring
shape prediction accuracy (losss) and one measuring accuracy of
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the predicted position change (lossp). Losss for a single example
is defined as follows:

losss =
Nsteps∑
i = 1

NLL
(

si, ŝi
)
, (9)

where NLL is shorthand for negative loss-likelihood and Nsteps

is the length of the sequence. Lossp is the MSE of the predicted
offsets w.r.t. the actual offsets.

In contrast to typical recurrent neural network training,
this loss sets a target for each pass through the M module.
The ith pass produces ĉi, which D decodes to ŝi, which is
compared against ground truth si. Hence, training constrains
the output for each pass to the same extent as in non-recurrent
architectures. This simplifies training.

Training computes connection weight gradients for both
losses, and combines the losses by summing their signs at
the connection level. This allows for combination of losses
without adding hyperparameters for weight balancing. Weights
are updated using the SignSGD update rule (Bernstein et al.,
2018), so gradient magnitudes are discarded. We previously
found that SignSGD is more effective than standard SGD for
training this type of architecture (Arnold and Yamazaki, 2019a).
The learning rate is initialised to 5 × 10−5. Every 10000
iterations, we measure prediction accuracy on the validation
set, and reduce the learning rate by a factor 2 when there has
been no improvement in 50K iterations. Training runs for 1.6M
iterations. We use the nets with the best prediction accuracy on
the validation set for further evaluation.

Mesh vertex coordinate input is presented in a normalised
form where the cloth in its fully spread, axis-aligned state
runs from (-0.7, -0.7) to (0.7, 0.7) in the XY plane. Training
employs five types of data augmentation. (1) Rotation and
mirroring of manipulation sequences. (2) Introduction of non-
manipulation examples. An example is converted into a non-
manipulation example by replacing the action with a null-
manipulation, and replacing the post-manipulation state with
a copy of the pre-manipulation state. This is to learn the non-
effect of null-manipulations. Recall that null-manipulations are
represented as any action with a displacement vector shorter
than 0.35 times the length of the side of the cloth. (3) Grasp
point swaps. Grasp point order is immaterial, so swapping the
grasp points results in a different representation of the same
manipulation. (4) Addition of Gaussian noise with σ = 0.025
to vertex coordinates. (5) Conversion of input and target
DMRs to any of their equivalent representations. For a square
cloth, each possible shape has eight valid mesh representations,
differing in how Cartesian coordinates are assigned to geodesic
coordinates. We refer to this as Cartesian equivalence. Figure 5
illustrates the concept. In data augmentation we convert states
into randomly selected equivalents, and convert manipulation
inputs accordingly.

Module M expects two grasp points for its manipulation
input. For single-handed manipulations, we input the same
grasp point on both inputs.

Voxel-to-mesh conversion

The second NN converts voxel representations to mesh
representations (Arnold and Yamazaki, 2019b). We refer to this
network as the Voxel-to-Mesh (VtM) net. This is a 7-layer
MLP with input and output layer sizes matched to the voxel
representation size and PMR size, respectively, and hidden layer
size 4096 throughout. Input is given as a voxel representation
with the cloth centred in the voxel space. We use a normalised
coordinate system in which the voxel viewport runs from (-1,
-1, 0) to (1, 1, 0.125). As for pEM∗D input, the fully spread, axis-
aligned cloth runs from (-0.7, -0.7) to (0.7, 0.7). This scaling is
chosen so that any centred cloth shape fits within the viewport
in full. Resolution is four times finer on the z-axis than on the
other axes, to account for the fact that stable cloth shapes present
detail such as wrinkles and layering on the z-axis, while spatial
extension on the z-axis is limited.

We denote the VtM net’s functionality as

VtM
(

sv
i
)
= ṡp

i , (10)

where sv
i is the voxel representation and ṡp

i a probabilistic mesh
estimate of the state at manipulation step i.

VtM produces PMRs, but for the planning procedure, we
need a DMR, as deterministic graspable points can only be
computed for DMRs. After estimating ṡp

i , we search for DMR
ṡd
i that is most (or at least highly) plausible w.r.t. ṡp

i . We refer to
this procedure as refinement and denote it as

R
(

ṡp
i , s̃d

i

)
= ṡd

i , (11)

where s̃d
i is a DMR used to initialise the search process. We

use the µ component of a previously obtained prediction for
the current state as s̃d

i when available, or simply use the µ

component of ṡp
i otherwise. The DMR ṡd

i is initialised to s̃d
i , and

iteratively refined to minimise the following loss measures:

• lossnll: Negative log-likelihood of ṡd
i w.r.t. ṡp

i .
• lossspring: Spring energy.
• lossup: upward bias loss.

To compute lossspring , we define a set of springs between the
vertices of the mesh, following a spring pattern common to cloth
simulation [see e.g., (Choi and Ko, 2002)]. Let k be the distance
between orthogonally neighbouring vertices. A vertex at indices
(u, v) in the cloth connects to neighbour vertices (u, v ± k) and
(u ± k, v) (“stretch” springs), (u ± k, v ± k) (“shear” springs),
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FIGURE 5

Equivalent mesh representations of a cloth shape. Geodesic (uv) coordinates are shown for the cloth corners and a gradient texture is added to
visualise geodesic coordinates over the cloth surface. The representations differ in how they map geodesic space to Cartesian space, but
represent the same shape. For every possible shape configuration of a square cloth, there are eight equivalent mesh representations.

and (u, v ± 2k) and (u ± 2k, v) (“bend” springs), insofar these
vertices exist. Spring energy loss is then calculated as

lossspring =
Nsprings∑

i = 0
(li−ri)

2, (12)

where li is the current length of the spring, ri the resting length
of the spring, and Nsprings the total number of springs.

Lossup biases optimisation against adjusting vertex positions
downward, because this can push vertices into the working
surface. Upward bias ensures that wrinkles produced by
optimisation form in upward direction. This bias loss is
computed as the mean over max

(
0, ṡp

i .µz − ṡd
i .z
)

, where ṡp
i .µz

and ṡd
i .z are the µz and z components of ṡp

i and ṡd
i and

subtraction and max operate element-wise. Spring loss and
upward bias loss are multiplied by 5000 and 1000, respectively,
to be on the same order of magnitude as lossnll. We update
vertex positions using SignSGD on the compound loss, with an
update step of 0.001. Optimisation runs until loss stabilises or
300 iterations have passed.

Details such as small creases are hard to estimate from
voxel representations. The PMR produced by VtM tends to
miss such detail in its µ component. Where small creases or
other details have disappeared, spring lengths computed over
the µ component come out short, and σ values are elevated.
Higher σ values allow the optimisation step to move vertices
further from their µ positions with smaller impact on lossnll.
Consequently, optimisation tends to fill in missing detail by
moving vertices around so as to recover correct spring lengths,
within the leeway provided by the locally elevated σ values.
The resulting DMRs are thus more realistic cloth shapes than
would be obtained by simply taking the µ component of the
PMR. This realism is important for subsequent processing, as
the pEM∗D net is trained on deterministic mesh data from the
simulation. Skipping refinement was observed to significantly
harm planning performance. However, refinement does not
necessarily improve accuracy w.r.t. the ground truth compared
to the µ component of the VtM estimate (a missing crease may
yield a smaller error than a crease recovered at a slight offset).

The choice to use an uncoloured voxel representation
as input for mesh estimation is motivated by the fact that
this representation naturally generalises over variations in
colour, texture, and lighting conditions, whereas coloured
representations require extensive domain randomisation for
generalisation (Wu et al., 2020; Lips et al., 2022). Furthermore,
in preliminary experimentation, voxel input produced better
estimation accuracy than depth images of the same resolution.

Voxel-to-mesh training

The VtM net is trained on the shape data from the dataset.
Meshes are converted to voxel representation for input by
setting all voxels that contain at least one vertex to 1 and all
other voxels to 0. Before voxelisation, we double the mesh
resolution by interpolation, duplicate the resulting set of vertices
and apply Gaussian noise to vertex coordinates with σ = 0.025,
to promote generalisation. Noise is absent in the ground truth
mesh, so the net also learns to denoise its input. We apply
artificial self-occlusion by setting to 1 all voxel for which an
occupied voxel with the same x and y index and a larger z index
exists, approximating the self-occlusion that occurs for a single
top-down camera viewpoint. We apply data augmentation by
mirroring and random rotation around the Z axis. Rotation in
particular proved crucial to avoid excessive overfitting.

VtM net training must account for Cartesian equivalence.
As each shape has eight equivalent mesh representations, there
exist eight correct answers for each valid input to the VtM
net. We found no principled way of designating any one
answer as canonical. Using the meshes as-is as training targets
leads to failure to train, because augmentation and repeated
manipulation render the original assignment of Cartesian
coordinates to geodesic coordinates opaque. We allow all
assignments by training with the following loss:

lossVtM = min
{

NLL
(

sj, ṡp
i

) ∣∣∣ j ∈ [0, ..., 7]
}

, (13)
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where sj is the jth equivalent assignment in an arbitrary ordering
of the ground truth’s equivalent assignments. Note that the min
operator here allows the training process flexibility to determine
which one of the correct answers to pursue for each input.
Training uses the signSGD update rule with automated learning
rate reduction as in pEM∗D training, and is terminated when
the learning rate drops below 10−7.

Planning logic

Next we explain the planning algorithm. We perform
planning through backpropagation, and address the problem
of incomplete domain knowledge by introducing an epistemic
uncertainty penalty term in the loss function minimised by the
planning procedure.

Planning algorithm

Manipulation planning starts from a voxel representation of
the current cloth state. When planning on basis of simulation
data, we convert the DMR provided by the simulator to voxel
format to emulate the real-world case. The voxel representation
sv
0 is converted to PMR ṡp

0 using the VtM net. Then we derive
DMR ṡd

0 from ṡp
0 with the refinement routine described in

Section 4.7, using the µ component of ṡp
0 as initialisation value.

We apply the grasp point detection routine on this DMR to
obtain the set of graspable points for the current shape. On basis
of ṡd

0 and DMR s∗ representing the goal state, we generate a
manipulation plan. We assume the number of steps n to be given
and ≤ 3. Generation of a plan of length n is then performed as
follows:

1. Initialise a random plan m =<mi, . . ., mi+n−1 >

2. Compute the planning loss (detailed below) for m.
3. If niterations iterations have passed, return the plan with the

lowest planning loss seen so far.
4. If the loss score has not improved for 5 steps,

return to step 1.
5. Obtain loss gradients w.r.t. the manipulation inputs by

means of backpropagation of the planning loss.
6. Adjust m in accordance with these gradients using

the iRprop- update rule (Igel and Hüsken, 2000), and
return to step 2.

The number of search iterations is set in consideration of
the plan length: niterations = 25+ 25n. Hyperparameters for
iRprop- were set as follows: η+ = 1.2, η− = 0.5, 1min = 10−3,
1max = 0.05. Update rates are initialised to 0.05. We run 256
planning instances in parallel, and adopt the plan with the lowest
residual plan loss seen over the course of the planning processes
in all instances.

The planning logic must account for the unusual action
format. Recall that we have a variably sized, discrete set
of real-valued grasp point candidates for the current state.
In step (1), grasp points for the first manipulation in the
plan are picked at random from the grasp point set of the
current state. These grasp points are not updated in step (6).
Candidate grasp points for the first manipulation are known,
so there is no need to search the input space aside from
this discrete set. For manipulations beyond the first, we only
have (continually changing) probabilistic mesh predictions. This
makes it hard to derive candidate grasp points, so we leave
it up to the search process to figure out where viable grasp
points are likely to appear. Non-first grasp point positions need
not be exact: we re-run planning after each manipulation in
order to incorporate the new shape observation, so non-first
manipulations are never executed.

Different Cartesian-equivalent mesh representations of the
same shape may elicit slightly different plans. We compute all
equivalents of the current (ṡd

i ) and goal DMR (s∗), and assign
one eighth of the planning instances to each. For each non-
first planning process in a trial, we initialise one instance per
equivalent with a modified version of the previously generated
plan. This modification drops the first manipulation (as it
has just been performed), and snaps the grasp points of the
new first manipulation to the nearest points in the new set of
candidate grasp points.

Once a plan is generated, we check whether the system in
fact expects the plan to produce a better approximation of the
goal than the (estimated) current state provides. If it does not,
we replace the next manipulation with a null manipulation.

The first manipulation of the generated plan is executed
in simulation or hardware. After execution, we observe the
resulting cloth state as a voxel representation, and store the
outcome. If the plan length was 1, we terminate the interaction.
Otherwise, we repeat the planning process with plan length
n reduced by 1.

For subsequent steps of a multi-step manipulation process,
we carry over some information from the preceding step.
EM1D

(
ṡd
i ,mi

)
gives a probabilistic expectation ŝi+1 of

the outcome of the first manipulation in the generated
plan. For the subsequent plan generation process, we let
ṡd
i+1 = R

(
VtM

(
sv
i+1
)
, ŝi+1.µ

)
. By using the µ component of

the prediction for the new state as initial mesh for refinement,
we aim to disambiguate states that are ambiguous in voxel
representation. This biases refinement toward interpretations of
the voxel input that are consistent with the predicted outcome
of the preceding manipulation.

A second way in which we carry through information from
preceding steps is via memory trace ti. At each subsequent
plan generation process in a trial, we use memory trace ti+1

obtained through M
(

E
(

ṡd
i

)
, ti,m

′

i

)
as the memory trace input

for the first instance of M. This serves to allow preceding
manipulations to influence plan generation. ti+1 is recomputed
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for all Cartesian equivalences by performing a single forward
propagation through pEM∗D.

Planning loss and epistemic
uncertainty avoidance

Next we address the problem of planning with incomplete
domain knowledge. The aim here is to constrain plan search to
the domain covered by the training data (the ROI), because only
predictions within this domain are reliable. This is a problem
of epistemic uncertainty avoidance. In contrast to aleatoric
uncertainty, NNs cannot quantify epistemic uncertainty about
their outputs, so a different approach is necessary. We introduce
a dual network strategy, based on the following principle: two
networks trained independently on the same training data will
produce similar predictions for inputs in the domain covered
by that training data. However, for inputs outside this domain,
predictions are not constrained to be similar between the
networks, and will diverge. Hence, we can use the discrepancy
between predictions from two independently trained networks
as a proxy of whether an input (i.e., plan) lies within the known
(trained) domain or not.

We distinguish implicit and explicit avoidance. Implicit
avoidance is obtained by simply combining prediction losses
from the two independently trained nets into a single planning
loss. There should be fewer plans that deceive both nets into
predicting an outcome close to the goal than plans that deceive
just one net into doing so. Therefore, few plans leading through
unknown regions of the state-action space would produce a low
combined prediction loss.

This implicit strategy relies on the fact that discrepancy
between predictions will raise the combined prediction loss.
However, various other factors affect the combined prediction
loss, making this a poor proxy of epistemic uncertainty as such.
Given two nets, we can also calculate an explicit measure of
prediction discrepancy. This allows us to also take into account
prediction discrepancy on the non-final states of a manipulation
plan. Plans for which both nets predict similar outcomes will still
be unreliable if predictions for intermediate states diverge.

Hence, we introduce an epistemic uncertainty penalty term
u in the planning loss function. Planning loss for dual-net
planning with neta net and netb is defined as

lossdual =
NLL(w(s∗),w(̂sa

n))−lowa
n

higha
n−lowa

n
+

NLL
(

w(s∗),w
(̂

sb
n
))
−lowb

n
highb

n−lowb
n

+ α · u,
(14)

where s∗ is the goal state, ŝj
n is netj’s predicted outcome for the

current plan, highj
n and lowj

n are reference values for normalising
the losses from each net, α is a fixed weight, and u is the
epistemic uncertainty penalty for the current plan. We refer to
the first two terms as accuracy terms and to the last term as the

epistemic uncertainty term. Function w is a simple whitening
operation, rescaling input states such that vertices have a mean
of 0 and a standard deviation of 1 for each Cartesian dimension.
For PMRs this is over the µ elements, with σ values rescaled
accordingly. This eliminates the effect of the overall size of a
cloth shape on the loss. Figure 4B illustrates information flow
in the dual-net compound architecture.

Normalising the accuracy terms is not strictly necessary, but
simplifies balancing with the uncertainty term. It also avoids the
need to retune α when changing networks, allowing for fairer
comparison experiments. Normalisation is only meaningful
when combining multiple loss terms, as our planning algorithm
employs iRprop-, which uses only the sign of the loss gradients.

The reference values highj
n and lowj

n for accuracy term
normalisation are computed as

lowj
n = Median

{
NLL

[
w
(

sd
i+n

)
, w
(

EMnD
(

sd
i , md

i:i+n−1

))] ∣∣∣
d ∈

[
0...Nv

)
∧ i ∈

[
0...n−3

]
d ∈

[
0...Nv

)
∧ i ∈

[
0...n−3

]}
,

(15)

highj
n = Median

{
NLL

[
w
(

sd
i+n

)
, w
(

EMnD
(

sd
i , Rm

(
n
)))] ∣∣∣

d ∈
[

0...Nv

)
∧ i ∈

[
0...n−3

]
d ∈

[
0...Nv

)
∧ i ∈

[
0...n−3

]}
(16)

where Nv is the number of examples in the validation set
(100 here), d indexes the example sequences in the dataset, i
indexes the steps within an example sequence, Rm (n) generates
random manipulation sequences of length n (disregarding the
restrictions used in data generation), and Median computes the
median over its argument set. As for the range of i, recall that
our example manipulation sequences are of length 3 (resulting
in state sequences of length 4). We source example sequences
of length n by selecting all sub-sequences indexed by i : in− 1
(inclusive) with iı+ n [0, 3− n] . Hence for length n we find
4− n sequences per example.

These values give the range of loss values we can expect
to see during successful plan search: highj

n gives the typical
loss value for randomly initialised plans, while lowj

n gives
the typical residual loss expected for plans that in fact
produce the goal state.

Epistemic uncertainty penalty u is calculated as

u =
∑n

i = 1
eβ(ui−γ)

n

ui =
diff
(̂

sa
i ,̂sb

i

)
−µv

i
σv

i
, (17)

where ŝj
i is netj’s prediction of the cloth state at step i of the

current plan, obtained by decoding the latent state ĉj
i obtained

when the current plan and state are fed into netj. Values µv
i
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and σv
i are the mean and standard deviation of the difference

between the two nets’ predictions at the ith state of their
prediction sequences, computed over the validation set. This
gives an estimate of the distribution of the difference between
predictions for unseen examples drawn from the region of the
state-action space covered by the training data. By normalising
the difference, we avoid dependence on its absolute magnitude,
which will differ for different network pairs. Parameters β and
γ tune how prediction discrepancy impacts on the planning
process. We set β to 5 and γ to 1.25 in our experiments.
With these settings, planning is strongly averse to prediction
discrepancies exceeding the expected discrepancy for plans in
the known domain by over 1.25 standard deviations. The diff
function quantifies the difference between two predictions. This
requires some consideration, because whether or not a given
network output can reasonably be interpreted as a prediction
depends on whether the network inputs lie within (or near
enough to) the known domain. For inputs outside the known
domain, we should regard network output as nonsense. For this
reason, we let the diff function compare its arguments simply
as arrays of real values, instead of interpretating them as PMRs.
We let diff whiten its arguments and compute their MSE.

Note that u is a penalty term, not a traditional probability
measure. It is not intended to provide an interpretable
quantitative measure of epistemic uncertainty, but to provide
a gradient for steering the planning process toward plans
that yield relatively low prediction discrepancy between the
nets. Since prediction discrepancy is a proxy for epistemic
uncertainty, this has the effect of avoiding epistemic uncertainty.

Implicit and explicit uncertainty avoidance affect plan
search in subtly different ways. Only the latter specifically
prevents the system from wandering into unknown state-action
space territory. The implicit strategy may suffice to save the
system from being thoroughly deceived by deceptive plans, but
if it spends more update cycles in unknown regions (where
gradients are unreliable), it will still produce worse outcomes
than the explicit strategy.

Our experiments include single-net planning as a baseline.
Single-net planning does not account for epistemic uncertainty
(neither implicitly nor explicitly). The planning loss for
single-net planning is NLL

(
w (s∗) ,w

(
ŝn
))

, with ŝn being the
predicted plan outcome.

Experiments

We present three categories of results: estimation accuracy,
prediction accuracy, and planning accuracy.

Estimation

First we evaluate shape estimation accuracy. This evaluation
omits the first state (s0) of each data sequence. This state is

always the flat default state, so including it would artificially
inflate scores. Estimation accuracy is shown in Table 2. Scores
indicate Euclidean distance between vertices’ estimated and
actual positions, with the length of the cloth as unit. For
the initial estimates (PMRs), scores are computed using the
µ component. As noted above, refinement is intended to
recover realism, and does not necessarily improve quantitative
accuracy compared to the µ component of the initial estimate.
The scores reveal some overfitting, and some errors in cloth
layer ordering on the z-axis are observed, as well as instances
of self-intersection in more complex cloth shapes (which is
unsurprising, as the refinement routine does not perform
collision checking). Self-intersection is not problematic for
processing by the pEM∗D net (self-intersection also occurs
during pEM∗D training due to noise augmentation). Examples
of VtM estimates and their refinements are shown in Figure 6.
We observe good approximation of global shape in the initial
estimate, and recovery or fill-in of fine detail by refinement.
Average time cost of mesh estimation is 3.7 milliseconds for
the forward VtM pass generating the initial estimation and
0.57 s for refinement.

To assess the quality of the aleatoric uncertainty estimations
(σ component of the estimate), we divide errors by the
corresponding σ values. Under perfect uncertainty estimation,
this value should average to

√
2/π ≈ 0.798 (the ratio between

mean deviation and standard deviation for multivariate normal
distributions). We obtain a median value of 0.770 for the
test set, indicating that the σ component represents the actual
uncertainty well, overestimating it slightly.

Prediction

Next we evaluate the pEM∗D net’s prediction ability. For
purpose of dual-net planning we independently trained two
identical networks. For the evaluation here and for single-net
planning in the next section we use the net with the best
validation score. We include two baselines:

• A1 (No VtM): Prediction without shape estimation (i.e.,
prediction using the initial state’s ground truth as input).
• A2 (Voxel-based): Prediction by an EM∗D net trained to

predict in voxel format [similar to previous work (Arnold
and Yamazaki, 2019a)].

The voxel baseline requires some modification of the
encoder and decoder modules, due to the different state input
format. Following Arnold and Yamazaki (2019a), the encoder
and decoder modules are composed of 6 3D-convolutional
layers each, with 32, 32, 64, 128, 256, and 512 feature maps
(order reversed for decoder). Kernel size is 3 × 3 × 3
throughout. We use striding to reduce resolution at each layer,
with a stride of 2 for all dimensions in all layers, except for
the z-dimension on the first layer (last layer in the decoder),
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TABLE 2 Mesh estimation accuracy.

Step

Unit: Length of the cloth 1 2 3 All

Test
(100 seq.)

PMR (µ-component) mean
(st.dev.)
median

0.0142
(0.0201)
0.0116

0.0481
(0.0315)
0.0417

0.0800
(0.0383)
0.0781

0.0474
(0.0410)
0.0357

DMR (refined) mean
(st.dev.)
median

0.0137
(0.0198)
0.0114

0.0488
(0.0340)
0.0408

0.0833
(0.0410)
0.0831

0.0486
(0.0434)
0.0349

Train
(100 seq.)

PMR (µ-component) mean
(st.dev.)
median

0.0143
(0.00846)

0.0124

0.0418
(0.0242)
0.0354

0.0662
(0.0289)
0.0625

0.0408
(0.0308)
0.0331

DMR (refined) mean
(st.dev.)
median

0.0135
(0.00674)

0.0122

0.0420
(0.0255)
0.0342

0.0680
(0.0307)
0.0617

0.0411
(0.0323)
0.0315

FIGURE 6

Representative examples of shape estimation and refinement (test set data). Each column represents one example. The last example shows a
case where the z-ordering of the cloth layers is particularly difficult to infer from the voxel representation, leading to ambiguous z-ordering in
the estimate.

which has a stride of 1. We also tested a voxel-based EM∗D
with densely connected layers (as the mesh-based system uses
dense layers), but found convolution layers to perform better
in the voxel version. The M module is identical between the
voxel- and the mesh-based systems. Voxel representations are
in the same format and resolution as used for VtM net input
in the mesh-based system. As voxel representations are input
to the planning network directly, the VtM net is not used in
the voxel baseline.

Accuracies for prediction of the final outcome of
manipulation sequences of length one, two, and three are
given in Table 3. Evaluation is over the full test set (100
sequences) and 100 sequences from the training set. Prediction
error increases with the length of the manipulation sequence,
and some overfitting is again apparent. Score differences
between the main experiment and baseline A1 (no VtM) are
small, indicating that shape estimation is mostly sufficient to
bring out the system’s predictive potential. Example predictions
are shown in Figure 7. We observe that precision drops over
the course of the sequence, but global shapes remain clearly
recognisable for 3-step prediction. Increasing uncertainty over

steps is expressed in increasing σ values over the course of the
sequence (lilac shading).

We evaluate aleatoric uncertainty estimates by dividing the
error for each predicted vertex coordinate by the corresponding
sigma value, and averaging the results. We obtain median values
of 0.750, 0.785 and 0.861 for 1-, 2-, and 3-step prediction,
respectively, indicating decent uncertainty estimation (recall
that the ideal value is 0.798).

Table 3 also reports accuracy of the predicted cloth centre
position shift for the main system configuration and the no-
VtM baseline (A1). We see that position shift is predicted with
decent accuracy, which means we can calculate the approximate
position of the predicted shapes in the workspace. Although not
used here, this functionality would be important in practical
scenarios with workspace and arm reach limitations.

To evaluate baseline A2 (voxel-based), we need to compare
shape prediction ability across shape representation formats.
For this purpose, we convert predictions from the mesh-based
main experiment into voxel format as follows. For each vertex
i, we draw 1024 random samples from the multivariate normal
distribution given for vertex i by the prediction. We bin the
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TABLE 3 Prediction accuracy.

Sequence length

1 2 3

Shape prediction
accuracy
Unit: Length of the cloth

Start point Start point Start
point

0 1 2 All 0 1 All 0/All

Test data
(100 seq.)

Main mean
(st.dev.)
median

0.0161
(0.00589)
0.01460

0.0451
(0.0244)
0.0381

0.0914
(0.0431)
0.0857

0.0509
(0.0423)
0.0362

0.0419
(0.0206)
0.0373

0.0837
(0.0364)
0.0753

0.0628
(0.0362)
0.0513

0.0809
(0.0347)
0.0737

Baseline A1:
No VtM

mean
(st.dev.)
median

0.0158
(0.00548)

0.0138

0.0412
(0.0214)
0.0349

0.0712
(0.0340)
0.0616

0.0428
(0.0325)
0.0325

0.0417
(0.0206)
0.0368

0.0811
(0.0355)
0.0719

0.0614
(0.0351)
0.0502

0.0810
(0.0347)
0.0738

Training
data
(100 seq.)

Main mean
(st.dev.)
median

0.0163
(0.00726)

0.0137

0.0402
(0.0206)
0.0343

0.0773
(0.0391)
0.0673

0.0446
(0.0360)
0.0338

0.0389
(0.0188)
0.0332

0.0662
(0.0294)
0.0566

0.0525
(0.0282)
0.0453

0.0627
(0.0263)
0.0562

Baseline A1:
No VtM

mean
(st.dev.)
median

0.0162
(0.00728)

0.0136

0.0378
(0.0195)
0.0330

0.0571
(0.0274)
0.0491

0.0370
(0.0259)
0.0313

0.0386
(0.0186)
0.0332

0.0624
(0.0267)
0.0554

0.0505
(0.0259)
0.0442

0.0626
(0.0264)
0.0557

Shape prediction accuracy
Unit: mean voxel value difference

Test data
(100 seq.)

Main mean
(st.dev.)
median

0.00858
(0.00284)
0.00833

0.0102
(0.00230)
0.00996

0.0131
(0.00289)

0.0126

0.0106
(0.00328)

0.0105

0.0102
(0.00232)

0.0101

0.0134
(0.00273)

0.0131

0.0118
(0.00301)

0.0114

0.0135
(0.00280)

0.0132

Baseline A2:
Voxel-based

mean
(st.dev.)
median

0.00893
(0.00267)
0.00866

0.02069
(0.00607)

0.0202

0.0316
(0.00936)

0.0296

0.0204
(0.0114)
0.0192

0.0200
(0.00598)

0.0193

0.0326
(0.00891)

0.0329

0.0263
(0.00986)

0.0242

0.0325
(0.00885)

0.0330

Training
data
(100 seq.)

Main mean
(st.dev.)
median

0.00782
(0.00262)
0.00744

0.00959
(0.00223)
0.00934

0.0121
(0.00266)

0.0116

0.00983
(0.00306)
0.00962

0.00958
(0.00223)
0.00920

0.0121
(0.00261)

0.0116

0.0109
(0.00275)

0.0103

0.0120
(0.00258)

0.0115

Baseline A2:
Voxel-based

mean
(st.dev.)
median

0.00911
(0.00279)
0.00866

0.0195
(0.00572)

0.0189

0.0272
(0.00607)

0.0270

0.0186
(0.00899)

0.0180

0.0187
(0.00537)

0.0177

0.0267
(0.00560)

0.0259

0.0227
(0.00678)

0.0220

0.0266
(0.00544)

0.0263

Position prediction
accuracy
Unit: Length of the cloth

Sequence length

1 2 3

Test data
(100 seq.)

Main mean
(st.dev.)
median

0.0295
(0.0352)
0.0174

0.0383
(0.0346)
0.0282

0.0505
(0.0407)
0.0353

Baseline A1:
No VtM

mean
(st.dev.)
median

0.0269
(0.0295)
0.0163

0.0379
(0.0349)
0.0259

0.0506
(0.0403)
0.0370

Training
data
(100 seq.)

Main mean
(st.dev.)
median

0.0235
(0.0262)
0.0147

0.0214
(0.0175)
0.0189

0.0205
(0.0115)
0.0192

Baseline A1:
No VtM

mean
(st.dev.)
median

0.0164
(0.0114)
0.0138

0.0197
(0.0108)
0.0180

0.0201
(0.0114)
0.0180

Bold values indicate the best across all setups (main experiment and baselines), excluding baselines A1 and B1.

samples into voxels, and then divide the voxel values by 1024.
This results in a voxel-format prediction for the single vertex,
consisting of values pi

xyz quantifying the probability of vertex
i falling in the voxel with indices (x, y, z). We combine
the single-vertex predictions into a full-cloth prediction by

calculating for each voxel the probability that one or more
vertices fall into it as

pxyz = 1−
nvertices∏
i = 0

(
1−pi

xyz

)
. (18)
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FIGURE 7

Example prediction results for sequences of two and three manipulations (main experiment, test set data). Input for prediction is an estimation
of the original sequence’s first state and the sequence of manipulation inputs. Red and green dotted lines show manipulation trajectories. Lilac
circles mark grasp point candidates. Yellow dotted lines on predictions indicate the predicted displacement of the cloth’s centre point.
Trajectories that extend outside the viewport are wrapped around the border for visualisation purposes. The last example shows a case where
the system fails to predict that the shape partially unfolds during the last manipulation.

We now have occupancy probabilities for all voxels, which
together constitute a cloth-shape prediction in voxel format.
This format corresponds to the state format of the voxel version
of the planning system, allowing for direct accuracy comparison.
Results are given in Table 3. The error unit here is the mean
voxel value difference. The ground truth is a binary voxel
representation (1 for voxels occupied by the cloth, 0 for empty
voxels). The best mean and median score for each sequence
type is bolded. Mesh-based prediction outperforms voxel-based
prediction by a good margin, despite the fact that the mesh-
based predictions pass through two noisy format conversions in
this evaluation. State input to both systems is the same, but recall
that the mesh-based system takes grasp point input in geodesic
coordinates. As there exists no geodesic space in the voxel-based
system, it takes grasp points in Cartesian coordinates.

Planning (simulation)

Next we evaluate planning performance. In addition to
the main system, we evaluate five baselines to assess the
contributions of specific aspects.

• B1: No VtM. Performs planning on basis of ground
truth meshes instead of estimated meshes. This baseline
measures planning performance with perfect perception,
allowing assessment of how well the VtM net performs in
the context of the full planning system.
• B2: Single-net planning. Isolates the contribution of our

dual-net epistemic uncertainty avoidance strategy.
• B3: Dual-net planning with implicit epistemic uncertainty

avoidance. Isolates the contribution of the explicit

epistemic uncertainty penalty u. Obtained by setting α to
0 in Equation 14.
• B4: Voxel-based dual-net planning. For comparison with

the voxel-based approach in Arnold and Yamazaki (2019a),
we perform planning with EM∗D nets operating on
voxel representations directly. This baseline adds dual-net
planning functionality to the voxel version.
• B5: Voxel-based single-net planning. This baseline closely

approximates (Arnold and Yamazaki, 2019a).

We evaluate planning ability on all 100 examples from
the test set and 100 examples from the training set. We use
all sequences of length one to three that can be sourced
from this set of examples. The same sequences are used for
each experiment. Table 4 shows accuracy of the outcomes of
interleaved planning and execution measured as the Euclidean
distance between goal and outcome for each cloth vertex,
with the length of the side of the cloth as unit. The best
mean and median score for each sequence type is bolded
(disregarding baseline B1 because it is advantaged by perfect
perception). Our planning conditions aim to optimise oriented
shape, while placing no constraints on the position of the
obtained shape in space. Hence for evaluation, we align the
outcome and goal shapes in space. We do this by computing
offset vectors (the difference between a vertex’s position in
the goal shape and the outcome shape) for all vertices, and
subtracting the average offset vector from all vertices. Scatter
plots in Figure 8 show the scores for all examples from the
test set for the main experiment and baseline B1, plotting
planning accuracy against prediction accuracy as evaluated in
the previous section. Figure 9 shows examples of planning
and execution sessions. Note that many goal shapes can be
produced through more than one manipulation sequence. In
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TABLE 4 Planning accuracy.

Sequence length

1 2 3

Start point Start point Start
point

Unit: Length of the cloth 0 1 2 All 0 1 All 0/All

Test data
(100 seq.)

Main mean
(st.dev)
median

0.0291
(0.0527)
0.00566

0.0411
(0.0499)
0.0223

0.0783
(0.0637)
0.0591

0.0495
(0.0596)
0.0232

0.0725
(0.0680)
0.0453

0.0913
(0.0596)
0.0819

0.0819
(0.0646)
0.0643

0.109
(0.0652)
0.0969

Baseline B1:
no VtM

mean
(st.dev)
median

0.0288
(0.0591)
0.00565

0.0395
(0.0501)
0.0193

0.0718
(0.0637)
0.0488

0.0467
(0.0607)
0.0185

0.0678
(0.0596)
0.0495

0.0905
(0.0639)
0.0803

0.0792
(0.0628)
0.0619

0.109
(0.0575)

0.102

Baseline B2:
single-net

mean
(st.dev)
median

0.0333
(0.0640)
0.00654

0.0402
(0.0425)
0.0259

0.0778
(0.0629)
0.0550

0.0504
(0.0606)
0.0259

0.0809
(0.0611)
0.0640

0.0986
(0.0595)
0.0917

0.0898
(0.0610)
0.0819

0.126
(0.0712)

0.123

Baseline B3:
dual-net
without
uncertainty
loss

mean
(st.dev)
median

0.0314
(0.0577)
0.00550

0.0408
(0.0485)
0.0246

0.0677
(0.0510)
0.0588

0.0466
(0.0547)
0.0252

0.0813
(0.0736)
0.0598

0.0985
(0.0602)
0.0844

0.0899
(0.0678)
0.0726

0.121
(0.0665)

0.124

Baseline B4:
Voxel / dual

mean
(st.dev)
median

0.0278
(0.0336)
0.0140

0.0635
(0.0531)
0.0481

0.0915
(0.0669)
0.0689

0.0609
(0.0590)
0.0370

0.112
(0.0764)
0.0887

0.132
(0.0663)

0.127

0.122
(0.0722)

0.114

0.169
(0.0599)

0.181

Baseline B5:
Voxel /
single

mean
(st.dev)
median

0.0319
(0.0502)
0.0129

0.0790
(0.0668)
0.0546

0.0942
(0.0655)
0.0782

0.0683
(0.0668)
0.0445

0.132
(0.0752)

0.127

0.162
(0.0712)

0.168

0.147
(0.0748)

0.156

0.192
(0.0590)

0.205

Training
data (100
seq.)

Main mean
(st.dev)
median

0.0384
(0.0605)
0.00625

0.0407
(0.0488)
0.0251

0.0718
(0.0640)
0.0423

0.0503
(0.0601)
0.0267

0.0714
(0.0529)
0.0481

0.0902
(0.0583)
0.0770

0.0808
(0.0565)
0.0636

0.119
(0.0612)

0.115

Baseline B1:
no VtM

mean
(st.dev)
median

0.0417
(0.0743)
0.00639

0.0343
(0.0397)
0.0186

0.0631
(0.0618)
0.0334

0.0464
(0.0615)
0.0203

0.0731
(0.0614)
0.0462

0.0867
(0.0659)
0.0657

0.0799
(0.0641)
0.0582

0.109
(0.0570)
0.0992

Baseline B2:
single-net

mean
(st.dev)
median

0.0426
(0.0654)
0.00709

0.0345
(0.0379)
0.0191

0.0687
(0.0572)
0.0491

0.0486
(0.0566)
0.0248

0.0925
(0.0692)
0.0867

0.0958
(0.0655)
0.0853

0.0942
(0.0674)
0.0862

0.127
(0.0667)

0.118

Baseline B3:
dual-net
without
uncertainty
loss

mean
(st.dev)
median

0.0427
(0.0650)
0.00717

0.0372
(0.0449)
0.0212

0.0694
(0.0595)
0.0453

0.0495
(0.0588)
0.0251

0.0881
(0.0692)
0.0741

0.0834
(0.0532)
0.0725

0.0857
(0.0617)
0.0725

0.131
(0.0682)

0.129

Baseline B4:
Voxel / dual

mean
(st.dev)
median

0.0383
(0.0446)
0.0166

0.0622
(0.0518)
0.0475

0.0876
(0.0673)
0.0652

0.0627
(0.0589)
0.0420

0.113
(0.0679)

0.105

0.132
(0.0676)

0.133

0.123
(0.0684)

0.119

0.169
(0.0574)

0.172

Baseline B5:
Voxel /
single

mean
(st.dev)
median

0.0514
(0.0698)
0.0179

0.0782
(0.0741)
0.0503

0.0835
(0.0676)
0.0593

0.0711
(0.0719)
0.0435

0.155
(0.0813)

0.159

0.154
(0.0714)

0.158

0.155
(0.0765)

0.159

0.202
(0.0543)

0.207

Unit: mean voxel value difference

Test data Main mean
(st.dev)
median

0.00282
(0.00347)
0.00150

0.00516
(0.00427)
0.00394

0.00885
(0.00501)
0.00793

0.00561
(0.00496)
0.00412

0.00783
(0.00511)
0.00662

0.0103
(0.00484)
0.00964

0.00907
(0.00512)
0.00836

0.0119
(0.00507)

0.0116

Baseline B4:
Voxel / dual

mean
(st.dev)
median

0.00768
(0.00722)
0.00504

0.0182
(0.00985)

0.0166

0.0254
(0.0117)
0.0243

0.0171
(0.0122)
0.0146

0.0239
(0.0114)
0.0222

0.0308
(0.0112)
0.0305

0.0273
(0.0118)
0.0264

0.0336
(0.00866)

0.0332

Baseline B5:
Voxel /
single

mean
(st.dev)
median

0.00818
(0.00810)
0.00455

0.0211
(0.0117)
0.0203

0.0269
(0.0127)
0.0249

0.0187
(0.0135)
0.0170

0.0282
(0.0127)
0.0289

0.0361
(0.0134)
0.0380

0.0322
(0.0136)
0.0319

0.0412
(0.0122)
0.0420

(Continued)
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TABLE 4 (Continued)

Sequence length

1 2 3

Start point Start point Start
point

Unit: Length of the cloth 0 1 2 All 0 1 All 0/All

Training
data

Main mean
(st.dev)
median

0.00323
(0.00386)
0.00146

0.00523
(0.00407)
0.00421

0.008302
(0.00545)
0.00681

0.00558
(0.00498)
0.00406

0.00825
(0.00457)
0.00717

0.0104
(0.00477)

0.0103

0.00932
(0.00479)
0.00845

0.0121
(0.00478)

0.0120

Baseline B4:
Voxel / dual

mean
(st.dev)
median

0.00894
(0.00767)
0.00650

0.0185
(0.00937)

0.0167

0.0251
(0.0122)
0.0224

0.0175
(0.0119)
0.0160

0.0237
(0.00984)

0.0230

0.0306
(0.0111)
0.0302

0.0272
(0.0111)
0.0264

0.0338
(0.00958)

0.0341

Baseline B5:
Voxel /
single

mean
(st.dev)
median

0.0105
(0.00970)
0.00641

0.0211
(0.0129)
0.0180

0.0241
(0.0126)
0.0227

0.0186
(0.0132)
0.0165

0.0314
(0.0133)
0.0302

0.0355
(0.0131)
0.0340

0.0335
(0.0133)
0.0322

0.0424
(0.0114)
0.0441

Bold values indicate the best across all setups (main experiment and baselines), excluding baselines A1 and B1.
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FIGURE 8

Planning accuracy plotted against prediction accuracy for all 1-, 2-, and 3-step sequences in the test set. (A) Main experiment. (B) Baseline B1
(No VtM). Error unit: length of the cloth. For predictions, errors are calculated for the µ component of the prediction. Unit is the length of the
side of the cloth.

a number of the multi-step examples shown in Figure 9,
we see that the system invented manipulation sequences that
differ from the original sequence, yet closely approximate its
outcome. Parallel instances of the planning process, as well
as repeated runs of the plan generation process, can produce
different valid plans.

Planning on ground truths instead of estimates (baseline B1)
produces slightly better scores for most cases, but the difference
is modest. This indicates that the quality of the VtM net’s mesh
estimates is sufficient for use in this planning system, at least
when operating on simulation data.

Dual-net planning outperforms single-net planning
(baseline B2), which shows the effectiveness of epistemic
uncertainty avoidance for planning on our incompletely
sampled domain. Furthermore we see that the explicit

strategy improves performance compared to the implicit
strategy (baseline B3).

Regardless of the shape representation format used by the
planning system, the result of a planning session is a mesh
representation from the simulation environment. Hence unlike
predictions, planning outcomes can be compared directly in
mesh form between the mesh- and voxel-based versions of
the system. We see that the mesh-based system obtains better
accuracy for both dual- (main vs. B4) and single-net (B2 vs.
B5) planning. However, this comparison is somewhat unfair:
the voxel-based system is set up to optimise accuracy measured
in voxel format. We convert outcomes to voxel form, and
report voxel-based accuracy in Table 4. Even with accuracy
measured in voxel format, mesh-based planning outperforms
voxel-based planning.
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FIGURE 9

Representative examples of planning and execution sessions (test set data, dual-net planning). In each panel, the top row shows the original
manipulation sequence. The system only sees its estimate of the current state and the final state of the original sequence (i.e., the goal state,
marked with light blue background). The left column shows the sequence of cloth shapes obtained over the course of the session. The final
outcome is marked with a light blue background. Rows marked “Plan #i” show the ith plan generated in the session. Each plan starts from an
estimate (DMR) of the current shape, generated through the VtM net and refinement with subsequent shapes being predictions (PMRs)
generated by the pEM*D net. Under the last plan, we see the system’s estimation of the obtained outcome. The right column shows the result
of applying the refinement procedure to the predicted outcome of each plan. These are added for illustration, and not used by the system. They
represent a plausible deterministic shape drawn from the probabilistic prediction of each plan’s outcome. All shapes are marked in their bottom
left corner to indicate the shape type: R = real, E = estimation, P = prediction. Red and green dotted lines show manipulation trajectories. Lilac
circles mark grasp point candidates.

Planning times are shown in Table 5. Time cost for the
main configuration and baselines were measured on a single
GeForce RTX 2080 Ti GPU, with the system implemented in
TensorFlow (Abadi et al., 2015). Additionally, time cost for a
more optimised JAX (Bradbury et al., 2018) implementation
of the main configuration was measured on a single GeForce
RTX3090 GPU. As is to be expected, planning times are longer
for dual-net planning than single-net planning. Calculation
of the epistemic uncertainty penalty u requires decoding of
intermediate states, which adds substantial computational cost.
However, planning times remain on the order of seconds for
the mesh-based system. With regards to the voxel versions,
planning times are longer than those reported in Arnold and

Yamazaki (2019a). This is because we increased the number of
parallel search strains to match the mesh version, for fairness
of the accuracy comparison. Planning times do indicate a
computational cost advantage of the mesh version.

Failure modes

The existence of large-error outliers is evident in Figure 8.
We observe a few failure modes. One originates in the grasp
point detection routine. Sometimes a corner of the refined VtM
estimate is less pronounced than in the ground truth and fails
to be detected as graspable. Consequently, plan search fails to
consider the grasp point, potentially making it impossible to
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TABLE 5 Planning time cost.

Time cost
(seconds)

Implementation
and GPU

Plan length

1 2 3

Main
Mesh / dual

TensorFlow 1 /
RTX 2080 Ti

4.76s 9.11s 14.7s

Baseline B2:
Mesh / single

1.68s 2.98s 4.71s

Baseline B4:
Voxel / dual

88.3s 192s 335s

Baseline B5:
Voxel / single

22.2s 33.9s 45.9s

Main
Mesh / Dual

JAX / RTX 3090 2.65s 4.44s 6.49s

find the optimal manipulation. We also observe errors in the
z-ordering of cloth layers in shapes with multiple overlapping
folds. For example, when the target shape folds the cloth in
two over its x axis and then over its y axis, the generated
plan may sometimes fold in reverse order. This may be due
to alternative fold orders representing local minima in the
plan search space. Loss definitions that accentuate erroneous
z-ordering should help to ameliorate this. Finally, the mesh
estimation routine sometimes estimates incorrect z-ordering.
Some shapes become ambiguous in voxel representation. When
such a shape is the product of a preceding manipulation by
the system, it may still be disambiguated during refinement
(which in this case is initialised with the predicted outcome of
the preceding manipulation). However, when a manipulation
session starts from such a shape, failure is likely.

Planning (hardware)

We integrated the planning system with a dual-handed
robot platform (HIRO, Kawada Robotics), and performed
qualitative experiments on real cloth. There are significant
differences between the simulated cloth and real cloth, in
particular in thickness, friction with the work surface, and
elasticity. We manually selected five examples for which we
expect the manipulation sequence to produce similar results on
our simulated and real cloth. The mesh of the input state is
estimated from a voxelised point cloud obtained using a Kinect
depth camera mounted on the robot’s head, providing a near-
top-down perspective on the cloth. We performed interleaved
planning and execution following the same procedure as in
the simulation experiments. To grasp the cloth, we let one
finger of the gripper slide underneath it at the grasp position,
and then close the gripper. The closure direction aligns with
the z-axis. Hence, only the x and y coordinates of the grasp
point are required.

Figure 10 shows results in the same format as Figure 9,
and still frames of one example case are shown in Figure 1. We

observe that most outcomes clearly resemble the goal states. For
many manipulations seen here, close inspection reveals that the
trajectories slightly overshoot the optimal release point, leading
to folds that are slightly deeper than intended. This is due to the
difference in elasticity between the simulated and real cloth. The
simulated cloth stretches somewhat under its own weight when
lifted, causing it to rebound slightly upon release. The planning
system, anticipating this behaviour, places the release points
slightly beyond the grasped points’ intended final positions. The
real cloth, however, stabilises without rebounding, resulting in
the slight overshoot seen here.

We quantify similarity of the outcomes to the goals using
IoU (Intersection-over-Union) scores computed over top-down
mask images (i.e., silhouettes) of the goal and outcome. Scores
are shown in the figure. Shape estimation accuracy on real cloth
is sufficient on the initial and intermediate shapes to allow for
effective planning, but estimation on the final outcome is seen to
be challenging in cases where many layers of cloth overlap. This
is partly due to the difference in thickness between the simulated
and real cloth, which causes increasing divergence between the
voxel representations of simulated and real cloth as the number
of stacked layers increases.

Discussion

Our experimental results on simulated cloth confirm
that accuracy is significantly improved by the use of mesh
representations and dual-net planning with an explicit epistemic
uncertainty penalty. The advantage of mesh representation
holds up when we evaluate outcomes in voxel form, reflecting
the fact that accuracy in mesh format implies accuracy in voxel
format, but not vice-versa.

The present work deviates from the trend of letting
systems encode raw sensor data (pixels/voxels) into latent
representations (Arnold and Yamazaki, 2019a; Hoque et al.,
2020; Wahlström et al., 2015; Yan et al., 2020). Central to
this trend is the idea that training will discover the data’s
deep structure. Our results suggest this may be optimistic.
The mesh and voxel versions of the system operate on
identical voxel input, and generate latent representations of
identical dimensionality, yet show a substantial performance
gap. This suggests that the training procedure (a fairly typical
deep learning training procedure) is not actually capable of
discovering the data’s deep structure by itself.

The advantage of setting goal states in mesh format also
bears emphasising. When we consider tasks such as garment
folding or knot-tying, we aim not just for visual similarity from
a given viewpoint, but for structural similarity to the goal state.
This is hard to achieve when the system does not represent
the object’s structure in a form that allows for comparison to a
structured goal representation.

We find that in numerous cases, planning outcomes more
closely resemble the goal state than the system’s own predictions
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FIGURE 10

Two-step manipulation sequences planned by the system, performed by a dual-handed robot on real cloth. See Figure 9 for the figure format.
The right-most column in each example shows the sequence of actually obtained physical cloth shapes. Input states for plan generation are
obtained by shape estimation on voxelised point cloud data of the real cloth. Real cloth shapes are captured at a slight angle due to the camera
placement. Plans were rotated by multiples of 90◦ degrees around the z-axis in order to accommodate limitations of the robot’s range, and
images of real cloth shapes are rotated accordingly. Scores are Intersection-over-Union scores over mask images computed for the goal and
outcome, indicating the similarity of the top-down silhouettes of goal and outcome shapes, with 1.0 corresponding to a perfect match.

for the generated plan. This may seem counterintuitive, but
should not be surprising. In principle, close resemblance
between the goal state and the prediction for the optimal
action sequence is no requirement for finding the optimal
action sequence. What is required is merely that the prediction
for the optimal action sequence better approximate the goal
than the predictions for non-optimal action sequences. This
allows significant leeway in prediction accuracy. The use of
explicit aleatoric uncertainty in the mesh format helps the
system exploit this leeway. For parts of the state that the
system cannot predict with precision, it indicates lack of
confidence with elevated σ values. This reduces the impact
of these parts on the planning loss. Parts that are predicted
with relatively high confidence thus dominate plan search.
When the relatively predictable parts of the deformation process
sufficiently constrain action search, near-optimal actions can
be found despite significant uncertainty about other parts.
If the action is correct and the deformation dynamics are
consistent, the hard-to-predict parts will fall into place when
the action is executed. Hence the combination of explicit
aleatoric uncertainty and backpropagation-based planning with
a likelihood planning loss allow for effective planning even in
presence of substantial prediction uncertainty.

The effectiveness of the dual-net approach raises the
question whether additional network instances could further
boost performance. We expect the utility of additional instances
to be marginal. The introduction of the second net adds

functionality by providing a gradient toward the ROI. The utility
of additional nets would be limited to reducing the noisiness
of this gradient. With regard to deception avoidance, the dual-
net approach is based on the assumption that deceptive plans
appear at more or less random points in the input space, and
that these points differ for independently trained nets. If this
assumption holds, then very few plans will deceive two nets
at once, making the utility of additional nets for deception
avoidance negligible.

Our dataset includes complex shapes of limited practical use.
The choice not to constrain the repertoire to basic, common
cases is motivated by a pursuit of generalised affinity for
cloth manipulation. Generality implies that the system can
generate plans for both unseen novel cases as well as cases
of no practical use. The alternative is to assume that we can
imagine and account for all the situations a robotic system
will find itself in, which may be a strong assumption to
make when a robot is supposed to function flexibly in an
uncontrolled environment.

Conclusion and future work

We presented a system for cloth manipulation planning,
building on the system proposed in Arnold and Yamazaki
(2019a). We adopted mesh representations to eliminate much
of the ambiguity that hampers voxel-based planning. Mesh
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representations were obtained by introducing a neural network-
based shape estimation routine into the system. We found that
this significantly improves accuracy for both prediction and
planning. We also addressed the problem of planning with
incomplete domain knowledge, introducing a dual-network
planning strategy that uses prediction discrepancy between
networks as a proxy of epistemic uncertainty in order to avoid
epistemic uncertainty. Finally, the need to work with discrete
sets of graspable points was addressed by incorporating grasp
point detection. These improvements make significant strides
toward practical applicability. With regard to time cost, dual-
net planning is more demanding than single-net planning, but
the switch to comparatively lightweight representations offsets
the additional cost. Planning times on the order of a few
seconds are maintained.

Various avenues for further development remain. At
present, planning is closed-loop at the granularity of
full manipulation steps. Correction of trajectories mid-
manipulation can be achieved by applying many of the same
concepts at a finer timescale. We pursue these ideas in parallel
work (Tanaka et al., 2021). We used a simple square cloth here.
No part of the system relies on this topology, but performance
on alternative topologies remains to be assessed. Discrepancies
in material properties between simulated and real cloth are
an obstacle to real-world generalisation, as we observed in
our hardware experiments. Settings where we cannot assume
accurate prior knowledge of fabric properties (such as household
support settings) require a structured way of handling material
variation. We believe this is an important open issue in cloth
manipulation research. In ongoing work, we are developing
functionality for estimating material properties on the fly
during manipulation and using these estimates to improve
manipulation trajectories (Arnold and Yamazaki, 2022). Other
work in this Research Topic addresses this issue by means of
parametric biases (Kawaharazuka et al., 2022).

Voxelisation of the shape input to the VtM net may cause
shape ambiguity as discussed in Section 6.4, and limits fidelity
to some extent. Using undiscretised point cloud input may
further improve mesh estimation accuracy while retaining the
generalisation properties of voxel representations. To this end,
we are experimenting with estimation architectures based on
PointNet (Qi et al., 2017). Finally, our planning evaluation
experiments assumed plan length to be given, which is
impractical. Planning with variable plan lengths can be achieved

using a planning loss that compares predicted intermediate
states against the goal state.
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