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Using deep learning-based methods to detect surface defects in strip steel

can reduce the impact of human factors and lower costs while maintaining

accuracy and efficiency. However, the main disadvantages of this method is

the inability to tradeoff accuracy and efficiency. In addition, the low proportion

of valid information and the lack of distinctive features result in a high rate of

missed detection of small objects. In this paper, we propose a lightweight

YOLOX surface defect detection network and introduce the Multi-scale

Feature Fusion Attention Module (MFFAM). Lightweight CSP structures are

used to optimize the backbone of the original network. MFFAM uses different

scales of receptive fields for feature maps of different resolutions, after

which features are fused and passed into the spatial and channel attention

modules in parallel. Experimental results show that lightweight CSP structures

can improve the detection frame rate without compromising accuracy.

MFFAM can significantly improve the detection accuracy of small objects.

Compared with the initial YOLOX, the mAP and FPS were 81.21% and 82.87Hz,

respectively, which was an improvement of 4.29% and 12.72Hz. Compared

with existing methods, the proposed model has superior performance and

practicality, verifying the effectiveness of the optimization method.
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Introduction

Strip steel is used in a fairly wide range of applications and is in high demand in
industrial production. Its surface quality is one of the most important criteria for the
quality of strip steel. In recent years there has been an increasing interest in Automated
Surface Inspection Systems (ASIS) based on machine vision. ASIS is a non-contact,
non-destructive, and fully automated solution to complement or replace conventional
detectors (Kapsalas et al., 2007; Ghorai et al., 2013; Xie et al., 2014; Kuo et al., 2018).
To reduce labor costs and improve detection efficiency, deep learning-based detection
methods replace traditional methods (Jia et al., 2004; Amid et al., 2012; Jeon et al.,
2014; Tikhe, 2014; Yuan et al., 2015). Deep learning techniques are becoming more
and more important in solving many challenging computer vision tasks, such as urban
traffic (Ali et al., 2019, 2021a,b), multi-object detection (Liu et al., 2020), and medical
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image segmentation (Zhao et al., 2019; Hesamian et al., 2020).
All features are extracted automatically in the multi-layer
structure of a deep neural network. Approaches based on deep
neural network have better detection performance compared
to manual methods. There are two types of deep learning-
based object detection methods: two-stage and one-stage. The
two-stage network is divided into two steps, region proposal,
and image classification, and has a high detection accuracy.
Specifically, the commonly used two-stage object detection
methods include R-CNN (Girshick et al., 2014), Fast R-CNN
(Girshick, 2015), Faster R-CNN (Ren et al., 2017), SPP-Net
(He et al., 2015), etc. On the other hand, the one-stage
model performs classification and regression directly. Thus,
this method is fast in detection but low in accuracy, especially
for overlapping objects and small objects (Li K. et al., 2022).
Specifically, the commonly used single-stage object detection
methods include YOLO (Redmon et al., 2016; Redmon and
Farhadi, 2017, 2018; Bochkovskiy et al., 2020; Ge et al., 2021)
and SSD (Liu et al., 2015).

The surface defect detection task is foreground localization
and identification against a simple background. As productivity
increases, production speeds increase and defect areas decrease,
inspection equipment places greater demands on the embedded
algorithms. During conventional production, strip steel is
rolled at speeds of up to 20m/s or more (Su and Luo, 2022)
and in widths of up to 1 meter. Such high-speed, real-time
operation requires special image processing equipment and
software. Although the two-stage network has a high level of
inspection accuracy, it is far from being fast enough to meet the
requirements of high-speed rolling lines. One-stage networks,
although fast in detection, tend to be less accurate, especially
for small and stacked objects. The major objective of this
paper is to improve the speed and accuracy of the detection
of surface defects in strip steel. A lightweight YOLOX surface
defect detection method for strip steel combined with a multi-
scale feature fusion attention module is proposed. The method
enables high-speed, high-performance models to be deployed in
the production process, enabling unmanned, fast, and robust
localization and classification of strip steel surface defects. The
two main contributions of this method are as follows.

(1) Lightweight network architecture: Lightweight design of
the backbone network. A lightweight CSP structure is
proposed: firstly, the number of channels is compressed by
Bottleneck, and secondly, the normal K∗K convolutional
filters for feature extraction are replaced by K∗1 and
1∗K depthwise separable convolution filters. This structure
reduces the size of the model, the number of parameters,
and the number of calculations, and increases the
speed of detection, without compromising the accuracy
of the detection.

(2) New attention module: A multi-scale feature fusion
attention module is proposed. The characterization of

the underlying features is enhanced by applying different
scale receptive fields and feature fusion to feature maps
of different resolutions passed into the Neck from
the backbone network. The features are then passed
into the spatial-channel attention module in parallel
to avoid the two modules influencing each other. The
module significantly improves the accuracy of small-area
defect detection.

Related work

The detection of surface defects is an important process
of the strip steel production process. With the development
of deep learning, researchers have introduced convolutional
neural networks into strip steel surface defect detection methods
and continue to improve detection accuracy in their research.
Based on the single-stage YOLOV5 model, Li and Wang
(2021) selected the best model by transfer learning and group
comparison. 77.3% of mAP values were achieved on the NEU-
DET dataset. Xing and Jia (2021) proposed a convolution
network classification model with symmetric modules to extract
features and designed an optimized IOU (XIoU). The result
shows that their model achieves 79.89% mAP on NEU-DET and
78.44% mAP on the self-made detection dataset. Cheng and Yu
(2020) proposed RetinaNet with difference channel attention
and adaptively spatial feature fusion. Results showed that the
new network achieved 78.25 mAP and improved by 2.92% over
RetinaNet. Han et al. (2021) proposed a Faster R-CNN detection
method with feature fusion and cascade detection. Feature
fusion and cascading of detection networks improved detection
accuracy by 11.86% and 2.37%, respectively. The detection and
accurate positioning of defects on metal surfaces are the basis for
automated manufacturing technology. Sun et al. (2022) added
a frequency domain channel attention module to YOLOV5 and
increased the mAP from 79.9 to 85.5%, keeping the FPS at 27.71.
However, the most difficult type of crazing to detect in the NEU-
DET dataset was omitted from the paper because the image
defects were not obvious, so the effectiveness of the attention
module in detecting all types of defects is not known. Yuan et al.
(2022) made a series of small improvements to ResNet18 and
were able to achieve an accuracy of 97.11% when acting together.
Liang et al. (2022) proposed a deep residual shrinkage network
model. The accuracy was improved by optimizing the Adam
and activation functions and was able to achieve 98.88% on the
test set. The attention module was introduced and optimized
on ResNet 50 and 101 by Lu et al. (2021) and preprocessed
the dataset by false color enhancement. The optimal model was
able to achieve 98.05% accuracy with an FPS of 7.69 on the
NEU-DET dataset. Liu Y. et al. (2021) replaced the backbone
network of YOLOv4 with MobileNetv3 to improve the detection
frame rate. And the problem of poor detection caused by uneven
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positive and negative samples was addressed by redefining the
confidence loss. The mAP and FPS of the final model were
91.13% and 26.39%, respectively.

In response to production demands, a large and growing
number of researchers have investigated how to increase the
speed of detection. Almost all of these studies are based on
one-stage object detection networks. Xu et al. (2021) fused the
shallow features of DarkNet53 layer 11, the backbone network of
YOLOV3, with the deep features to generate a new feature layer.
The experimental results show that the improved YOLOV3
has an mAP of 75.1%, which is highly accurate in locating
small defect objects while having some real-time performance.
Liu Y. et al. (2022) used the same idea to improve YOLOV3.
Adding 1 layer of prediction scale to the 3-layer prediction
scale of the backbone network DarkNet53, and then densely
connecting the multi-scale feature maps across layers, enhances
the ability to characterize dense minute defects. The method has
an average detection accuracy of 89.24% and can detect 25.62
images of 416∗416 pixels per second. Li X. et al. (2022) achieved
a lightweight model by replacing the backbone network of
YOLOV5, reducing the size by 10.4%; and introducing an
attention module to improve the detection accuracy by 3.3%.

Small object detection has long been a difficult and hot
topic in computer vision (Tong et al., 2020). Han and Li (2022)
proposed the method of increasing residual connections and
cross-layer attention to improving the detection capability of
the model for small objects in remote sensing images. This
method verified that the bottom feature map and attention
module in the feature pyramid are very important to improve
the performance of small object detection. Liu X. et al.
(2022) proposed an improved TTB-SSD (Top to Bottom SSD)
algorithm combining PANet multi-scale feature fusion network
and top-down feature fusion path. This method allows for more
accurate localization of small objects and increases the accuracy
of small object detection. Bosquet et al. (2021) proposed
an end-to-end spatio-temporal convolutional neural network
for small object detection in video. This architecture detects
small objects over time and correlates pairs of the top-ranked
regions with the highest likelihood of containing those small
objects. With the development of newer production lines, the
size and distinctiveness of the defects are being reduced. The
challenge of small object detection is beginning to affect the
field of surface defect detection. Zhang et al. (2022) added
three feature extraction layers and three small-sized anchor
frames to the backbone network to address the situation of the
non-detection of fine defects. The algorithm showed a large
improvement in recall and overall accuracy. Liu K. et al. (2021)
proposed an end-to-end defect detection framework based on
the Adaptive Sort Fusion Attention Network. The method can
extract features at different scales and levels for different defects,
while suppressing the background, allowing better extraction
of features for small objects. The method improves detection

FIGURE 1

Focus structure.

accuracy, especially for small-area objects. The mAP is improved
to 83.2%.

Enhanced YOLOX for surface
defect detection of strip steel

Backbone

The YOLOX object detection network
The YOLO series is a typical one-stage object detection

method. During the prediction process, the input image is
divided into a grid of three resolutions, which are used to predict
small, medium, and large objects. Several prior bounding boxes
exist for each feature point. The prediction result of the network
makes a judgment on whether the interior of the prior bounding
box contains an object or not and adjusts the prior bounding
box to obtain a prediction bounding box. YOLOX is based on
YOLOv3-Darknet53, incorporating relevant technologies from
YOLOv5 and optimized for improvement. In the backbone
network, YOLOX uses the Focus structure to divide and
stack feature point information onto the channels. The Focus
structure is shown in Figure 1.

YOLOX uses the SiLU activation. The SiLU activation has
the properties of being upper bound-free with lower sessions,
smooth and non-monotonic. SiLU outperforms ReLU on deep
models, which is defined as follows:

SiLU (x) = x∗sigmoid(x) (1)

YOLOV3, YOLOV4, and YOLOV5 are all Anchor-Based,
while YOLOX uses the Anchor-Free approach. Anchor-
based object detection networks cluster a priori frames when
predicting, which has a high time complexity and requires
different anchor frames to be designed for different datasets,
limiting applicability. The anchor-free object detection network,
on the other hand, only requires regression on centroid
coordinates and width and height, which is of low time
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FIGURE 2

Enhanced YOLOX structure.

complexity, but its accuracy is not up to that of the anchor-
based detection network. The past YOLO series implemented
classification and regression inside a 1∗1 convolution, an
approach that YOLOX felt would have a detrimental effect on
the network. Therefore, the decoupling head is divided into two
parts in YOLOX. Classification and regression are implemented
separately, and the two parts of information are then integrated
when making predictions. The reg branch calculates the loss
through the IoU of all ground truth and prediction, as shown
in the following equation.

Lreg = − log(IoU(Bgt,Bpred)) (2)

The cls and obj branches are trained by the BCE loss
function, as shown in the following equation.

Lcls = −
n∑

i = 1

(tilogpi+(1−ti)log(1−pi)) (3)

In this paper, the YOLOX target detection model will be
enhanced for application to the task of detecting surface defects
in strip steel. The structure of the enhanced YOLOX model is
shown in Figure 2.

Lightweight modules
The backbone feature extraction network used by YOLOX

is Darknet53, on which this paper uses CSPDarknet53 (Cross
Stage Partial) as the backbone and designs the residual block
in the backbone to be lighter. CSPDarknet53 is the backbone
network used by YOLOv4. It is a backbone designed on the basis
of the YOLOv3 backbone network Darknet53, drawing on the

experience of CSPNet 2019. CSPDarknet gains a better learning
advantage through the overlay of CSP structures and residual
blocks. This cross-stage local network maximizes the difference
in gradient union as a way to avoid different convolutional
layers learning the same gradient information. There is a
residual structure of repeated calls in the CSP structure and the
parameters of the model are mainly concentrated in this part.
The structure of the CSP applied to the residual block is shown
in Figure 3.

To reduce the number of parameters and computation
without affecting the feature extraction performance, an L-CSP
structure is proposed in this paper. In the residual block of the
basic module, a layer of Conv2D is used as the compression
bottleneck to reduce the number of channels. The low-rank
decomposition is also used at the filter level, which means
decomposing one K∗K filter into two filters of size K∗1 and
1∗K and coordinating more weight information into lower-
rank filters. In this paper, the 3∗3 ordinary Conv2D after
the bottleneck is replaced with 3∗1 and 1∗3 depth-separable
convolution to further improve the model operation speed.
Finally, the number of channels is adjusted with a layer of
convolution and the features are fused and output. The L-CSP
structure is shown in Figure 4.

In the five CSP modules of the original CSPDarknet53, the
residual structures were stacked one, two, eight, eight, and four
times, for a total of 52 convolutional layers. To improve the
speed of the model, the number of stacks was changed to 1, 1,
3, 3, and 1; the number of output channels of the last four CSP
modules was scaled to 0.375 times the original number, 48, 96,
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FIGURE 3

Applying CSP to ResBlock.

192 and 384, respectively. The CBS module with a stride of 2 acts
as a downsampler for the network.

Multi-scale feature fusion attention
module

Based on the detection results of the unoptimized model,
the detection of Crazing was the least satisfactory of all the
object species, with very low AP values. This type of object
has a small relative area and is a small object. To improve
the detection accuracy of the model for small objects, this
paper proposes a new attention module, the Multi-scale Feature
Fusion Attention Module.

The location of the attention module application was chosen
between the Backbone and Neck to ensure that the pre-trained
weights of the backbone feature extraction network could
continue to be used and to avoid training the model from
scratch. The location of the attention module deployed between
the backbone network and Neck is the set of three feature
maps (feature1, feature2, feature3) provided to Neck by the
backbone network.

The structure of MFFAM is shown in Figure 5 and contains
3 main sub-modules. Sub-module 1 is a multi-scale receptive
field structure, and sub-modules 2 and 3 are two branches of a
parallel spatial-channel attention module.

Multi-scale receptive field structure
Feature1 (52∗52), feature2 (26∗26), and feature3 (13∗13)

are all in the deeper layers of the model, where the image
information is highly extracted and compressed, and the
features are very abstract, hence the need to enhance the

FIGURE 4

L-CSP structure.

image representations. Sub-module 1 enables different scales
of perception through 3 different sizes of receptive fields and
finally feature fusion to obtain the output features, as shown in
Figure 6.

The large, medium, and small resolution feature maps are
mainly used to detect small, medium, and large objects. If
too small a receptive field is used for large-resolution feature
maps, only local information is passed to the attention module,
reducing the detection accuracy of small objects. If too large
a receptive field is used for small-resolution feature maps,
then there will be information from other objects passing into
the attention module, which will make training more difficult
and increase the time needed for convergence. Therefore, the
receptive fields of 3∗3 and 5∗5 were used for the feature1,
three scales of 1∗1, 3∗3, and 5∗5 for feature2, and 1∗1 and
3∗3 for feature3.

Parallel spatial-channel attention structure
With a traditional CBAM attention module, channel

attention is first applied to the input features to obtain the
channel modulation features and then spatial attention is
applied to obtain the final output features. However, as spatial
attention is applied to the channel modulation features, the
effect of the spatial attention module is influenced by the
channel attention module. Therefore, this paper uses a parallel
application method. The parallel attention module is shown in
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FIGURE 5

MFFAM structure.

Figure 7. Sub-module 2, shown in Figure 7A, compresses the
spatial information by merging the pixel information at the same
position on each channel, then adjusts the number of channels
with a convolution layer, and after Sigmoid activation performs
feature fusion with the original input features. Sub-module 3,
shown in Figure 7B, performs global average pooling and global
maximum pooling on each feature map to compress the channel
information, and then uses one-dimensional convolution for
feature learning, with the convolution kernel size set to 7 to
ensure the cross-channel information interaction rate.

Results

Datasets and operating environments

There are few publicly available steel surface defect
inspection datasets in China. The commonly used one is the
NEU surface defect database (Song and Yan, 2013; He et al.,
2019; Bao et al., 2021) collected and collated by Mr. Song
Kechen from Northeastern University, which contains six types
of typical strip steel surface defects: Crazing (Cr), Inclusion
(In), Patches (Pa), Pitted Surface (PS), Rolled-in Scale (RS) and
Scratches (Sc). Each image is an intercept of the area containing
the defect from the photograph taken. Each image in the dataset
has a raw resolution of 200∗200 pixels, for a total of 1800
images. As it is an intercepted shot, the relative area of the

defect in the image is large, and it is not difficult to locate as
well as classify them. A reduction in the difficulty of detection
caused by human factors can make training less effective. The
final model has reduced detection accuracy for small objects in
practical applications. To improve the suitability of the dataset,
the images need to be enhanced. This can be achieved by
using image stitching (four 200∗200 images stitched together
into one 400∗400 image). However, the surface defect detection
task in strip steel is foreground localization and identification
against a simple background. In the images acquired by the
inspection system, a single-tone flat strip surface occupies a
large percentage of the area, in addition to the object to be
inspected. Therefore, by applying a solid color fill around the
image, it is possible to restore the inspection scene for strip
steel. Also, Mosaic was used during the training process. The
solid color fill adds a simple background to the dataset image.
The random scaling and stitching of images used by Mosaic will
simultaneously increase the complexity of the foreground and
background and improve the robustness of the model during the
training process. Increasing the resolution by simply stitching
the images together has no advantage when it comes to training.
The fill pixels are the average grayscale of the whole image and
the size after the filling is 416∗416. At this point, the average
area share of the object is reduced to 1/4 of the original data set.
Randomly divide the training, validation, and test sets according
to the ratio of 6:2:2.

Frontiers in Neurorobotics 06 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1042780
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/


fnbot-16-1042780 November 15, 2022 Time: 13:52 # 7

Wu et al. 10.3389/fnbot.2022.1042780

FIGURE 6

Sub-module 1: Multi-scale receptive field structure.

The definition of a small object differs in different situations.
Currently, the distinction is mainly based on absolute pixel
values or relative area ratios. For example, MS COCO defines
an object as small object with color image pixels less than or
equal to 32∗32. In this paper, objects with pixels less than or
equal to 40∗40 (relative area less than or equal to 0.925%) are
defined as small objects. The vast majority of Crazing and a small
number of Inclusions were found to be small objects during the
pre-processing process. In the actual detection process, some of
the Inclusions that are labeled as a whole target are divided into
smaller segments. This article is based on the label and only uses
Crazing as a small object.

The training GPU for this experiment was the Tesla
V100S. The GPU used for the test was an NVIDIA RTX
2060 6G video memory based on Tensorflow-GPU version
2.3.0 and the CPU was an Intel Core i5-9400@2.9GHz
with DDR4 2667MHz 16G+16G memory. We designed
the experiments using the same dataset, training settings,
and pre-training weights. Dropout is introduced during

the training process to reduce overfitting. The number of
epochs is set to 500, the batch size is set to 64, the
initial learning rate is set to 0.01, and the learning rate is
automatically adjusted by the cosine annealing method during
the training process. Equation (4) is the cosine annealing
method.

lr = lrmin+
1
2
(lrmax−lrmin)(1+cos(

E
Ei
π)) (4)

where lrmax denotes the maximum learning rate, set as the
initial learning rate; lrmin denotes the minimum learning rate, set
as 0.0001; E denotes the total number of epochs and Ei denotes
the current epoch rounds.

To verify the lightweight design and the optimization of the
attention module, Recall(R), Precision(P), F1-score(F1), mean
Average Precision (mAP), and Frames Per Second (FPS) were
used as evaluation metrics. The calculation is done by selecting a
cross-ratio IoU threshold of 0.5, and an IoU> 0.5 is considered a
successful detection of the object. Equation (5) is the formula for
Recall, Equation (6) is the formula for Precision, and Equation
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FIGURE 7

Parallel attention module. (A) Sub-module 2: Spatial attention module. (B) Sub-module 3: Channel attention module.

(7) is the formula for the F1 score. The mAP is calculated using
the equation from VOC2010 onward as shown in Equation (8).

R =
TP

(TP+FN)
(5)

P =
TP

(TP+FP)
(6)

F1 = 2(
1

1
P+

1
R
) = 2

P∗R
P+R

(7)

mAP =
1
n

∑ ∫ 1

0
P(R)dR (8)

In this paper, the n is 6.

Comparison of results and analysis

Ablation study
To verify the effectiveness of the various improvement

strategies proposed, a series of ablation experiments were carried

out. The network models were trained using the same settings in
the framework of experiments on the same platform. The impact
of the proposed improvement modules on the performance of
the network model, as well as the improvement effect of multiple
modules acting together, is verified separately in the test set. The
results are shown in Table 1.

1) Scenario 1 introduces the L-CSP module in the backbone
of the baseline network model. The use of the L-CSP
module has had a very good compression effect on the
volume of the model. The amount of computation was
reduced by 36.16%, the detection framerate improved by
11.2 FPS, while the mAP decreased by only 0.1%. The
experimental results demonstrate the effectiveness of the
proposed lightweight design in this paper.

2) Scenario 2 deploys the MFFAM between the Backbone
and Neck in the manner described in 3.2.1 based
on the baseline network model. The results show
that the method was able to achieve an mAP of
81.44% on the NEU-DET dataset. Compared to the
baseline model, the mAP has improved by 5.15%.
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TABLE 1 Ablation study results for enhanced YOLOX.

No. Light-weighting Attention module Parameters Model size GFLOPs FPS mAP

0 505.16M 19.8MB 6.400 70.14 76.29

1
√

295.01M 12.0MB 4.086 81.34 (+11.2) 76.19 (–0.1)

2
√

511.58M 20.1 MB 6.432 67.07 (–3.07) 81.44 (+5.15)

3
√ √

301.41M 12.3MB 4.118 82.87 (+12.73) 81.21 (+4.92)

FIGURE 8

Original images, heat maps and detection images.

TABLE 2 Comparison of P, R, and F1 for different improvements of YOLOX.

No. Cr In Pa PS Rs Sc

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

0 48.2 35.1 0.41 84.6 81.9 0.83 84.4 87.7 0.86 82.4 77.8 0.80 69.7 62.2 0.66 88.6 90.7 0.90

1 69.4 35.5 0.25 78.8 68.5 0.73 88.5 82.1 0.85 94.6 92.1 0.93 73.9 51.5 0.61 87.0 83.3 0.85

2 71.8 37.9 0.50 85.5 70.7 0.77 90.5 79.8 0.85 89.2 86.8 0.88 63.3 57.6 0.60 88.9 83.3 0.86

3 68.5 40.2 0.64 84.2 75.0 0.79 83.6 82.6 0.88 94.6 92.1 0.93 73.1 57.6 0.64 82.6 87.5 0.85

At the same time, the volume of calculations has
increased by only 0.5%, with minimal fluctuations.
The experimental results validate that MFFAM
can improve the performance of the model at a
fraction of the cost.

3) Scenario 3 is the deployment of MFFAM based
on the lightweight model of Scenario 1. The
combination of these two optimizations resulted
in an mAP of 81.21 and a detection frame rate
of 82.87FPS. Compared to the baseline model,
the improvement was 4.92% and 12.73 FPS,
respectively. The results show that the model with
the introduction of both enhancements has better
detection performance.

The model shown in Scenario 3 is the optimal model for
this paper. The network model of Scenario 3 was used to
detect randomly selected images of steel surface defects, and the
intercepted original image, heat map, and detection results are
shown in Figure 8.

The specific P, R and F1 scores for Crazing (Cr), Inclusion
(In), Patches (Pa), Pitted Surface (PS), Rolled-in Scale (RS) and
Scratches (Sc) of each scenario are shown in Table 2.

The data in Table 2 shows that the P, R, and F1 scores of
the Crazing improved after the introduction of the attention
module. Precision improved by 20.2, indicating a significant
improvement in performance in target localization among the
detected targets. However, the Recall values are still not high
compared to the other defects, suggesting that there is still a high
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FIGURE 9

P-R diagram of Crazing. (A) Scenario 0. (B) Scenario 1. (C) Scenario 2. (D) Scenario 3.

rate of missed detection for Crazing, which may stem from the
lack of distinctive features of this type of target. The P-R diagram
for Crazing is shown in Figure 9, where (A)-(D) correspond to
scenarios 0-3 in the ablation experiment, respectively. It can be
visualized from Figure 9 that the attention module proposed in
this paper is of great help in improving the detection accuracy of
Crazing.

TABLE 3 Performance comparison for different network models on
dataset NEU-DET.

No. References Model mAP FPS

1 Zhang et al., 2022 YOLOv5 95.5 27.03

2 Li and Wang, 2021 YOLOv5 72.2

3 Cheng and Yu, 2020 RetinaNet 78.25 12.2

4 Sun et al., 2022 YOLOv5 85.5 27.71

5 Yuan et al., 2022 ResNet 97.22

6 Liang et al., 2022 ResNet 98.88

7 Lu et al., 2021 ResNet 98.05 7.69

8 Liu Y. et al., 2021 YOLOv4 91.13 26.39

9 Li X. et al., 2022 YOLOv5 76.8 43.3

10 Our Paper 2022 YOLOX 81.21 82.87

Performance comparison with best-in-class
deep network models

To fully evaluate the superior performance of the enhanced
YOLOX proposed in this study for the detection of surface
defects in strip steel, the best deep network models of their kind
in the last two years were selected for performance comparison.
The models chosen were all network models using the NEU-
DET dataset. A comparison of performance is shown in Table 3.

As can be seen in Table 3, there is a significant decrease
in the model’s mAP when the researchers want to increase the
detection frame rate. The increase in frame rate is relatively
limited. In fact, most strip steel production lines require much
higher detection speeds, except for certain special steels that
are produced with strict quality requirements. We, therefore,
started with a lightweight design to improve detection speed. On
top of the lightweight modules, we use the attention module to
improve the detection accuracy as much as possible. Although
the accuracy in this paper is not very high compared to
models that focus on accuracy. However, the comprehensive
performance and practicality of the proposed model in this
paper have significant advantages.
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Conclusion

A lightweight defect detection network incorporating a
multi-scale feature fusion attention module has been proposed.
To improve the speed of surface defect detection, this
paper constructs a lightweight L-CSP structure based on
the YOLOX object detection network, reducing the number
of model parameters by 40.33% and the computational
effort by 35.66% without affecting the detection accuracy.
To improve the detection accuracy, a multi-scale feature
fusion attention module MFFAM is proposed. The module
uses different scales of receptive fields for feature maps of
different resolutions, which are then passed in parallel into the
spatial-channel attention modules, significantly improving the
detection accuracy of small area defects as well as the overall
mAP. To simulate a production environment, the 200∗200
images in the original NEU-DET dataset are filled with pixels
to 416∗416 in this paper, and the relative area of the defective
object is reduced to 1/4 of the original size. The results show
that the overall model in this paper is able to improve the mAP
from 76.29 to 81.21% on the populated dataset and improve
the detection speed from 70.14 to 82.87 FPS. Compared to
other defect detection models, the proposed method improves
detection speed while ensuring accuracy, which is beneficial to
practical applications.
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