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Federated Learning is a distributed machine learning framework that aims to

train a global shared model while keeping their data locally, and previous

researches have empirically proven the ideal performance of federated

learning methods. However, recent researches found the challenge of

statistical heterogeneity caused by the non-independent and identically

distributed (non-IID), which leads to a significant decline in the performance

of federated learning because of the model divergence caused by non-IID

data. This statistical heterogeneity is dramatically restricts the application of

federated learning and has become one of the critical challenges in federated

learning. In this paper, a dynamicweightedmodel aggregation algorithmbased

on statistical heterogeneity for federated learning called DWFed is proposed,

in which the index of statistical heterogeneity is firstly quantitatively defined

through derivation. Then the index is used to calculate the weights of each

local model for aggregating federated model, which is to constrain the model

divergence caused by non-IID data. Multiple experiments on public benchmark

data set reveal the improvements in performance and robustness of the

federated models in heterogeneous settings.

KEYWORDS

federated learning, statistical heterogeneity, non-IID data, model aggregation

algorithm, earth mover’s distance

1. Introduction

As the function of mobile devices, wearable devices, and IoT devices has become

more diverse and complex than ever, a tremendous amount of valuable data is generated

all the time locally, and huge potential information can be mined through a well-trained

statistical model. However, traditional centralizedmodel training requires collecting data

in a central node to extract features, which consumes a large amount of time for data

transmission and model training because of the tremendous data across the devices.

Additionally, it could also cause privacy leakage of sensitive data during transmission.
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Therefore, federated learning (Konečnỳ et al., 2015; McMahan

and Daniel Ramage, 2017; McMahan et al., 2017), a distributed

machine learning framework that involves a central server and

multiple remote devices, is proposed to address the challenges

that centralized methods are confronted with. It enables remote

devices to train statistical models locally and only share the

parameters of the model to a central server for the aggregation

of the federated model, thus providing faster construction

of the federated model and privacy of data. Due to these

advancements of federated learning, it has been continuously

improved and applied inmany fields, including smart healthcare

(Shamshirband et al., 2021; Rahman et al., 2022; Samuel et al.,

2022), industrial internet of things (Sun et al., 2020; Yang

et al., 2022), etc. However, federated learning is still confronted

with the challenges of model transmission cost and statistical

heterogeneity. Specifically, as the parameters of the statistical

model are always with high dimensions, frequent parameter

uploading can consume lots of transmission time, leading

to the low efficiency of federated model training. Besides,

statistical heterogeneity results from the non-IID data generated

by different devices, which holds various features or labels

probability distribution, is proven to have a negative impact on

model convergence and accuracy compared with IID data.

To address these challenges, current researchers have

proposed several optimization algorithms based on federated

learning. Specifically, federated averaging (FedAvg) (McMahan

et al., 2017) is such a typical algorithm, which deploys several

rounds of local stochastic gradient descent (SGD) on each

device and then uploads the parameters of the model to a

central server for the model averaging. Several experiments on

public benchmark image classification data set (MNIST LeCun

et al., 1998, CIFAR-10 Krizhevsky, 2009) and language data

set (Shakespeare, 2007) have demonstrated the robustness of

FedAvg to train convolutional neural networks (CNN) and

long short-term memory (LSTM). However, recent research

has found that the statistical heterogeneity caused by non-

IID data will increase the model divergence, representing the

difference between federated and centralized models, leading

to significant accuracy reduction and unstable convergence of

federated model.

The research of federated learning dealing with non-IID data

mainly focuses on the non-IID label distribution of the data

across the clients. To improve the performance of the federated

model confronted with non-IID data, Zhao et al. (2018)

proposed a data-sharing-based method, which significantly

improves the performance of federated average dealing with

non-IID data by sharing a small amount of data. In addition,

the relation between statistical heterogeneity and earth’s mover

distance (EMD) is found in their research, which indicates

EMD could be an ideal index of statistical heterogeneity.

This discovery motivated us to propose DWFed, a dynamic

weighted model aggregation algorithm based on a federated

averaging algorithm, which quantifies the index of statistical

heterogeneity based on EMD, and dynamically computes the

weights of model averaging based on the index to minimize the

model divergence during federated model training. The most

significant difference between FedAvg and DWFed, which is also

the main contribution of this paper, is the weights given to the

models uploaded by each device. In FedAvg, the weights are

simply calculated by the ratio of the data on each device to

the total amount of data. The averaging model can represent

global optimization objects in IID settings. However, the

performance of FedAvg can incredibly shrink as data becomes

non-IID because non-IID data makes the weighted sum of local

optimization object no longer an unbiased estimation of global

optimization object. To overcome the drawback of FedAvg,

DWFed calculated weights based on the indexes of statistical

heterogeneity called ISH that we quantitatively define through

derivation for the first time and is calculated by the EMD

between local label distribution and global label distribution.

DWFed can well resist the negative impact of non-IID data,

and it brings little computation burden to each device as the

calculation of weights is simple. However, as each client needs

the global sharing label distribution information to calculate

its own EMD, respectively, DWFed can better perform in the

scenarios where the label information of data is not sensitive,

such as hospitals, public driving locations and so on. The

detailed introduction of DWFed will be illustrated in Section 3.

In addition, experiments on multiple benchmark data sets reveal

the improvement of performance and robustness on federated

models trained with non-IID data compared with FedAvg. The

main contributions of our work are summarized as follows:

1. We quantitatively studied the impact of statistical

heterogeneity on federated learning through derivation

for the first time.

2. We proposed an index of statistical heterogeneity called ISH,

which would decrease as statistical heterogeneity increases.

3. We design a method to dynamically compute model

averaging weights by using the index of statistical

heterogeneity, which can effectively constrain the model

divergence during federated model training.

The rest of our paper is organized as follows. In Section 2,

the background and related work of federated learning and the

corresponding optimization method is illustrated. The principle

of DWFed and its derivation is demonstrated in Section 3.

Experiments and evaluations are illustrated in Section 4. Finally,

the conclusion of our work is given in Section 5.

2. Related work

The notion of federated learning was first introduced

in McMahan and Daniel Ramage (2017), and its baseline

algorithm is federated stochastic gradient descent (FedSGD),

which enables each device to execute one round of SGD locally
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and upload the model to a central server for weighted model

averaging. Then central server distributes the aggregated model

to each device for the next round of local SGD, and the whole

procedure stops until certain termination conditions are met.

Although FedSGD solved the challenges of data transmission

and privacy leakage of sensitive data (Bharati and Podder, 2022;

Bharati et al., 2022), frequent model uploading and distribution

have greatly constrained the performance of federated learning,

including slow convergence and low accuracy, and results in the

problem of efficiency.

To address the existing challenges, lots of constructive

work has been done. In terms of the efficiency of federated

learning, Wang et al. (2019) introduced adaptive federated

learning that can dynamically compute communication steps

with the central server (the rounds of local SGD) in resource-

constrained edge computing systems. Faster convergence can

be achieved compared with methods where the communication

step is fixed. Also, starting from the communication cost,

Konečnỳ et al. (2016) greatly reduces the communication cost

by utilizing model compression, which decreases the size of

the uploading model. Similarly, Sattler et al. (2019) proposed

a compression framework called sparse ternary compression

(STC), which extends the existing compression technique by

enabling downstream compression as well as internalization and

optimal Golomb encoding of the weight updates. Additionally,

Asad et al. (2020) introduces an algorithm combined with

model compression and parameter encryption, which effectively

reduces communication overhead while protecting model

security. Except for directly reducing communication costs,

the efficiency of federated learning could also be improved

by resource optimization. For example, Nishio et al. (2013),

Sardellitti et al. (2015), and Yu et al. (2016) minimize the

computation time and resources consumption based on the

joint optimization of heterogeneous data, computation, and

communication resources. In contrast, Nishio and Yonetani

(2019) maximizes the efficiency of federated model training

through client selection based on resources, network conditions,

and computation capability, and experiments have proved the

enhancement of efficiency.

In terms of robustness in non-IID data, plenty of solutions

have been proposed by existing researchers, and we summarize

the current federal learning scheme for data heterogeneity

in Table 1. For example, Konečnỳ et al. (2015) proposed an

optimization algorithm called DSVRG in order to promote

the performance of federated learning in non-IID scenarios, in

which the distributed optimization algorithm DANE (Shamir

et al., 2014) is modified by utilizing SVRG (Johnson and Zhang,

2013) as a local solver to produce an approximate solution

for the subproblem of DANE. In addition, some important

modifications are taken to improve robustness in federated

scenarios, such as flexible local update stepsize and applying

the diagonal matrix to adjust the update stochastic gradient

value of model. The experiments revealed that DSVRG not only

accelerates the convergence but also decreases the test error

ratio of federated learning. In 2017, an improved algorithm

based on FedSGD called FedAvg (McMahan et al., 2017) is

proposed. FedAvg allows devices to synchronously execute

several epochs of SGD before uploading the model to a central

server for model aggregation, and the convergence of FedAvg is

theoretically proved in Li et al. (2019). Experiments on public

benchmark data sets also demonstrate that FedAvg has the

ideal convergence speed and robustness of training different

deep learning models. However, Zhao et al. (2018) found

that the performance of FedAvg gradually shrinks as statistical

heterogeneity increases. In addition, mathematical analysis is

utilized, and the relation between the earth’s mover distance of

each device and model divergence caused by heterogeneity is

discovered. Therefore, a strategy that eases model divergence by

sharing a small part of data from the central server to each client

is proposed, and experiments have shown that the more data the

central server shares, the lower EMD becomes, and the higher

accuracy can be obtained. However, the specific mathematical

relation between EMD and statistical heterogeneity is not

further studied. Chen et al. (2022) proposed an adaptive client

selection algorithm ACSFed based on EMD. This algorithm can

dynamically calculate the possibility of clients being selected

according to the local statistical heterogeneity and previous

training performance. Similar to literature (Zhao et al., 2018),

an adaptive enhancement method based on data sharing is

also proposed in Huang et al. (2018), which improves the

efficiency of federated learning. However, data sharing increases

the communication burden and raises the risk of privacy leakage.

It also breaks the core of federated learning that data should be

stored locally instead of sharing. Therefore, recent research has

begun to study approaches that can obtain better performance

than FedAvg while keeping data locally. For example, Yeganeh

et al. (2020) proposed a novel adaptive weighting approach

for clients based on meta-information and the comparison

with the baseline FedAvg algorithm proves the effectiveness

of the scheme. Li et al. (2018) proposed a framework called

FedProx, which changes the optimization object by adding

the model divergence to the loss function. Experiments prove

it can effectively stabilize the training convergence of the

federated model because it constrains the difference between the

central and local models. Moreover, a creative approach called

federated augmentation, which makes data distribution IID on

each device by enabling devices to train generative models

together to augment data, is proposed in Jeong et al. (2018),

and it obtains 95−98% accuracy on MNIST. Xu et al. (2022)

proposed a federated learning framework FedLA, which reduces

aggregation frequency to improve robustness in heterogeneity

scenarios. Furthermore, the cross device momentum (CDM) is

implemented to improve the upper limit performance fo the

global model. Besides, there is also the idea of dealing non-

IID data by combining reinforcement learning with federated

learning. For example, Wang et al. (2020) proposes Favor, an

Frontiers inNeurorobotics 03 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1041553
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Chen et al. 10.3389/fnbot.2022.1041553

experience-driven control framework that intelligently chooses

the client devices to participate in each round of federated

learning to counterbalance the bias introduced by non-IID

data and to speed up convergence. Similarly, Pang et al.

(2020) proposed an RL-based intelligent central server with the

capability of recognizing heterogeneity, which can help lead the

trend toward better performance for most of clients. In 2019,

knowledge distillation was applied in federated learning in Li

and Wang (2019), which enables each device to train a local

model with two parts of data, including private data and public

shared data. The outputs of public data are utilized as consensus

to adjust each local model, and experiments have shown that

the performance of FedAvg can be improved by implementing

knowledge distillation. Additionally, there are methods that

utilize multi-task learning in federated learning, which are called

federated multi-task learning. In federated multi-task learning

framework, the learning problem of each client on the local

data set is regarded as a separate task rather than a shard of a

partitioned data set. MOCHA (Smith et al., 2017) is a typical

multi-task federated learning algorithm, which directly solves

the challenges of communication efficiency, scatters and fault

tolerance. On the basis of MOCHA, Li et al. (2021) proposed

a lite framework called Ditto, which simplifies the solver of local

subtask by restraining the divergence between local model and

global model. Although Ditto’s idea of restraining divergence

between local model and global model is similar to FedProx,

it is essentially different from FedProx, as it not only learns a

global model but also learns local, personalized models while

FedProx only learns a global model. Experiments on public

benchmark dataset reveal that Ditto can enable higher accuracy

and stronger robustness relative to state-of-the-art federated

learning method. However, as multi-task learning enables each

node to train a personalized model locally, a stateful node

is also required. This makes this type of technology more

challenging to apply in cross-device scenarios. To sum up, there

are problems of higher computing and communication burden,

privacy leakage, and difficulty in practical application in current

research. Therefore, an improved federated learning method

that can suppress or solve the above problems while retaining

performance must be studied.

3. Method

To promote the performance of federated learning methods

in statistical heterogeneity scenarios, we proposed a dynamical

weighted model aggregation algorithm for federated learning

called DWFed. The core idea of DWFed is to dynamically

calculate the weights of model averaging by using the index

of statistical heterogeneity ISH. In this section, we will first

introduce the core of DWFed in detail, which is the derivation

of the index of statistical heterogeneity, and then the overall of

DWFed will be demonstrated.

3.1. Derivation of model divergence

During federated model training, K devices from N (K <<

N) are randomly selected and then certain epochs of local

stochastic gradient descent (SGD) are executed before uploading

model to central server for model aggregation. Specifically, the

optimization object is to minimize:

min
ω

f (x)=

K
∑

k=1

nk
n
Fk(ω) where Fk(ω)=

1

nk

∑

s∈Sk

fk(ω) (1)

Where Sk is the set of indexs of data points on client k,

nk = |Sk| is the data available on device k, and n =
∑

k nk
is the total data points across the network, fk(ω) refers to the

value of loss function of the data on device k under the model

ω. The procedure of typical federated learning method with K

selected devices, batch size b and learning rate η enables device

k to iterate local update ωk,t − ηgk several times, where gk =

∇Fk(ωk,t) is the gradient computed by the current model ωk,t

on device k, and ωk,t = ωt when the local update begins. After

K devices finishing local update and uploading model ωk,t+1

to central server, model aggregation ωt+1 =
∑K

k=1
nk
n ωk,t+1

is executed on central server, which can also be rewritten as

ωt+1=ωt−η
∑K

k=1
nk
n ∇Fk(ωk,t).

In IID settings where training data is uniformly and

randomly distributed to each device, the expectation of Fk(ω)

is equal to f (ω), which can be denoted as E(Fk(ω)) = f (k),

and thus E(gk) = ∇f (ω). Therefore, the optimal solution can

be obtained by updating the model along the descent direction

of the gradient and the federated model generated by averaging

local models is nearly equal to the centralized model. However,

Fk(ω) could be an arbitrary approximation to f (ω) in non-IID

settings, leading to the deviation between federated model and

centralized-trained model, which is called model divergence and

it can be represented as:

∥

∥

∥

ωf − ωc
∥

∥

∥

/
∥

∥ωc
∥

∥ (2)

Whereωf is themodel in distributed settings using federated

learning method, and ωc is the centralized-trained model. The

more significant statistical heterogeneity is, the larger the model

divergence is, and the performance of FedAvg can extremely

shrink. Therefore, a numerical index of statistical heterogeneity

is urgently needed to precisely reflect its influence on the

performance of federated learning methods.

3.2. Derivation of statistical heterogeneity
influence

Through the above derivation and analysis, it can be

concluded that the model divergence caused by non-IID data

is the main reason leading to decreasing performance of
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TABLE 1 Federated learning for data heterogeneity.

References Method Dataset

Konečnỳ et al. (2015) Distributed optimization public posts on a

large social network

McMahan et al. (2017) FederatedAveraging MNIST, CIFAR-10, Shakespeare

Zhao et al. (2018) Data sharing based on EMD MNIST, CIFAR-10,KWS

Chen et al. (2022) Client selection based on EMD MNIST, Fashion MNIST, CIFAR-10

Huang et al. (2018) Adaptive enhancement

based on data sharing

MIMIC-III,

eICU Collaborative research

Yeganeh et al. (2020) Adaptive weighting based

on meta-information

CIFAR-10, Fashion MNIST, HAM10K

Li et al. (2018) Model divergence MNIST, FEMNIST,

Shakespeare, Sent140

Jeong et al. (2018) Federated augmentation MNIST

Xu et al. (2022) Reduce aggregation frequency

based on weight divergence

MNIST, EMNIST, CIFAR-10

Wang et al. (2020) Client selection based on RL MNIST, Fashion MNIST, CIFAR-10

Pang et al. (2020) Recognizing heterogeneity

based on RL

MNIST, Fashion MNIST, CIFAR-10

Li and Wang (2019) Knowledge distillation MNIST, FEMNIST,

CIFAR-10, CIFAR-100

Smith et al. (2017) Multi-task learning GLEAM, Human Activity

Recognition,

Vehicle Sensor

Li et al. (2021) Personalization

federated learning

MNIST, Fashion MNIST, FEMNIST

federated learningmethods in statistical heterogeneity scenarios.

Therefore, we propose a dynamic weighted federated averaging

algorithm (DWFed) based on FedAvg which quantitatively

defines the index of statistical heterogeneity for the first

time and dynamically computes the corresponding weights

of model averaging to constrain model divergence. The core

idea of DWFed is to calculate comprehensive weights based

on the statistical heterogeneity of each selected device and

hyperparameters such as learning rate, batch size, and the

number of selected devices that are able to make a federated

model close to the centralized model and thus constrain the

model divergence. Specifically, the centralized model update

using SGD can be written as:

ωc
t+1=ωc

t−η

C
∑

i=1

P(y = i)∇F(ωc
t , xy=i) (3)

In the above equation,ωc
t+1 andωc

t are the weights after t+1-

th update and t-th update respectively, η is the learning rate, P

is the data distribution which is also the population distribution,

and C denotes the total classes that data belongs to. In addition,

∇F(ωc
t , xy=i) denotes the gradients on the data whose class is i

under current model ωc
t . Similarly, we can rewrite the federated

model update using FedSGD:

ω
f
t+1=ω

f
t −η

K
∑

k=1

C
∑

i=1

pk(y = i)∇Fk(ω
f
k,t
, xy=i) (4)

Where pk denotes the data distribution on device k, and

∇Fk(ω
f
k,t
, xy=i) is the gradients on data which belongs to class i

under current local model of device k. The superscript of weight

ω denotes different settings, that is c denotes centralized setting

and f denotes federated learning setting. To more intuitively

compare the model update in two settings, we replace the

centralized scenarios with multiple devices with the same data

distribution as population distribution, and the number of

devices is equal to the number of selected devices in distributed

scenarios. Themodel update in such scenarios is the same as that

in centralized scenarios because each device has the same data

distribution as population distribution, and the model update

can be expressed as:

ωc
t+1=ωc

t−η

K
∑

k=1

C
∑

i=1

P(y = i)∇Fk(ω
c
k,t , xy=i) (5)

Therefore, the difference between the federated model and

the centralized model, which is inside the numerator part of
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model divergence, can be rewritten as:

ω
f
t+1−ωc

t+1= 1ωt+

η

K
∑

k=1

C
∑

i=1

P(y= i)∇Fk(ω
c
k,t , xy=i)−pk(y= i)∇Fk(ω

f
k,t
, xy=i)

(6)

where 1ωt = ω
f
t+1 − ωc

t+1. The above equation illustrates the

instability in convergence and low performance of federated

learning methods when the statistical heterogeneity leads to

uncertain distribution across the devices and thus model

divergence increases. To evaluate the model divergence caused

by statistical heterogeneity across the devices, EMD can be

applied. EMD is a method of calculating divergence by

computing the distance between two distributions and Zhao

et al. (2018) foundmodel divergence caused by non-IID data can

be evaluated with the EMD between the data distribution across

devices and population distribution but specific quantitative

relation is not given. As EMD denotes the distance between

two probability distributions, it can be expressed as the

following equation:

Dk = EMD(pk, P) =

∥

∥

∥

∥

∥

∥

C
∑

i=1

pk(y= i)− P(y= i)

∥

∥

∥

∥

∥

∥

(7)

A potential problem of the EMD metric is that this metric

is not invariant with respect to the automorphism. When the

comparison of distributions with various number of labels and

the order of labels are different, the EMD will be different. In

our method, we quantified the weight divergence by the EMD

between the distribution over classes on each device and the

population distribution, the data labels across devices are the

subset of the global data labels. Thus, the EMD between the

data distribution across devices and population distribution is

invariant with label alignment. Even if we need to compute

EMD of different clients’ data distribution, we can also predefine

a label order on the central server to obtain the invariant

EMD metric. Through this simple method, the EMD between

the clients’ data distribution and population distribution is

a constant. So, we don’t have to consider penalization of

invariance across different environments. With Equation (7),

we can further obtain the index of statistical heterogeneity by

introducing EMD into the next stage of derivation. Furthermore,

we also propose a dynamic weight aggregation algorithm to

compute the corresponding weights of model averaging to

constrain model divergence.

3.3. ISH and weighted averaging

To address the influence of statistical heterogeneity, we

respectively multiply the model of each device with an index

called ISH which reflects their local statistical heterogeneity, and

the model update in distributed settings can be rewritten as:

ω
f
t+1=ω

f
t − η

K
∑

k=1

ISHk ∗ ∇Fk(ω
f
k,t
) (8)

Since ωc
t+1 is determined using SGD as population

distribution is known, the optimizing object to minimize model

divergence can be expressed as:

min

∥

∥

∥

∥

∥

∥

η

K
∑

k=1

(∇Fk(ω
c
k,t)− ISHk ∗ ∇Fk(ω

f
k,t
)+

1

K ∗ η
1ωt)

∥

∥

∥

∥

∥

∥

(9)

Based on the idea of greedy algorithm, we can optimize

(Equation 9) by minimizing each part of it, which is:

∥

∥

∥

∥

∇Fk(ω
c
k,t)− ISHk ∗ ∇Fk(ω

f
k,t
)+

1

K ∗ η
1ωt

∥

∥

∥

∥

k=1,2,...,K
→ 0

(10)

Therefore, the index of statistical heterogeneity in device k

can be calculated by the following formula:

ISHk=

∥

∥

∥

∇Fk(ω
c
k,t
)+ 1

K∗η1ωt

∥

∥

∥

∥

∥

∥

∇Fk(ω
f
k,t
)
∥

∥

∥

(11)

Based on formula (6) and (7), the index ISHk can be further

calculated as:

ISHk=
1− 1

KDk

1+ Dk
(12)

After the ISH of each selected device k is obtained, they are

respectively transmitted to the central server along with the local

model by each device. Then the weights of each local model are

calculated by executing the normalization of indexes to make

sure the sum of weights is equal to 1:

αk← ISHk /

K
∑

k=1

ISHk (13)

Finally, the central server executes weighted model

aggregation following formula (8), and returns the aggregated

model to each selected device for a new round of federated local

model training, which is also the end of a communication round.

3.4. Algorithm implementation

After deriving the statistical heterogeneity index ISH, we will

describe our DWFed algorithm in detail.

The DWFed algorithm conducted by multiple rounds of

communication among central server and clients. A complete

communication round includes local data training, aggregation

weight calculation, model and weight transmission, model
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aggregation, and model distribution. The complete pseudo-

code of DWFed is given in Algorithm 1. At the beginning of

the DWFed, the central server first initializes the weights and

distributes the weights to a randomly selected set of clients. After

receiving the weights, the clients first calculate ISH according to

formula (12), then each clients execute one round of SGD locally,

and finally clients transmit the updated weights and ISHk to

the central server. The central server calculates the aggregation

weights αk based on the parameters uploaded by the client and

completes the model aggregation. This is the whole process of

a round of communication, and the algorithm keeps repeating

until prescribed communication rounds are met.

It can be seen from Algorithm 1 that DWFed only adds

little computational and communication load. The process of

calculating ISH on the clients is simple and straightforward.

Furthermore, clients only need to upload one additional float

value to central server. After the normalization of weights,

the central server can aggregate the model, which is also an

effective calculation.

Further, to prove and evaluate the performance of our

algorithm, multiple comparison experiments are executed,

and the details of the experiments will be illustrated in the

next section.

4. Experiment and evaluation

In this section, the details of comparison experiments

and the evaluation of the results are illustrated. We will

firstly introduce the methods used to distribute data to

each selected device, which can generate different degrees of

statistical heterogeneity on each device. Then the experimental

environment will be detailly illustrated, including the total

number of devices, the selection fraction, and the model

implemented on each device. Finally, experimental results and

evaluation are demonstrated.

4.1. Data allocation and experiment setup

In this paper, two types of non-IID data are generated to

compare the performance of DWFed and FedAvg in different

degrees of statistical heterogeneity, which are two extreme cases

of data distribution: (a) 1-class non-IID, where each device only

holds data partition from only a single class, and (b) 2-class non-

IID, where the sorted data is divided into 20 partitions and each

client is randomly assigned 2 partitions from 2 classes.

In terms of devices, we simulate 100 devices in total, and

respectively with the fraction value of C=0.1 or 0.2 to randomly

select 10 or 20 devices to participate in federated training. As for

baseline algorithm, FedAvg with fraction value 0.2 is selected,

since it could obtain the best performance in prior experiments.

Central Server

1: initialize ω

2: while t in total communication rounds do

3: s← max(C · K, 1)

4: St ←{randomly selected s devices from

K devices}

5: for each device k in St in parallel do

6: Transmit model ωt to selected device

7: Receive ωk,t+1, ISHk from device k

8: end for

9: αk= ISHk/
∑

k ISHk

10: ωt+1=
∑K

k=1 αk · ωk,t

11: end while

Distributed Devices

1: Receive model ωt from central server

2: calculate Dk based on local and population

distribution

3: calculate weight by ISHk=
1− η

K Dk

1+Dk

4: 2← {split local data into batches with size B}

5: for local epoch 1,2,...,E do

6: for θ ∈ 2 do

7: ωt=ωt−η∇gk(ωt , θ)

8: end for

9: end for

10: ωk,t+1=ωt

11: Transmit ωk,t+1 and ISHk to central server

Algorithm 1. Dynamic weighted federated averaging. The K clients

are selected from N with the fraction C and are indexed by 1, 2, ..., k;

learning rate is expressed as η, B and E respectively denote the batch

size and training epochs used in local stochastic gradient descent.

Specifically, Dk denotes the EMD between the data distribution on

device k and population distribution.

At the beginning of the experiment, training data is generated in

the form of 1-class non-IID or 2-class non-IID and distributed

to all devices, then the central server randomly selects 10 devices

for model update and distributes initialized model to these

devices. After the local SGD model update, the selected models

upload their locally updated model and the averaging weights to

a central server. After the normalization of weights, the central

server executes model aggregation by weighted averaging of

models. The whole procedure keeps repeated until it reaches the

prescriptive communication rounds.

The experiments are all implemented in the same machine

with Intel (R) Core(TM) i5-7300HQ, CPU @ 2.50GHz, and 16-

Gb RAM. The FedAvg and DWFed are both implemented in

Pycharmwith Python of 3.6 version, which installed TensorFlow

GPU version and other useful packets.
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4.2. Experimental evaluation

In the experiments, three different kinds of data set are

used to evaluate the performance of DWFed, which are

MNIST, Fashion MNIST (FMNIST), and CIFAR-10, and all

of them are data sets for image classification tasks with 10

outputs. Therefore, convolution neural networks (CNNs) are

implemented on each device. Specifically, for MNIST and

Fashion MNIST training, the structure of CNNs is the same

FIGURE 1

Training loss on MNIST.

because they have the images with the same size and single image

channel, and they both have the same amount of training set

and test set. We adopt the same network structure as literature

(McMahan et al., 2017). There are two 5 x 5 convolution layers

(the first with 32 channels, and the second with 64 channels, each

followed with 2 x 2 max pooling), a full-connected layer with

512 units and ReLu activation, and a final softmax output layer.

However, CIFAR-10, which contains 10 classes of the three-

channel image with size [32, 32], and thus the CNNs for CIFAR-

10 training has 9 layers, two more full-connected layers are

added compared with CNNs for MNIST and Fashion MNIST.

Specifically, there are two 5 x 5 convolution layers (both of them

have 64 channels, and followed with 2 x 2 max pooling), three

full-connected layers with 768, 384, and 192 units respectively

and ReLu activation, and a finall softmax output layer. As for

hyperparameters of the CNNsmodel, the same hyperparameters

are set in FedAvg and DWFed. Specifically, we set learning rate

η = 0.01, batch size B = 10, epochs for every local update

E = 5, number of communications ncom = 100 for MNIST

and ncom = 1, 000 for Fashion MNIST and CIFAR-10. The

aggregated model is validated with corresponding test data in

every 20 rounds of communication.

The evaluation of our algorithm is achieved by comparing

the performance of FedAvg and DWFed on three data sets

under three scenarios of statistical heterogeneity (1-class non-

IID, 2-class non-IID, and IID). The experiment results on

MNIST are demonstrated in Figures 1, 2. The Figure 1 reveals

the improvement of convergence using DWFed as the curve

FIGURE 2

Test accuracy on MNIST.
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of DWFed drops faster and fluctuates less than FedAvg both

in 1-class and 2-class non-IID scenarios. Moreover, DWFed

with c = 0.1 is able to have the similar performance as

FedAvg with c = 0.2, both in 1-class and 2-class non-

IID scenarios and DWFed with fraction value 0.2 in 1-class

non-IID scenario even have lower training loss than FedAvg in

FIGURE 3

Training loss on fashion MNIST.

2-class non-IID scenario, which significantly reveals DWFed has

better performance on training convergence than FedAvg. The

enhancement of DWFed on the accuracy of MNIST is illustrated

in Figure 2, as the accuracy reaches certain level (80% for 1-

class non-IID and 60% for 2-class non-iid) faster and obtains

higher final accuracy than FedAvg. Moreover, the test accuracy

of DWFed with fraction value of 0.2 in 1-class non-IID scenario

is very close to FedAvg in 2-class non-IID scenario. Figures 3,

4 reveal the performance of DWFed and FedAvg on Fashion

MNIST in three scenarios. As can be concluded from Figure 3,

the loss curves of DWFed in two non-IID scenarios generally

fluctuate less than FedAvg, and DWFed with less selection

fraction can have similar performance to FedAvg with higher

fraction. Besides, the curves of DWFed are closer to the curve

in the IID scenario than FedAvg both in 1-class and 2-class

scenarios, which reveals the improvement in convergence by

implementing DWFed.

Figure 4 demonstrates the comparison test accuracy of

DWFed and FedAvg on Fashion MINIST. As can be seen from

the Figure, the DWFed with selection fraction value 0.2 obtains

90.2% for test accuracy of FMNIST after 1,000 communication

rounds in 2-class non-IID scenarios, which is 2.4% more than

FedAvg and only 1.3% less than FedAvg in IID scenario.

Additionally, DWFed with fraction value of 0.1 obtains even

higher accuracy than FedAvg with fraction 0.2 in 2-class non-IID

FIGURE 4

Test accuracy on fashion MNIST.
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FIGURE 5

Test accuracy on CIFAR10.

scenario. However, the accuracy of DWFed and FedAvg are both

lower than 80% in 1-class non-IID scenario, but DWFed still

obtains 77.8% accuracy, which is higher than the 75% accuracy

of FedAvg.

In the terms of CIFAR-10, the performance of federated

learning methods on CIFAR-10 can also be significantly

improved with the implementation of DWFed. As can be seen in

the Figure 5, DWFed with fraction value 0.1 and 0.2 both obtain

higher test accuracy than FedAvg and has smaller difference

with FedAvg in IID scenario. Moreover, DWFed with fraction

value 0.2 in 1-class non-IID scenario even have higher accuracy

than FedAvg in 2-class scenario, which reveals the significant

improvement of implementing DWFed in the non-IID scenario

on CIFAR-10 dataset.

Then, the experimental results of accuracy reduction and

convergence speed on three public benchmark data sets are

shown in Table 2 (both FedAvg and DWFed have the same

experimental settings, such as learning rate and selection

fraction value). As can be concluded from Table 2, DWFed

has lower accuracy reduction and faster speed of convergence

in two non-IID scenarios than FedAvg, which intuitively

reflects the superiority of DWFed. In conclusion, DWFed is

able to significantly improve the robustness and performance

of federated learning methods in non-IID scenarios, as it

can reach similar performance to FedAvg with less devices

selected each training epoch and higher performance with

the same device selection fraction. Specifically, the more

TABLE 2 Performance of FedAvg and DWFed.

Data set non-IID FedAvg DWFed

Accuracy reduction

MNIST 1-class 6.16% 4.48%

2-class 2.40% 0.60%

FMNIST 1-class 15.00% 10.21%

2-class 3.80% 1.20%

CIFAR-10 1-class 29.39% 21.53%

2-class 5.54% 1.39%

Round of convergence

MNIST 1-class 74 50

2-class 12 8

FMNIST 1-class 800 620

2-class 770 560

CIFAR-10 1-class 910 750

2-class 800 520

stable convergence and higher accuracy are achieved compared

with FedAvg.

In addition, the comparative experiments of DWFed and

FedProx are carried out in MNIST and FMNIST, and the results

are shown in Figures 6, 7. As can be concluded from Figures 6,

7, DWFed can obtain better performance than FedProx on

MNIST and FMNIST in 2-class non-IID scenario, but FedProx
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FIGURE 6

Test accuracy of FedProx and DWFed on MNIST.

FIGURE 7

Test accuracy of FedProx and DWFed on FMNIST.

can achieve better results in 1-class non-IID scenario on

both datasets. The results above has revealed that DWFed is

able to have significant advantages in scenarios with weaker

statistical heterogeneity, as it has better performance and lower

computational burden. However, DWFed can not achieve better

performance than FedProx in scenarios with heavier statistical

heterogeneity, because FedProx introdues proximal term to limit

the impact of local updates in heterogeneous networks, thus

FedProx focuses computation energy to promote performance.

5. Conclusion

Federated Learning will play an essential role in future

computationmode as the computation capability of remote edge

devices enhances and local data privacy increases. However, the

statistical heterogeneity can result in model divergence, which

significantly influences the performance of federated learning

methods, such as shrinking accuracy and unstable convergence.

In this paper, we proposed a dynamic weighted model

aggregation algorithm for federated learning called DWFed and

further quantified the index of statistical heterogeneity using

EMD through derivation. Then the model aggregation weights

of each device can be calculated by the corresponding index,

and the local model divergence can be effectively constrained

by multiplying weights in model aggregation. Experiments on

three different data set reveal the better performance of DWFed

than FedAvg.

Moreover, compared with the SoA methods, such as

FedProx, DWFed can obtain better performance in scenarios

with weaker statistical heterogeneity, and achieve similar or

slightly worse performance in a scenario with heavier statistical

heterogeneity. Furthermore, DWFed adds little computational

and communication load because the calculation of ISH is

straightforward (simple) and only one additional float value is

uploaded, in contrast to FedProx, which would use much more

computational resources to improve performance. Nevertheless,

model divergence can possibly be improved. There is still

the challenge of model protection, and additional research is

required to find a solution to the problems so that federated

learning methods can be applied more effectively in the future.
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