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Camouflage is the main means of anti-optical reconnaissance, and

camouflage pattern design is an extremely important step in camouflage.

Many scholars have proposed many methods for generating camouflage

patterns. k-means algorithm can solve the problem of generating camouflage

patterns quickly and accurately, but k-means algorithm is prone to inaccurate

convergence results when dealing with large data images leading to poor

camouflage e�ects of the generated camouflage patterns. In this paper, we

improve the k-means clustering algorithm based on the maximum pooling

theory and Laplace’s algorithm, and design a new camouflage pattern

generation method independently. First, applying the maximum pooling

theory combined with discrete Laplace di�erential operator, the maximum

pooling-Laplace algorithm is proposed to compress and enhance the target

background to improve the accuracy and speed of camouflage pattern

generation; combined with the k-means clustering principle, the background

pixel primitives are processed to iteratively calculate the sample data to obtain

the camouflage pattern mixed with the background. Using color similarity

and shape similarity for evaluation, the results show that the combination

of maximum pooling theory with Laplace algorithm and k-means algorithm

can e�ectively solve the problem of inaccurate results of k-means algorithm

in processing large data images. The new camouflage pattern generation

method realizes the design of camouflage patterns for di�erent backgrounds

and achieves good results. In order to verify the practical application value of

the design method, this paper produced test pieces based on the designed

camouflage pattern generation method and tested the camouflage e�ect of

camouflage pattern in sunny and cloudy days respectively, and the final test

results were good.

KEYWORDS

camouflage, camouflage design, k-means clustering, Max pooling, computer

aided design
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Introduction

Modern reconnaissance threats to ground-based military

facilities are mainly derived from air-based unmanned

reconnaissance and space-based satellite reconnaissance. Due

to the longer detection range and high load requirements,

this provides the possibility for ground targets to carry out

deformation camouflage. The core problem of camouflage is

to solve the integration problem of camouflage patterns and

the surrounding background environment. How to quickly and

accurately generate camouflage patterns has become a hot and

difficult point of current research.

Many scholars have conducted many studies on camouflage

design and improvement. Wei et al. (2021) generated

camouflage patterns using a combination of convolutional

kernels and clustering algorithms. Du et al. (2012) designed

a method to generate camouflage patterns through parameter

control. Xue et al. (2016) designed digital camouflage by the

recursive overlap of pattern templates Yang and Yin (2014)

developed a target camouflage pattern generation method

by using a k-means algorithm to extract the background

primary color and combine it with a color similarity control

algorithm. Yunxiang et al. (2019) proposed a digital camouflage

pattern design method for a three-dimensional model of

equipment, which is a good guide for the camouflage of ground

equipment. Yong et al. (2009) used an improved k-means

algorithm for camouflage color selection and patching, based

on which bionic camouflage design is carried out. Xiao et al.

(2021) propose a camouflage generation algorithm based on

rectangular block scrambling and a fuzzy C-mean (FCM)

clustering method.

A comprehensive study of camouflage pattern design by

different scholars shows that the k-means clustering method

is widely used in camouflage pattern design because of the

advantage of simple and fast background pattern primary color

extraction, but the k-means algorithm is difficult to obtain the

global optimal solution due to the inaccuracy of iterative results

when processing large data images and is affected by noise points

(Yu and Shuang, 2012). There is a need to provide a fast and

efficient image compression enhancement method combined

with k-means to improve the accuracy of the output results of

the camouflage pattern design method.

In this paper, we propose a new artifactual image design

method for the problem that the k-means clustering algorithm

is inaccurate in processing the iterative results of big data images

and leads to the poor artifactual effect of the generated images.

Chapter 2 of this paper presents the Max pooling-Laplacian

algorithm. The Max pooling-Laplacian algorithm is used to pre-

process the initial background data, Max pooling mainly focuses

on compressing the background image to reduce the amount

of data and remove undesirable noise without changing the key

features of the image, and the Laplacian algorithm enhances the

image features to make the background image simple and easy

to handle. Chapter 3 of this paper introduces the k-means and

k-means++ algorithms. The clustering algorithm is chosen to

use the k-means++ algorithm to select the clustering center

that can reflect the image features more so that the camouflage

pattern design method in this paper can generate camouflage

patterns with a better camouflage effect. Chapter 4 of this paper

conducts the evaluation of the camouflage method. Chapter

5 of this paper conducts camouflage experiments, and this

paper designs camouflage experiments under different weather

conditions to verify the application value of the camouflage

pattern generation method.

The main contribution of this paper is to discover that

the reason for the inaccurate results of the k-means traditional

method for generating camouflage patterns is mainly that the k-

means algorithm converges to a locally optimal solution when

dealing with large and complex data, while camouflage patterns

are mostly from aerial photographs of large and complex

background patterns. The combination of the Max pooling-

Laplacian algorithm and k-means++ is proposed to solve the

problem that the camouflage pattern is not well-camouflaged

enough. Figure 1 shows the overall design diagram.

Image compression and
enhancement based on Max
pooling-Laplacian algorithm

In view of the different sources of background images, image

quality and image content differ greatly, and the various types

of background images acquired using high-definition lenses are

rich in content and detail, which are detrimental to the k-

means generated images and will affect the effectiveness of the

program processing, it is necessary to compress and enhance the

acquired data. Compression refers to reducing the image size

while preserving the key features of the image, and enhancement

is to perform differential operations on the data to sharpen

the image and enhance the contrast. In this paper, the Max

pooling-Laplacian algorithm is used for image compression and

enhancement of the target background.

Max pooling compression processing

Pooling refers to the pooling model (de Souza Brito et al.,

2021), and pooling means that when computing the features of

a region of an image, all the features of that region must be

dissected and a new feature is used to represent all the features

of the original region, which is also known as the neighborhood.

Pooling has an obvious characteristic of reducing the size

of the feature map while preserving the features, reducing

the computational effort of the algorithm, and avoiding the

phenomenon of computational overfitting. The pooling process

is shown in Figure 2.
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FIGURE 1

Overall design diagram.

FIGURE 2

Pooling process.

In Figure 2, the original feature image is a 4 x 4 matrix, from

which it can be seen that the neighborhood is a 2 x 2 matrix

with a pooling move step of 2, which eventually forms a new

subsampled feature image of a 2 x 2matrix. The pooling function

S0 and the expressions are as follows:

T= S0 (H)+b2 (1)

where T is the subsampled feature map, H is the original

feature map, and b2 is the resultant bias.

There are three common pooling operations: average

pooling, Max pooling, and random pooling. Average pooling

refers to summing the feature points in the neighborhood and

taking the average as the subsampling feature value, and Max

pooling refers to selecting the largest feature value in the pooling

domain as the subsampling feature value. Random pooling

refers to the random selection of features in the neighborhood

according to the size of the probability value, and the larger

feature value has a higher probability of being selected, unlike

Max pooling where only the largest feature value is selected.

Compared with average pooling and random pooling, Max

pooling can better preserve the texture features of the image and

is more suitable for camouflage pattern design. In this paper,

Max pooling is used to compress the image. The expression

of Max pooling is where the moving step is set to c and
(

Hij
)

denotes the maximum feature value in the original feature map

H of size c× c of the field captured the maximum feature value.

Tij =
(

Hij
)

+b2 (2)

where Tij is the subsampled feature map, Hij is the original

feature map, and b2 is the resultant bias.
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Laplacian image filtering enhancement
processing

After the maximum pooling compression process, the

efficiency of the program in processing the patterns is greatly

improved, but the patterns after the compression process are

reduced in clarity and content details. On the other hand, there is

still noise in the four background patterns after the compression

process that affects the processing results, which has a negative

impact on the final processing effect. Noise removal is often

done by filtering, which enhances the contrast and makes the

processing effect more obvious. If the image is sharpened, it

needs to be filtered, taking differential operations. In this paper,

the filter template generated by the Laplace differential operator

(Ilk et al., 2011) is chosen as the filter for sharpening the image

background. The Laplace operator is defined as the scatter of the

gradient of the function. Since the picture is a plane with only

two directions x and y so set the function f (x, y).

The gradient of the function f (x, y) at the point (x, y) in the

plane coordinate system:

∇f
(

x,y
)

=

{

∂f
(

x,y
)

∂x
,
∂f

(

x,y
)

∂y

}

= fx
(

x,y
)

•
⇀
i +fy

(

x,y
)

•
⇀
j (3)

The scatter of the function f (x, y) in the plane

coordinate system:

divf= ∇ • f=
∂fx
∂x

+
∂fy

∂y
(4)

The function f (x, y) Laplace operator is defined as follows:

∇2f
(

x,y
)

=
∂2f

(

x,y
)

∂x2
+

∂2f
(

x,y
)

∂y2
(5)

where x and y represent the Cartesian coordinates of the x–y

plane. In image processing, it is necessary to deform the general

function Laplace operator to represent its discrete form in the x,

y direction by the Laplace operator.

Discrete first-order differential equations:

∂f

∂x
= f (x+1) − f(x) (6)

Discrete second-order differential equations:

∂2f

∂x2
= f (x+1)+f (x−1)−2f(x) (7)

The discretized Laplace operator is obtained and its

approximate expression is shown in Equation 5.







∂2f(x,y)
∂x2

= f
(

x+ 1, y
)

+ f
(

x− 1, y
)

− 2f
(

x, y
)

∂2f(x,y)
∂y2

= f
(

x, y+ 1
)

+ f
(

x, y− 1
)

− 2f
(

x, y
)

(8)

Substituting Equation 8 into Equation 5 yields Equation 9:

∇2f
(

x, y
)

= f
(

x+ 1, y
)

+ f
(

x− 1, y
)

+ f
(

x, y+ 1
)

+f
(

x, y− 1
)

− 4f
(

x, y
)

(9)

The above equation represents the discrete form of the

Laplace operator in both the x and y directions. A filtering

template evolved from the discretized Laplace differential

operator is slid over each point in the space to realize the

convolution operation of the image and the template to

achieve the purpose of image filtering and enhancement. The

implementation process is as follows:

Figure 3 shows the process of convolution of the template

with the image. The template is overlapped with the image, a

region of pixels equal to its size and the corresponding pixel

points are found, then the operation is performed with the

region, the values in the template are summed with the values

of the corresponding pixel points, and the whole is summed

again, and the result is assigned to the pixel overlapped with

the center point of the template. After that, the template is

slid to the next position and the above operation is repeated

until all pixels are traversed. In Figure 3, the resulting centroid

pixel value is converted from “1” to “0”. If there are negative

values in the Laplace filter template, the negative values will be

intercepted and set to 0 after filtering, which will result in the

loss of some grayscale information in the image data filtering.

In order to solve this problem, the lost grayscale information

can be restored by subtracting the filtered data from the original

background, and thus the basic formula of the Laplace operator

image enhancement is shown in Equation 10:

G
(

x,y
)

= f
(

x,y
)

+c
[

∇2f(x,y)
]

(10)

In the above equation, g(x,y) is the enhanced background

patterns, f (x,y) is the original background patterns, and c is

related to the template center coefficient; if positive, c is 1, and

if negative, c is -1.

Camouflage generation based on
the k-means clustering algorithm

k-means clustering algorithm

The k-means algorithm (Kövesi et al., 2001) is one of the

most widely used algorithms in cluster analysis. The k in the
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FIGURE 3

Template and image convolution process.

TABLE 1 k-means algorithm.

k-means algorithm steps

Step 1 Randomly select K samples from the dataset as the initial cluster center

C = {c1 , c2 , . . . , ck}

Step 2 For each sample x in the dataset, calculate its distance to K cluster

centers and divide it into clusters corresponding to the cluster center

with the smallest distance

Step 3 For each cluster, recalculate its cluster center ci =
1
|ci |

∑

x∈ci
x

Step 4 Repeat Step 2 and Step 3 until the cluster center does not change

k-means algorithm means that the clusters are k clusters, and

the mean of the data values in each cluster is taken as the center

of the cluster, or the center of mass, i.e., the center of mass of

each class is used to describe the cluster. The k-means algorithm

steps are shown in Table 1. Figure 4 shows the clustering block

diagram of the k-means algorithm.

The advantages of the k-means clustering algorithm are

as follows:

1. The principle of the algorithm is simple, and it is easy

to apply.

2. The convergence speed is faster and the clustering effect is

better when dealing with regular data.

The disadvantages of the k-means algorithm are as follows:

1. The selection of the initial clustering centroids is random, and

it may select bad initial values, which may have bad effects on

the clustering speed and results afterward.

2. When dealing with complex data, the iterative results are not

accurate only the local optimal solution, it is difficult to obtain

the global optimal solution.

3. Very easy to be affected by noise and outliers.

k-means++ clustering algorithm

The biggest difference between k-means++ (Arthur and

Vassilvitskii, 2006) and the k-means algorithm is in the

selection of cluster centers. The k-means algorithm selects

cluster centers randomly, while the k-means++ algorithm

selects cluster centers with the core idea that the initial

cluster centers should be as far away from each other as

possible, which is more in line with the human intuition
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FIGURE 4

k-means algorithm clustering block diagram.

TABLE 2 k-means++ algorithm.

k-means++ algorithm steps

Step 1 Randomly select a sample from the dataset as the initial clustering

center c1

Step 2 First calculate the shortest distance D(i) between each sample and the

currently existing clustering center and then calculate the probability

pi(pi =
D(i)

2
∑

i∈x D(i)
2 ) that each sample is selected as the next clustering

center. Finally, the next clustering center is selected based on the

roulette wheel method.

Step 3 Repeat Step 2 until all cluster centers are selected

The subsequent steps are the same as Steps 2–4 of the k-means algorithm

to select cluster centers. Table 2 shows the steps of the k-

means++ algorithm.

Although the k-means++ algorithm takes time to select the

clustering centers, it converges faster in subsequent iterations

and the results are more accurate. In general, it takes less time

to compute and has less error than the k-means algorithm.

The camouflage generation process of
the k-means clustering algorithm

The key steps are shown below:

1. Construct the clustering machine. Set the initial k clustering

centers, i.e., the generated clusters are of type k; themaximum

number of iterations to perform one k-means algorithm is

set to 4,000; the initialization specifies the method with three

alternative values.

The default value of “k-mean++”, “random”, and passing

array vectors is chosen to speed up the iterative convergence

process, reduce the loss and improve the efficiency. Among

the above settings, the most influential one on the final results

is the number of cluster centers k, which directly determines

the type of camouflage colors generated and will be further

discussed in the subsequent work.

2. Obtain the clustering centers for primary color extraction.

After the background clustering is finished, the clustering

results are further processed to obtain relevant clustering

information, including the values of each clustering center

and other attributes. The specific extraction procedure is

shown in Figure 5.

3. The program runs in blocks. In this paper, four types of

backgrounds are placed in one project during the design

process, and different background types perform different

operations, thus different program codes need to be selected

for different background types during the running process in

order to get the correct results.

4. Result optimization and refinement. Optimize the

overall camouflage effect of the camouflage pattern by
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FIGURE 5

Block diagram of main color extraction program.

adjusting the number of clustering centers to find the

best k-value.

In order to verify the significance of the algorithm

in practical applications, specific examples are designed in

this paper for validation. In this paper, four backgrounds

such as woodland background, grassland background, desert

background, and snowy background are selected as the

test images.

Figure 6 shows the selected backgrounds. These images

are processed in two different ways to generate the final

camouflage pattern with the Max pooling-Laplacian algorithm

pre-processed clustering and the camouflage pattern without

pre-processed clustering. The strengths and weaknesses of the

algorithm-generated results are compared by evaluating the

similarity of these two camouflage patterns to the background

of the original image. Pictures (A) and (B) in Figure 6 are taken

by individuals and Pictures (C) and (D) were purchased and

downloaded from the goadingsucai website.

Results and Discussion

Design example

The results of the background image obtained by processing

using the Max pooling model with a step size of 4 and a domain

of 4 x 4 are shown in Figure 7.

As can be seen from Figure 7, there is a certain decrease in

the clarity of the background image after pooling, but it can still

retain the texture features of the original image better; at the

same time, the size of the image decreases significantly, which

can reduce the computation of the program, and the image is

enhanced by Laplace operator filtering as shown in Figure 8.

In Figure 8, the grayscale background is shown on the left,

and the grayscale background processed by Laplace arithmetic

filtering is shown on the right. The comparison between the

grayscale background and the filtered background shows that

the filtering process increases the contrast between the grayscale

background, the background texture contour becomes clearer,

and the sharpening effect is achieved.

The camouflage pattern generated from the unprocessed

background image and the camouflage pattern with degraded

quality and noise reduction is selected for comparison.

According to the process and procedure of primary color

extraction, the corresponding procedure was written in the

software platform, and the value of k was set to 3. The primary

color maps of the camouflage design patterns corresponding to

the camouflage without image processing and after processing

by the Max pooling-Laplacian algorithm and the RGB values of

each color were obtained, respectively, and the summary results

are shown in Figures 9, 10 and Table 3.

Figures 10–13 show the results of camouflage pattern

production for woodland, grass, desert, and snow backgrounds,

respectively. Since the camouflage pattern outputted by setting

the k-value to 3 is tricolor camouflage, which are the primary,

secondary, and transitional colors of the image, respectively,

tricolor camouflage is more widely used in camouflage in various

countries. From the image results, the camouflage pattern

generated by the background image afterMax pooling-Laplacian

pre-processing is closer to the overall texture and overall

color distribution of the original background image than the

unprocessed camouflage pattern, especially in the background
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FIGURE 6

Background data image. (A) Woodland background, (B) grass background, (C) desert background, (D) snowy background.

FIGURE 7

Before and after pooling comparison: (A) woodland background; (B) grass background; (C) snow background; and (D) desert background.

mottled feature-rich woodland background pattern and grass

background pattern, and the effect of the camouflage pattern

generated by the pre-processing is obviously better.

Camouflage e�ect evaluation

This paper introduces cosine similarity cos θ theory (Xia

et al., 2015) and Euclidean distance d1−2 (Li and Lu, 2009) to

evaluate the effect of camouflage pattern generation.

The cosine similarity is judged by the cosine value of

the spatial vector angle, and the Euclidean distance d1−2

reflects the degree of similarity by the size of the mode

of the difference between two vectors, where the cosine

similarity is closer to 1 and the smaller Euclidean distance

d1−2 means the camouflage generated pattern is closer to the

background pattern.

If the vector α = [x1&y1&z1], b = [x2&y2&z2], αb is the

cosine of the angle between cos θ and the Euclidean distance

d1−2 are as follows:
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FIGURE 8

Comparison of before and after background processing: (A) woodland background; (B) grass background; (C) desert background; and (D)

snowy background.

FIGURE 9

Max pooling-Laplacian pre-processed primary color and un-pre-processed primary color (A) woodland background; (B) grassland background;

(C) desert background; and (D) snow background.

cos θ =
x1x2+y1y2+z1z2

√

x21+y21+z21

√

x22+y22+z22

(11)

d1−2 =

√

(x1−x2)2+
(

y1−y2
)2

+ (z1−z2)2 (12)

where α and b are the two spatial vectors and θ is the angle

between the two vectors.

In terms of color similarity, HSV color space is the most

recent human subjective recognition color space, which consists

of three components: H (hue), S (saturation), and V (Value)

(Cai et al., 2012). Since the picture information in HSV color

space is better than RGB color space, the HSV color space vector

is chosen to be h, s, v components are involved in the cosine

distance; and Euclidean distance calculation. The range of values

of H is 0–360, the range of values of S is 0–100, and the range of

values of V is 0–100.

In shape similarity image shape features are often described

by image shape invariant moments and moment sets, which

can describe both the global features of an image and provide

information about different geometric features related to that

image, including the characteristics of size, direction, and shape

(Dai et al., 2021). The invariant moments ϕ1, ϕ2, and ϕ3 derived

from them are selected as evaluation metrics to construct the
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FIGURE 10

Woodland-type camouflage pattern. (A) Original image, (B) unprepared, (C) compressed and enhanced.

TABLE 3 Main color extraction table.

Background type Not pre-processed Max pooling-laplacian preprocessing

Main color 1 Main color 2 Main color 3 Main color 1 Main color 2 Main color 3

Woodland 86,129,75 70,112,66 54,90,54 115,156,100 103,141,94 90,127,84

Grassland 119,122,65 96,106,53 75,86,43 135,135,81 107,124,70 99,106,64

Desert 210,156,109 190,139,96 174,128,92 234,183,140 222,171,128 205,158,116

Snow 205,158,116 178,191,208 159,172,189 207,223,238 192,205,222 175,188,205

FIGURE 11

Grass-type camouflage pattern. (A) Original image, (B) unprepared, (C) compressed and enhanced.

invariant moment set feature vector and calculate the Euclidean

distance and cosine distance between the two.

The final output color similarities and shape similarities data

are summarized in Tables 4, 5. From the data table, we can

see that the k-means clustered camouflage pattern output after

Max pooling-Laplacian compression enhancement process has

a cosine similarity closer to 1 than the unprocessed camouflage

pattern output. The cos θ is closer to 1 and the Euclidean

distance d1−2 is smaller.

From Figures 14, 15, it can be visually analyzed that

the camouflage pattern using the maximum pooling-Laplace

compression enhancement algorithm is closer to the original

image. It can be concluded that the design method of using

the Max pooling-Laplacian algorithm proposed in this paper

to pre-process images and then k-means clustering to generate

camouflage patterns can be better.

Practical application verification

Experimental design

In order to verify the application value of camouflage design

theory and view the camouflage effect of camouflage patterns

in the actual environment. In this paper, the camouflage effect

of the camouflage design pattern is verified by combining the

existing conditions and printing the camouflage design pattern

with a grassland background on the common fabric. The grass
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FIGURE 12

Desert-type camouflage pattern. (A) Original image, (B) unprepared, (C) compressed and enhanced.

FIGURE 13

Snow-type camouflage pattern. (A) Original image, (B) unprepared, (C) compressed and enhanced.

TABLE 4 The color similarity of camouflage patterns.

Background type Pattern type H S V cos θ d1−2

Woodland Not pre-processed 100.65 40.63 62.73 0.9957 11.68

Original image 108.12 36.36 54.85

0.9999 2.685Compression enhancement processing 109.73 37.88 56.37

Grassland Not pre-processed 70.019 42.28 48.8 0.9930 11.41

Original image 67.72 52.57 44.42

0.9998 3.2Compression enhancement processing 66.42 49.65 44.18

Desert Not pre-processed 30.9 40.68 85.74 0.9986 5.78

Original image 27.10 43.41 82.34

0.9996 3.35Compression enhancement processing 27.89 46.60 83.01

Snow Not pre-processed 216.69 19.4 78.45 0.9996 7.82

Original image 210.37 15.38 80.69

0.9999 3.22Compression enhancement processing 213.20 16.8 81.23
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TABLE 5 Shape similarity of camouflage patterns.

Background type Pattern type ϕ1 ϕ2 ϕ3 cos θ d1−2

Woodland Not pre-processed 0.2208 0.0097 0.0004 0.9996 0.06

Original image 0.2775 0.0082 0.0002

0.9999 0.02Compression enhancement processing 0.2545 0.0093 0.0002

Grassland Not pre-processed 0.2633 0.0034 0.0001 0.9998 0.05

Original image 0.3122 0.0083 0.0010

0.9999 0.01Compression enhancement processing 0.3003 0.0080 0.0014

Desert Not pre-processed 0.5377 0.0266 0.006 0.9994 0.06

Original image 0.2201 0.004 0

0.9998 0.02Compression enhancement processing 0.2409 0.0042 0.0001

Snow Not pre-processed 0.2808 0.0097 0.0004 0.9998 0.06

Original image 0.2208 0.0072 0.0001

0.9999 0.02Compression enhancement processing 0.2421 0.0083 0.0002

FIGURE 14

Color similarity assessment results.

FIGURE 15

Shapes similarity assessment results.
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FIGURE 16

1 * 0.6m test piece.

FIGURE 17

Test pieces under di�erent meteorological conditions. (A) Sunny, (B) cloudy.

background camouflage pattern generated by the algorithm of

this paper is selected as the camouflage pattern of the test

piece. The three main colors extracted from the grassland

background at k = 3 were selected as the main colors of the

test piece.

The camouflage pattern is printed on the fabric carrier to

realize the camouflage design materialization, and the size of the

test piece is 1 ∗ 0.6m, as shown in Figure 16.

In this paper, we set the shooting height to 25m and use

DJI Genie 4pro to shoot. In the actual testing process, factors

such as moisture in the air, visibility, and weather conditions will

have a great impact on the testing effect and bring influence to

the evaluation of the designed camouflage pattern. In this paper,

the camouflage effect was tested under two different weather

conditions, sunny and cloudy, and the results are shown in

Figure 17.
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FIGURE 18

Color histogram of test piece and background under di�erent meteorological conditions. (A) Sunny, (B) cloudy.

As can be seen from Figure 17, the results of the

test piece camouflage effect detection under two different

meteorological conditions show obvious differences. Whether

it is the color of the image or the brightness of the image, the

results obtained under different meteorological conditions are

obviously different results.

Analysis of experimental results

In Figure 18, the color histogram distribution between the

test piece and its background under two different weather

conditions, sunny and cloudy, is somewhat different. Under

sunny weather conditions, the gray level of the test piece is

mainly distributed in the interval [140, 180] and peaks at the

gray level of 170, and the gray level of the background is

mainly distributed in the interval [170,190] and peaks at the

gray level of 180. Under cloudy weather conditions, the test

piece gray levels are mainly distributed in the interval [110,

140], and the gray level peaks at 120; the background gray levels

are mainly distributed in the interval [130, 150], and the gray

level peaks at 140. The test pieces and the actual background

gray level intervals overlap well, and the differences in the gray

levels corresponding to the peaks are small. This experimental

result proves that the camouflage pattern generated by the

camouflage pattern generation method in this paper has a good

camouflage effect.

Comparing the distribution of the histogram of the test piece

with its background color under two different meteorological

conditions of sunny and cloudy days. The gray level region slides

from the high gray level in sunny weather conditions to the low

gray level in cloudy weather conditions, which indicates that

the weather conditions have some influence on the camouflage

effect of camouflage. The gray level is closely related to the image
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TABLE 6 The similarity between the test piece and background under di�erent meteorological conditions.

Weather conditions Image type h s v d1−2 cosθ

Sunny Background 59.06 57.59 70.43 11.92 0.9941

Test piece 60.83 47.98 77.26

Cloudy Background 53.53 46.54 55.70 7.54 0.9965

Test piece 55.28 40.41 60.04

brightness, and sufficient light will increase the brightness of the

test piece and the background, which will bring some influence

to the camouflage effect.

FromTable 6, it can be seen that the color difference between

the test piece and the background image is minimal for either

meteorological condition, which indicates that the method in

this paper achieves a better effect in color reproduction. The

differences in Euclidean distance and cosine similarity show that

the meteorological conditions can have an effect on the artifact

effect. The Euclidean distance under sunny weather conditions

is greater than that under cloudy weather conditions, indicating

that sufficient light causes the test piece and the background

to change in the direction of brightness enhancement, which

weakens the camouflage effect of the test piece. This is because

the brightness is closely related to the spectral reflectance

characteristics of the material, and the common fabric selected

in this paper is not specially treated, resulting in significant

differences in the brightness of the target background, making

the camouflage effect weaker. Therefore, the material properties

of the coating or fabric need to be taken into consideration when

camouflage is implemented.

The above experimental analysis shows that the test

pieces have good camouflage effects under different weather

conditions. The high degree of integration between the test piece

and the background, good similarity, and good camouflage effect

further illustrate the application value of the camouflage pattern

generation algorithm designed in this paper. It also indirectly

proves that good lighting conditions will enhance the contrast

between the ground target and background and weaken the

comprehensive camouflage effect of camouflage.

Conclusion

In this paper, the Max pooling-Laplacian algorithm is used

to process the original background images based on different

background data to achieve the design of camouflage patterns

with different background data. Compared with the traditional

k-means clustering camouflage pattern method, the method in

this paper has a better camouflage effect. Experiments were

designed to verify the application value of the camouflage design

method, and the final experimental results showed that the

camouflage design method has good reliability.

(1) In this paper, the Max pooling theory is applied to compress

the images to reduce the image size while preserving the

image features, speed up the camouflage pattern generation,

and prevent too much information from causing inaccurate

convergence results.

(2) A Laplace filter was used to enhance the image operation,

which weakened the influence of image clutter on the design

results and improved the accuracy of the algorithm results.

(3) The design method is evaluated by using color similarity

and shape similarity, and the results show that the new

camouflage pattern generation method achieves the design

of camouflage patterns with different backgrounds and

achieves good results.

(4) Camouflage experiments under different weather

conditions were designed. Under sunny conditions,

the cosine similarity between the camouflage pattern

and background was 0.9941 and the Euclidean distance

was 11.92; under cloudy conditions, the cosine similarity

between the camouflage pattern and background was

0.9965 and the Euclidean distance was 7.52.

Although the camouflage design method in this paper

is better than the traditional k-means camouflage design

method. However, the data from Figures 14, 15 reflect that

the camouflage effect of the woodland background camouflage

picture and the grass background camouflage pattern generated

by the design method in this paper is better. This is because

the data of snow background and desert background are not

as complex as the data of woodland background and grass

background, and the method designed in this paper is more

suitable for complex data images and large data images. The

results of the camouflage experiments in this paper show

that different lighting conditions can affect the brightness of

the background and camouflage patterns resulting in a poor

camouflage effect. Future research can focus on camouflage

pattern materials and coatings, and design materials with a

similar reflectance to the background spectrum.
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