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Introduction: Aiming at the problems of low accuracy in estimating the

rotation angle after the rotation of circular image data within a wide range

(0◦–360◦) and di�culty in blind detectionwithout a reference image, amethod

based on ensemble transfer regression network, fused HOG, and Rotate Loss

is adopted to solve such problems.

Methods: The proposed Rotate Loss was combined to solve the angle

prediction error, especially the huge error when near 0◦. Fused HOG was

mainly used to extract directional features. Then, the feature learning was

conducted by the ensemble transfer regression model combined with the

feature extractor and the ensemble regressors to estimate an exact rotation

angle. Based on miniImageNet and Minist, we made the circular random

rotation dataset Circular-ImageNet and random rotation dataset Rot-Minist,

respectively.

Results: Experiments showed that for the proposed evaluation index

MSE_Rotate, the best single regressor could be as low as 28.79 on the training

set of Circular-ImageNet and 2686.09 on the validation set. For MSE_Rotate,

MSE, MAE, and RMSE on the test set were 1,702.4325, 0.0263, 0.0881, and

0.1621, respectively. And under the ensemble transfer regression network, it

could continue to decrease by 15%. The mean error rate on Rot-Minist could

be just 0.59%, significantly working easier in a wide range than other networks

in recent years. Based on the ensemble transfer regression model, we also

completed the application of image righting blindly.

KEYWORDS

image rotation, blind detection, ensemble transfer regression, HOG, loss function

1. Introduction

In recent years, rotation angle estimation plays quite an important role in many

scenarios, such as estimating the rotation angle in radar images (Wang and Jiang, 2008;

Zhou et al., 2021b), industrial forgery detection (Hurrah et al., 2021), forensic analysis of

digital images (Wei et al., 2010), drone-assisted visual coverage (Cao et al., 2021), etc.

Accurate detection of image rotation angle has irreplaceable important value for

industrial production and social life in multiple situations. But how to detect the rotation
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angle of the image, especially how to blindly detect the rotation

angle of a single image, has been a problem for a long time.

In today’s Computer Vision field, we can solve such

a problem with the help of Transfer Learning. Transfer

Learning aims at improving the accurate representation of high-

dimensional and sparse data on target domains by transferring

the knowledge contained in different but related source domains

(Zhuang et al., 2021; Wu et al., 2022). In this way, the

dependence on a large number of target-domain data can

be reduced for constructing target learners. Due to the wide

application prospects, Transfer Learning has become a popular

and promising area in Deep Learning.

Transfer Learning can solve classification and regression

tasks very well. For the task of rotation angle estimation, such

as “image righting,” it is more appropriate to regard it as a

regression task, because the goal of regression is to predict

specific values. If we regard it as a classification task, the specific

values can be accurately predicted unless it is divided into 361

categories (0–360◦, divided into 1 category according to each 1◦)
or more categories. But this puts forward higher requirements

for the magnitude of the data, which is not easy to solve.

Previously, many scholars have studied the task of estimating

the rotation angle of the image, but their researches were rare

for full circular data, which will be a new challenge. At the

same time, the range of rotation angle studied by many scholars

is relatively limited, such as limited to 45◦ (Wei et al., 2010),

or limited to a rough range (Zhou et al., 2019). For the range

of the rotation angle expanded to 0–360◦, how to estimate it

accurately is also a big problem. Some strategies required the

help of a reference image when estimating the rotation angle

(Onishi and Suzuki, 1996; Kim and Kim, 1999; Xiong and Quek,

2006; Revaud et al., 2009). However, in many cases, we do not

have the original image for reference, so how to perform blind

detection of rotation angle without a reference image is also one

of our goals to be solved. What we call “blind” is that the image

before rotation is unknown, and the only available data is a single

image (Goljan, 2018; Zhou et al., 2018).

Aiming at the processing of circular images, the study

of large-scale rotation angle, and the obtaining of relatively

accurate blind estimation of the rotation angle, this paper

proposed the ensemble transfer regression network (ETRNet).

The histogram of oriented gradients (HOG) was used to extract

the subtle directional features of the circular image. Combined

with the newly Rotate Loss, a more relatively accurate blind

estimation of the image rotation angle could be reached.

Our main contributions include:

(1) The ensemble transfer regression network, capable of

blind detection of rotation angles in circular images, was

proposed by voting with multiple best regressors.

(2) HOG-based directional feature fusion strategy was

proposed. Feature learning was carried out with the fused HOG

feature image, which added additional directional information

to the original image.

(3) Rotate Loss proposed to solve the wrong judgment of

degree difference between the predicted angle and the reference

angle. The degree difference could be too large near 0◦ when the

rotation range is expanded to 0–360◦.
(4) The task of blindly righting circular random rotation

images has been generally solved.

The format of this paper is as follows: Section 2 discusses

existing approaches and related work. In Section 3, we present

the overall architecture of ETRNet. The directional feature of

the image is extracted based on HOG, and a new rotation angle

loss function Rotate Loss is proposed. Section 4 introduces the

production process of the circular dataset and the design ideas of

the regressor. The validity of Rotate Loss and the effect of fused

HOG were verified. An application of image righting blindly

was also completed. In Section 5, some experimental results in

Section 4 are analyzed and discussed. The final section makes a

summary and puts forward the direction of future efforts.

2. Related work

In the research on the detection method of image rotation

angle, many excellent methods have emerged. It can be roughly

divided into non-blind detection methods or blind detection

methods.

2.1. Non-blind detection method of
image rotation angle

In Onishi and Suzuki (1996) applied a modified version

of the Hough transform to the reference and input images,

and computed the angle of rotation uniquely. In 1999, a

robust method of estimating a rotation angle using the phase

information of Zernike moments was presented by comparing

two graphs (Kim and Kim, 1999). In Xiong and Quek (2006)

created an angle histogram with a voting procedure. The

rotation angle between the reference image and the observation

image could be determined by seeking the orientation difference

that corresponded to the maximum peak in the histogram. In

Revaud et al. (2009) retained the phase information, improved

the Zernike moment, and retrieved the rotating image of the

randomly rotated image under the conditions of adding noise,

deformation, occlusion, and translation. In the case of noise and

deformation, they could achieve the accuracy of the average root

mean square error (RMSE) within 1◦.

2.2. Blind detection method of image
rotation angle

In Fukumi et al. (1997) relied on neural networks to

roughly estimate the rotation angle of numbers and coins.
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In Ulas et al. (2007) proposed a method based on parameter

statistics. Using 1D and 2D linear models and statistical

parameters of the X-axis, Y-axis, and diagonal axis, they

proposed a fabric rotation angle estimation method. When

the image resolution was high enough, the error within plus

or minus 1◦ can be obtained between –30 and 30◦. In

Wang and Jiang (2008) proposed a rotation angle estimation

method of ISAR imaging, which estimated the optimal

rotation rate according to the received signal to estimate the

rotation angle.

In Wei et al. (2010) developed an image rotation angle

estimator based on the relations between the rotation angle

and the frequencies at which peaks due to interpolation

occured in the spectrum of the image’s edge map. In Qian

et al. (2013) proposed a blind image rotation angle estimation

method by exploring the periodicity of pixel variance of

rotated images. Experiment results showed that their method

worked well for rotation angles larger than 5◦. In Chen

et al. (2014) used the two-dimensional spectrum of image

second-order statistics and used the hidden periodicity in the

rotating image to estimate the rotation angle. The normalized

range was improved but the prediction range was within

one quadrant.

In Deng et al. (2018) designed a derotation layer, which

explicitly rotated a feature map up to a given angle. For rotation

angles >30◦, there was an 80% prediction rate. Their work

well demonstrated the ability of a deep regression network to

predict rotation angles. The same year, Goljan (2018) utilized

the Linear Pattern (LP) as a global template. In particular, no

side information, such as a watermark or the EXIF header,

was required. Their method was generally applicable whenever

the image under investigation had a strong LP before rotation.

The main advantage of their proposed method was its accuracy

in estimating small rotation angles (<3◦). It could also work

after resizing.

In 2019, directional wavelet and horizontal wavelet were

used for preprocessing (Rodriguez et al., 2019). Then it passed

through a network with a pooling layer, convolution layer, and

dense layer. Finally, a two-dimensional vector was output as

the result. The maximum value of the column was taken as

the classification result, and the maximum value of the row

was taken as the angle prediction. The prediction error rate

on MNIST-R was 2.69%. Same in Zhou et al. (2019) used the

shifting pixels method and the octagonal convolutional kernel to

construct the angle prediction network. However, for angles that

were not equal to n× 45◦ (n = 1, 2, ..., 7), the network could only

estimate the angle roughly for the reason that they only chose

45◦ as the stride to rotate the parameters in convolutional layers.

In 2021, the approach of Hurrah et al. (2021) was based

on the premise that the rotation of an image resulted in the

formation of uniform intensity patches. After detecting sharp

boundaries through horizontal/vertical scanning, the angle of

rotation was estimated blindly without the need for a reference

image. An angle was estimated accurately for a range of 1◦

to ±89◦. Same in 2021, DTCWT, which had good directional

selectivity, was used instead of DWT to extract rotated LP (Zeng

et al., 2021). Once the noise residuals were extracted, a coarse-

to-fine strategy was used to search for possible rotation angles.

From the above research, some findings are as follows:

(1) The blind detection method of image rotation angle is

more challenging than the non-blind method, and it is also

a hot spot of recent research. However, the blind detection

method focuses on the specific strategies that can be adopted

in specific tasks. For example, the strategy adopted in Hurrah

et al. (2021) relied on the patches generated by the rotation of

square images to further predict the rotation angle by detecting

the rotation boundary.

(2) Their strategies were inapplicable for circular images,

because circular images could not produce special triangular

patches after rotation, and might not rely on detecting rotation

boundaries to predict rotation angles.

(3)The rotation angle range of some studies was also limited.

For example, the estimation range of Hurrah et al. (2021) was 1◦

to±89◦.
(4) Others could only find an approximate range, but can

not tell a more accurate angle. It was clear that Zhou et al. (2019)

needed to use a smaller rotation step to make a more accurate

prediction.

It can be seen that the processing of circular images,

the study of large-scale rotation angles, and the obtaining of

relatively accurate prediction of rotation angles are currently

urgent problems to be solved. These three problems form the

focus of this paper.

3. The overall architecture

In this paper, we proposed the HOG (Dalal and Triggs,

2005) based directional feature fusion strategy, and on this

basis, combined with the ensemble transfer regression network

(ETRNet) to blindly predict the rotation angle. At the same time,

our proposed Rotate Loss was used to make the model have

better convergence. The overall architecture can be shown in

Figure 1.

3.1. HOG-based directional feature
fusion strategy

At the 2005 CVPR conference, French researchers Dalal and

Triggs proposed the HOG, which could be a feature descriptor

used in image processing for object detection. At that time, the

combination of HOGoperator and SVM classifier in static image

pedestrian detection achieved certain results and began to be

widely used.
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FIGURE 1

Transfer learning regression network model.

Fusion methods could be used for identifying salient regions

(Tian et al., 2021; Zhou et al., 2021a). HOG can extract more

obvious directional features, but HOG alone is not enough to

complete the subsequent rotation angle prediction task. Because

the feature map obtained by HOG only retains directional

information and loses the original semantic information of the

image about vision, object, concept, etc.

Therefore, the strategy of fusing HOG features and original

image features was designed according to (1), and the fusion

effect can be shown in Figure 2.

Inew(x, y) = addWeighted(α ·H(x, y),β · I(x, y)) (1)

where addWeighted means adding according to different

weights, H(x, y) represents the pixels of the HOG feature map,

Inew(x, y) represents the pixels of the fusion feature, α,β ∈ [0, 1]

and α + β = 1.

3.2. Ensemble transfer regression
network

Transfer Learning is more suitable for the case of limited

labeled data (Wu et al., 2021; Zheng et al., 2021; Zhou et al.,

2022). The annotated rotating images we got were limited,

so we chose the CNN model which was pre-trained on the

ImageNet database to make up for the lack of annotated data

based on its powerful distinguishing ability. This paper selected

EfficientNet (Tan and Le, 2019) as the Transfer Learning base

model. EfficientNet, as an efficient and robust convolutional

neural network model with good generalization, has achieved

good results on the ImageNet dataset and has been widely used

as a feature extractor for transfer learning models in recent years

(Hoang and Jo, 2021).

The overall network structure is shown in Figure 1. Firstly,

the overall parameters of the EfficientNet network were trained

by well annotated ImageNet dataset, where the parameters

included the weights of the feature extractor and classifier (called

TOP). Secondly, in the fine-tuning stage, the parameters of the

feature extractor obtained in the first step were fixed. Then

the weights of the redesigned TOP were calculated by limited

labeled rotating images and updated to obtain a new set of

parameters suitable for small sample regression tasks. Thirdly,

multiple regressors were combined to form the ensemble

transfer regression model. The combination was generated

based on the better-performing regressor voting.

The basic parts of the new TOP included a Global Average

Pooling layer and a Dense layer with a single neuron activated by

Sigmoid as output. The Global Average Pooling layer connected

the feature extractor to realize dimension reduction and global

feature extraction.

3.3. Rotate loss

The loss function can estimate the distance between the

prediction and the reference label. The smaller the value of the

loss function, the better the prediction effect of the model. The

selection of the loss function needs to be based on the specific

network and the problems to be solved. Since our goal is to get

a more exact prediction of image rotation angle, a more realistic

regression loss function needs to be considered.
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FIGURE 2

The fusion process of HOG directional feature and original image. (A) The original image. (B) The directional feature of HOG. (C) The fusion

e�ect according to Equation (1).

Mean square error (MSE) is one of the regression loss

functions, which is the average of the square distance between

the estimated value and the reference value, as shown in

Equation (2):

MSE =
1

n

n∑

i=1

(yi − ŷi)
2 (2)

where y is the actual output of the network, ŷ is the

expected output (i.e. reference label). However, if there are

some particularly unreasonable outliers, MSE will give an

exaggerated average, thereby reducing the overall performance

of the network model.

Mean absolute error (MAE), as shown in Equation (3), is

another commonly used regression loss function to measure the

average distance between y and ŷ. Compared with MSE, MAE

is more inclusive of outliers. However, due to the existence of

absolute values, MAE is not conducive to function convergence

and model training.

MAE =
1

n

n∑

i=1

∣∣yi − ŷi
∣∣ (3)

Huber loss (Meyer, 2021), as another regression loss

function, as shown in Equation (4), combines the advantages

of MSE and MAE, and has a strong anti-interference ability

for outliers. When the difference between the predicted and the

reference is less than δ, it is regarded as a small error. Otherwise,

it is regarded as an outlier with a large error and corrected by the

second formula in Equation (4).

Huber(yi, ŷi) =

{
1
2 (yi − ŷi)

2, for
∣∣yi − ŷi

∣∣ ≤ δ

δ · (
∣∣yi − ŷi

∣∣ − 1
2 δ), otherwise

(4)

where, δ is a parameter, usually 0.1 or 1.

But for the rotation angle blind detection task, only relying

on Equation (4) is still unreasonable. The optional range of

image rotation is 0◦ to 360◦. Therefore, when the rotation angle

is near 0◦, the Huber loss function cannot be accurately judged.

When the predicted value is less than the reference value, for

example, the predicted value is 4◦, the reference value is 355◦,
and the actual degree difference is 9◦ (after normalization, it is

9/360=0.025, far less than δ). In the Huber loss function, the

degree difference will be 351◦, which will be regarded as an

abnormal situation for error processing.

Therefore, based on Equation (4), the improved loss

function Rotate Loss, shown as Equation (5), was proposed.

It will solve the problem of the wrong judgment of degree

difference when the predicted and the reference value are

near 0◦.

R(yi, ŷi) =





1
2 (yi − ŷi)

2, for
∣∣yi − ŷi

∣∣ ≤ δ1

δ · (
∣∣yi − ŷi

∣∣ − 1
2 δ), for

∣∣yi − ŷi
∣∣ ≤ δ2

1
2

[
(1− ŷi)+ yi

]2
, foryi < ŷi,

∣∣yi − ŷi
∣∣ > δ2

1
2

[
(̂yi + 1)− yi

]2
, foryi > ŷi,

∣∣yi − ŷi
∣∣ > δ2

(5)

The range before normalization is an integer of [0,360],

and after normalization is a decimal of [0,1]. δ1 is taken as the

normalized value of 340, namely 340/360≈0.944, and δ2 is taken

as the normalized value of 350, namely 350/360≈ 0.9722.

Rotate Loss mainly added two judgment situations when

the predicted and the reference are near 0◦ and the degree

difference is too extreme. When the predicted value is less than

the reference, the angle error is corrected to
∣∣(1− ŷi)+ yi

∣∣.
Otherwise, the angle error is corrected to

∣∣(̂yi + 1)− yi
∣∣.

At this time, if the predicted value is less than the reference, it

will be considered again. If the prediction is 3◦ and the reference
is 355◦, it can be corrected to 8◦ according to Rotate Loss as

shown in Figure 3.
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FIGURE 3

Examples of Rotate Loss. (A) Get true error when the estimate bigger than the reference. (B) Get true error when the reference bigger than the

estimate.

FIGURE 4

The emergence of the dataset. (A) Circular-ImageNet. (B) Rot-Minist.

3.4. Composition of regressor

The final effect of transfer learning for rotation angle

prediction depends not only on the new sample data but also on

the design of regressors in ETRNet. To improve the accuracy and

generalization of the model, many strategies can be considered,

such as whether to add a BN layer, Regularization layer, or

Dropout layer.

A) BN

The BN algorithm can be referenced from Ioffe and Szegedy

(2015). The architecture with Batch Normalization allows a

higher learning rate, so it can generate better benefits in

the model with better generalization ability (Simon et al.,

2016).

B) Regularization

Regularization can promote the sparsity of deep

learning networks, and eliminate redundant connections

and unnecessary neurons. In practice, we often consider L1

regularization (Kamalov and Leung, 2020) or L2 regularization

(Shi et al., 2019).

C) Dropout Algorithm

By randomly discarding units during training, the network is

prevented from overfitting (Baldi and Sadowski, 2014). Dropout

can be regarded as a model fusion method.

The above strategies can be used separately or in

combination. However, the order of the combination may have

an impact on the prediction results. For example, some analysts

say that the joint effect of BN and dropout will play a negative
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A B

FIGURE 5

Comparison of loss and MSE_Rotate values among loss functions. (A) Changes of loss values. (B) Changes of MSE_Rotate values.

TABLE 1 Regressor design strategies.

Regressor BN L1 L2 Dropout

Ra
√

Rb
√

Rc
√

Rd
√

Re
√ √

Rf
√ √

Rg
√ √

Rh
√ √

Ri
√ √

Rj
√ √

Rk
√ √ √

Rl
√ √ √

Rm
√ √ √

Rn
√ √ √ √

Baseline

role instead (Li et al., 2019). Especially when dropout is applied

before BN, it may eventually lead to a worse prediction.

4. Experiments

To detect and analyze the image rotation angle more

accurately, miniImageNet and Minist are selected as the original

data. Based on them, a more challenging circular random

rotation dataset Circular-ImageNet, and a random rotation

dataset Rot-Minist were produced. A series of comparative

experiments were conducted.

4.1. Dataset

MiniImageNet is a dataset containing 60,000 colorful images

coming from 100 classes, with 600 images in each class (Xue

et al., 2020). However, 60,000 images are redundant and cause

too much pressure on the equipment. Therefore, we randomly

selected 6,000 images as the initial data for further processing. In

our experiments, to simulate better challenging circular images,

we sequentially processed the initial data as follows:

a) Making a maximum inscribed circle based on the image

center.

b) Scaling the image to 320× 320 pixels.

c) The image is rotated randomly from 0◦ to 360◦(integers)
counterclockwise and used as a reference label.

d) HOG features are extracted and fused according to

Equation (1) to obtain a fused image.

All the above operations are performed on the initial data

once to form the data set Circular-ImageNet, as shown in the

upper half of Figure 4.

Since the overall quality of the Circular-ImageNet image is

relatively clear, image enhancement is not necessary. In addition,

we should note that some common data enhancement methods

are not suitable for Circular-ImageNet. Such as translation,
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FIGURE 6

Comparison of Rotate Loss among 14 regressors on the validation.

flip, or rotation. Because these operations will change the

image rotation angle information, they can not be directly and

accurately consistent with the reference label. For Circular-

ImageNet, the total number is 6,000. In this paper, the division

ratio of the training, validation, and test sets is 6:2:2.

To compare with other strategies, the Rot-Minist was

obtained by 0◦–360◦ random rotation based on Minist, shown

as the bottom half in Figure 4. Also divided in a ratio of 6:2:2.

4.2. Evaluation indicators

In the regression task, the commonly used evaluation

indexes are MSE, MAE, RMSE, etc. MSE and MAE shows as

Equations (2) and (3), and RMSE shows as Equation (6).

RMSE =

√√√√ 1

n

n∑

i=1

(yi − ŷi)
2 (6)

The closer MSE, MAE, and RMSE are to 0, the closer the

predicted angle value is to the label.

During training and verifying, MSE_Rotate was the mainly

used evaluation indicator, as shown in Equation (7). During

testing, we observed the feedback of the four indicators:

MSE_Rotate, MSE, MAE, and RMSE.

MSE_Rotate =
1

n

n∑

i=1

(360× yi − 360× ŷi)
2 (7)

4.3. Comparative experiment of loss
function

Taking Circular-ImageNet as the data set, the first set of

experiments compared the comprehensive performance of the

proposed loss function and other loss functions to verify the

effectiveness of the proposed Rotate Loss.

MSE, MAE, Huber, and Rotate Loss were respectively

added in comparative experiments. EfficientNetB3 with a single

regressor, global average pooling with BN, was used here. The

result indicated that Rotate Loss performed best both in loss and

MSE_Rotate values, as shown in Figure 5.

To achieve a fair comparison between algorithms and

prevent the network from reaching the error threshold and

ending the training in advance, the minimum value of the

loss function was set to 0 and the updated minibatch was

64. The number of epochs was set to 100 to better observe

the change among different loss functions. The optimizer used

was Adam and the equipment used was NVIDIA RTX A6000.
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FIGURE 7

Comparison of MSE_Rotate among 14 regressors on the validation.

TABLE 2 Comparison of MSE_Rotate, MSE, MAE, RMSE on testset.

Regressor MSE_Rotate MSE MAE RMSE

Ra 2,070.5363 0.0320 0.0886 0.1788

Rb 1,993.4750 0.0308 0.0837 0.1754

Rc 2,051.8608 0.0317 0.0932 0.1779

Rd 1,959.2438 0.0303 0.0910 0.1739

Re 1,702.4325 0.0263 0.0881 0.1621

Rf 1,760.0450 0.0272 0.0808 0.1648

Rg 1,962.2700 0.0303 0.0888 0.1740

Rh 1,955.1758 0.0302 0.0896 0.1737

Ri 2,055.9233 0.0317 0.0912 0.1781

Rj 1,957.4579 0.0302 0.0923 0.1738

Rk 2,059.7575 0.0318 0.0970 0.1782

Rl 1,947.0567 0.0301 0.0893 0.1734

Rm 1,749.5342 0.0270 0.0874 0.1643

Rn 1,768.6558 0.0273 0.0860 0.1652

ETRNet 1,444.9354 0.0223 0.0792 0.1494

Baseline 1,770.3567 0.0273 0.0807 0.1653

The bolded part means better than baseline.

Those experiments weremainly carried out based on Tensorflow

and OpenCV.

4.4. Comparative experiment of regressor

Experiments comparing the detection accuracy among

multiple regressors can tell which one had better performance,

as shown in Table 1. ETRNet will be formed by better regressors

with better robustness generalization and accuracy. Baseline

means no selection.

Figures 6, 7 were the comparison diagrams of 14

regressors after 100 epochs on the validation set of Circular-

Imagenet. Table 2 showed the feedback of MSE_Rotate,

MSE, MAE, and RMSE on the test set. The result

indicated Re, Rf, Rm, and Rn were significantly better

than baseline. At the same time, ETRNet voted based on

the four regressions (Re, Rf, Rm, and Rn), and obtained the

best effect.

4.5. Ablation experiment

To verify the effectiveness of HOG, an ablation experiment

was carried out. We adopted the best regressor in 4.4 and

continued to use EfficientNet as the feature extractor. Rotate

Loss was the loss function.

Three groups of comparative experiments were

conducted. One was the Circular-ImageNet with
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FIGURE 8

Comparison of loss values in ablation experiment.

FIGURE 9

Comparison of MSE_Rotate values in ablation experiment.

only HOG features for training. The second was

without the HOG feature. The third one was Rf with

fused HOG.

The ablation results were shown in Figures 8, 9. The loss and

MSE_Rotate of Rf with fused HOG feature could be lower and

the prediction effect of rotation angle would be better.

Frontiers inNeurorobotics 10 frontiersin.org

https://doi.org/10.3389/fnbot.2022.1037381
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org


Dong et al. 10.3389/fnbot.2022.1037381

TABLE 3 Comparison of error rate (%) with other networks.

Method
Correct
boundary

Range

0◦ 90◦ 180◦ 360◦

Katayama and Yamane (2017) 22.5◦ <10 \

Rodriguez et al. (2019) 11.25◦ 2.69 \

Ours on Rot-Minist

22.5◦ 0.59

11.25◦ 0.64

3◦ 18.55

Ours on Circular-ImageNet
22.5◦ 27.67

11.5◦ 40.58

The bolded part means the effect of ETRNet.

4.6. Comparative experiment of networks

For comparison, as shown in Table 3, the error rate was

used as the main measurement indicator. The minimum correct

boundary angle difference in Katayama and Yamane (2017) was

set at 22.5◦ and achieved an error rate within 10%. If within

11.25◦, Rot-Minist was only 0.64%, which was significantly

lower than 2.69% in Rodriguez et al. (2019) relying on the

oriented wavelet feature. In our work, a boundary was limited

to within 22.5◦, 11.25◦, and 3◦, and the mean error rate on

Rot-Minist was 0.59%, 0.64%, and 18.55%. Considering the

complexity, the mean error rate on Circular-ImageNet was

27.67% with the angle error exceeding 22.5◦ as the boundary.

4.7. Image righting

One application of blind detection of image rotation angle is

to perform image righting. That is, we need to rotate the objects

in the images to a normal angle.

Applying ETRNet to the detection of rotating images, the

image can be corrected to the mode before rotation, that is, to

complete the task of Image Righting. Relying on ETRNet, the

effect of image righting can be shown in Figure 10.

5. Discussion

1. From 4.3, we can see that the Rotate Loss is indeed

improved on the basis of Huber loss. It can converge to a lower

range and obtain better MSE_Rotate results. It shows that our

improvement does have a certain narrowing effect on the angle

error.

2. As can be seen in Section 4.4, different regressors

have different returns. When adopting transfer learning, it is

necessary to comprehensively consider the impact of various

strategies and choose better strategies as far as possible. For

example, in our experiment, the Rf regressor can be regarded as a

better regressor when the result of the validation set was the best

and the result of the test set was relatively in the front position.

3. Ensemble transfer regression network may have more

research potential than a single regressor. Through ETRNet, the

MSE_Rotate decreased by 15–30%.

4. Ablation experiments also show that with the help of

HOG, we can better control the prediction error of the rotation

angle, and the MSE_Rotate can reach a lower level, which can be

seen in the enlarged figure in Figure 9.

5. Compared with other networks, our strategy is also more

advantageous and can be easily competent for blind detection

of small datasets. The range of angles we can predict is larger

and the error rate can be lower. However, in the case of

large datasets with complex changes, our error rate still needs

further control.

6. There is great space for the application of image

righting in the real world. However, the experimental results

also show that we can not guarantee very accurate rotation

angle blind detection of a single image in complex scenes.

For example, the third predicted angle error in Figure 10 was

very large. However, by observing the image after righting,

we can see that the effect of righting was basically in line

with expectations.

6. Conclusion

In this paper, the ETRNet with fused HOG was used to

realize the blind detection of the rotation angle of the circular

image in the range of 0◦–360◦. Through the comparative

experiments between different loss functions under the same

network structure, it is verified that the proposed Rotate Loss

has better convergence for ETRNet. Through the comparative

experiment of designing multiple regressors, ETRNet was voted

as the better regressor. As for the MSE_Rotate, Re could

be as low as 28.79 on the training set of Circular-ImageNet

and 2,686.09 on the validation set. The MSE_Rotate, MSE,

MAE, and RMSE on the test set were 1,702.4325, 0.0263,

0.0881, and 0.1621, respectively. Based on the four better

regressors, ETRNet achieved a good performance. We also

tried to solve the application task of image righting and made

some progress.

In future research, we can further optimize based on

the network design in this paper, adopt a feature extractor

with stronger performance, propose a regressor with better

generalization, and improve the loss function to adapt

to the rotation image angle detection in a variety of

scenes. But it also means that the network may be more

complex and have more parameters. Therefore, how to

optimize the algorithm and improve the error rate may be a

difficult problem.
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FIGURE 10

Examples of image righting.
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