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Physical-model guided
self-distillation network for
single image dehazing

Yunwei Lan , Zhigao Cui*, Yanzhao Su, Nian Wang, Aihua Li

and Deshuai Han

Xi’an Research Institute of High Technology, Xi’an, China

Motivation: Image dehazing, as a key prerequisite of high-level computer

vision tasks, has gained extensive attention in recent years. Traditional

model-basedmethods acquire dehazed images via the atmospheric scattering

model, which dehazed favorably but often causes artifacts due to the error

of parameter estimation. By contrast, recent model-free methods directly

restore dehazed images by building an end-to-end network, which achieves

better color fidelity. To improve the dehazing e�ect, we combine the

complementary merits of these two categories and propose a physical-model

guided self-distillation network for single image dehazing named PMGSDN.

Proposed method: First, we propose a novel attention guided feature

extraction block (AGFEB) and build a deep feature extraction network by it.

Second, we propose three early-exit branches and embed the dark channel

prior information to the network tomerge themerits of model-basedmethods

and model-free methods, and then we adopt self-distillation to transfer the

features from the deeper layers (perform as teacher) to shallow early-exit

branches (perform as student) to improve the dehazing e�ect.

Results: For I-HAZE and O-HAZE datasets, better than the other methods, the

proposed method achieves the best values of PSNR and SSIM being 17.41dB,

0.813, 18.48dB, and 0.802. Moreover, for real-world images, the proposed

method also obtains high quality dehazed results.

Conclusion: Experimental results on both synthetic and real-world images

demonstrate that the proposed PMGSDN can e�ectively dehaze images,

resulting in dehazed results with clear textures and good color fidelity.

KEYWORDS

image dehazing, knowledge distillation, attention mechanism, deep learning,

computer vision

Introduction

Images captured under haze condition have abnormal brightness and low contrast,

which affects the further application in high-level computer vision tasks, such as

image super-resolution (Chen et al., 2021a,b) and semantic segmentation. Hence, image

dehazing, as a key prerequisite of high-level computer vision tasks, becomes a significant
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subject in recent years. Generally, the formation of hazy images

can be modeled as Equation 1, atmospheric scattering model

(also called as physical-model):

I (x) = J (x) t (x) + A (1− t (x)) (1)

where I represents images obtained under haze condition; J

represents haze-free images; x represents the pixel location; A

and t represent the atmospheric light and transmission map,

respectively. Obviously, we cannot directly restore the haze-

free images J from the given hazy images I since both the

atmospheric light A and transmission map t are undetermined.

To address this problem, early methods use priors obtained

from the statistical rule on haze-free images to estimate the

atmospheric light and transmission map, then dehaze images

via the atmospheric scattering model, including dark channel

prior (DCP) (He et al., 2011), color-lines prior (CLP) (Fattal,

2014), color attenuation prior (CAP) (Zhu et al., 2015), and

non-local dehazing (NLD) (Berman et al., 2016). These methods

dehaze favorably in special scenes but tend to over enhance

images since unilateral assumptions cannot fit in all situations.

With the development of deep learning, some methods (Cai

et al., 2016; Ren et al., 2016; Li et al., 2017; Zhang and Patel,

2018) adopt convolutional neural network (CNN) to estimate

the atmospheric light and transmission map more accurately

and obtain better dehazed images based on the atmospheric

scattering model. However, the atmospheric scattering model

is an ideal equation, which cannot sufficiently represent the

formation of hazy images. Hence, these methods still cause some

halos and color distortions.

To solve the problem, some end-to-end dehazing networks

(Chen et al., 2019; Liu X. et al., 2019; Qu et al., 2019; Dong

et al., 2020; Qin et al., 2020; Zhao et al., 2020) are proposed,

which directly restore dehazed images by establishing the

mapping between hazy and haze-free images instead of using

the atmospheric scattering model. These model-free methods

can produce dehazed images with better color fidelity. However,

due to trained on synthetic datasets, these model-free methods

FIGURE 1

Comparative results on a real-world image. (A) High contrast result with some color distortion generated by DCP. (B) High contrast result with

some illumination distortion generated by DCPDN. (C) Under-dehazed result with better color fidelity generated by MSBDN. (D) Our result,

which combines their merits.

can perform well on synthetic images but always acquire under-

dehazed results when applied to real scenes since synthetic

images cannot represent uneven haze distribution and complex

illumination condition existing in real scenes. To this end, some

novel end-to-end methods (Hong et al., 2020; Shao et al., 2020;

Chen et al., 2021; Zhao et al., 2021) combine with model-

based methods and achieve better dehazing effects in real scenes.

However, these methods cannot exploit features from different

depths to improve the guidance efficiency of extra knowledge.

According to the above analyses, we summarize that the

existing model-based dehazing methods can effectively restore

image texture details but tend to cause color changes and

artifacts. By contrast, model-free dehazing methods directly

obtain dehazed images with good color fidelity by supervised

training. But the dehazing effect is often limited in natural

scenes since the training samples are synthetic images. Thus,

to improve the dehazing effect, we merge the merits of these

two categories via self-distillation and propose a physical-model

guided self-distillation network for single image dehazing.

Moreover, we compare the dehazing effect of the above

algorithms on a real-world image. The experimental results are

shown in Figure 1. The model-based methods [DCP (He et al.,

2011) andDCPDN (Zhang and Patel, 2018)] can restore dehazed

images with discriminative textures but suffer from some color

and illumination overenhancement. The model-free method

MSBDN (Dong et al., 2020) can maintain color fidelity but

acquire an under-dehazed image. Better than the other methods,

the proposed PMGSDN combines the complementary merits

of model-free methods and model-based methods, and obtains

high quality dehazed results with natural color and rich details.

As shown in Figure 2, we first build a deep feature extraction

network (DFEN) constructed with four attention guided feature

extraction blocks (AGFEBs) to effectively extract features from

different depths. Moreover, we add three early-exit branches to

acquire intermediate dehazed images and optimize the network

by a two-stage training strategy. In the first stage, we obtain

the preliminary transmission map t0 and atmospheric light

A0 by two early-exit branches and embed dark channel prior

(DCP) into the network to acquire the preliminarily dehazed
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FIGURE 2

The general network structure of PMGSDN. TNet, the network adopted to estimate transmission map. ANet, the network adopted to estimate

atmospheric light.

images JDCP base on the hazy input Iin. Hence, reconstructed

hazy images IDCP can be obtained by substituting the JDCP ,

A0, and t0 into the atmospheric scattering model. In the

second stage, we feed the IDCP into the network and obtain

the final dehazed images Out, the intermediate model-free

dehazed images Jfree, and model-based dehazed images J mod

(produced by substituting the intermediate transmissionmap t1,

atmospheric lightA1, and the IDCP into themodel). Considering

that these intermediate dehazed images have complementary

advantages in terms of image contrast and color fidelity,

we combine the merits of them by a one-stage knowledge

distillation (see Figure 4), which transfers the knowledge from

deeper layers (performs as a teacher) to shallow layers (performs

as a student) within the network. We call this distillation

strategy as self-distillation, which achieves the joint training and

optimization of both teacher and students. For this article, the

main contributions are as follows:

1. To improve the dehazing effect, we merge the merits

of both model-based dehazing methods and model-

free dehazing methods, and propose a physical-model

guided self-distillation network for single image dehazing

named PMGSDN.

2. In order to improve the feature extraction ability of the

network for different depths, we propose an attention guided

feature extraction blocks (AGFEB) to construct the deep

feature extraction network.

3. To reduce the dependence of the student network on the

pretrained teacher model and improve the efficiency of

knowledge distillation, we propose a self-distillation strategy

and embed the dark channel prior information to the network

to further improve the dehazing effect.

Related work

Model-based methods

Model-based methods restore haze-free images using

the atmospheric scattering model, where the estimation of

transmission map and atmospheric light is a key prerequisite.

Early model-based methods (also called prior-based methods)

explore various priors concluded from the statistic rule to

estimate transmission map and atmospheric light, and then

dehaze images via the atmospheric scattering model. For

example, the dark channel prior (DCP) (He et al., 2011)

estimate transmission map based on the observation that clear

images have low intensity in at least one of the RGB channels.

The color-lines prior (CLP) (Fattal, 2014) constructs a model

based on the color lines and estimates the transmission map

using the lines’ offset. Differently, the color attenuation prior

(CAP) (Zhu et al., 2015) builds a linear model to estimate

the scene depth and transmission map based on the difference

between the brightness and saturation of hazy images. Another

method no-local dehazing (NLD) (Berman et al., 2016) estimates

the transmission map and acquires dehazed images via the

hundreds of distinct colors. These prior-based methods achieve

favorable dehazing effects but suffer from severe distortion

and artifacts.

Recently, some methods estimate transmission map and

atmospheric light more accurately by data driving and acquire

dehazed images with fewer artifacts. For instance, Ren et al.

propose a multi-scale convolution neural network (MSCNN)

(Ren et al., 2016) to estimate the transmission map in a

coarse-to-fine way. Another method DehazeNet (Cai et al.,

2016) adopts Maxout units to effectively extract features
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and estimate the transmission map. Differently, AODNet

(Li et al., 2017) combines these two parameters into one

parameter to restore dehazed images. DCPDN (Zhang and

Patel, 2018) embeds the atmospheric scattering model into

CNN to estimate the atmospheric light and transmission

map. These two methods estimate the transmission map and

atmospheric light simultaneously and alleviate the cumulative

error of two parameter estimations. However, due to the

atmospheric scattering model being a simplified model, which

cannot sufficiently represent the formation of hazy images, the

above two model-based methods still suffer from color and

illumination changes.

Model-free methods

Model-free methods directly restore dehazed images via an

end-to-end network without using the atmospheric scattering

model. Due to a huge gap between the features of hazy

images and haze-free images, these methods usually increase

the network scales and depths to enhance feature extraction

ability. For example, the MSBDN (Dong et al., 2020) constructs

a multi-scale boosting dehazing network to combine the features

from different scales by a dense feature fusion module. FFA

(Qin et al., 2020) effectively extracts features and restores

dehazed images using a deep network constructed with feature

attention blocks. Moreover, GridDehazeNet (Liu X. et al.,

2019) and GCANet (Chen et al., 2019), respectively adopt

attention mechanisms and gated fusion networks to effectively

fuse multi-scale features. Differently, the EPDN (Qu et al.,

2019) builds a generative adversarial network to improve the

dehazing effect by the adversarial learning between a multi-

scale generator and discriminator. Another dehazing method

(Zhao et al., 2020) adopts the cycle generative adversarial

network to alleviate the paired training constraint. These

methods perform well on synthetic images but tend to

fail to deal with real-world images due to being trained

on synthetic datasets. To address this problem, DA (Shao

et al., 2020) builds a bidirectional network to reduce the

gap between real-word and synthetic images. PSD (Chen

et al., 2021) adopts a committee consists of multi priors to

guide the network training and acquire high contrast images

but suffer from illumination changes, and RefineDNet (Zhao

et al., 2021) embeds DCP and the atmospheric scattering

model to reconstruct hazy images and then improves the

model’s generalization ability via unpaired adversarial training.

Moreover, some methods also improve deep learning-based

algorithms in other computer vision tasks by introducing

additional knowledge. For example, Xia et al. (2022) improved

the Kernel Correlation Filter algorithm to address the problem

that the object tracking algorithm fails to track under the

influence of occlusion conditions. Chen et al. (2021c) proposed

an image completion algorithm based on an improved total

variation minimization method.

Knowledge distillation

Knowledge distillation is first proposed by Hinton (Hinton

et al., 2015) to compress the model by transferring the

knowledge from a cumbersome teacher network to a compact

student network. Recently, knowledge distillation is also applied

to the model enhancement through improved learning strategy

[including self-learning (Ji et al., 2021; Zheng and Peng, 2022)

and mutual learning (Li et al., 2021)]. For example, Hong

et al. (2020) applies knowledge distillation to heterogeneous

task imitation and guides the student network training using

the features extracted from the image reconstruction task.

Liu Y. et al. (2019) adopts structure knowledge distillation

to transfer the knowledge from a large network to a small

semantic segmentation network since semantic segmentation is

a structured prediction problem. These two distillation methods

both start with a powerful but cumbersome teacher network (a

pretrained network) and perform one-way knowledge transfer

to a compact student network (a network to be trained).

However, two shortcomings exist in them: a powerful teacher

network is not always available; a two-stage training process

is not efficient. Hence, online distillation and self-distillation

are proposed to implement the joint training and optimization

of both teacher and student (one-stage training process) by

improved learning strategies. Typically, Li et al. (2021) builds

a multi-branch network and acquires predicted heatmaps from

each branch, which are then assembled (performs as a teacher) to

teach each branch (performs as a student) in reverse. However,

this method simply aggregates students to form an assembled

teacher, which restrains the diversity of students and cannot

exploit features from different depths of the network. Hence, we

applied self-distillation (Zhang et al., 2021) into our PMGSDN

to enhance the generalization ability in real scenes.

Proposed method

Overall structure

As shown in Figure 2, the PMGSDN contains three parts:

preprocessing model, a deep feature extraction network, and

early-exit branches. In the preprocessing model, we first adopt

two 3 × 3 convolutions to preprocess the hazy input Fin and

change its shape to 32 × 256 × 256, where each convolution

is followed by an instance normalization and ReLU function.

Moreover, these two convolutions have different parameter

settings, the input channel, output channel, kernel size, stride,

and padding of the first convolution are 3, 32, 3, 1, and 1,

respectively, and the corresponding parameters of the second

convolution are set to 32, 32, 3, 1, and 1.

Deep feature extraction network

To effectively extract features from different depths, we

feed the preprocessed features into the deep feature extraction
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FIGURE 3

The structure of AGFEB. Cat, channel-wise concatenation.

network (DFEN) constructed with four attention guided feature

extraction blocks (AGFEBs). After that, a convolution followed

by an instance normalization and the Tanh function is utilized

to produce the final dehazed imagesOut. The parameter settings

of the convolution used here are set to 32, 3, 3, 1, and

1, respectively.

As shown in Figure 3, the proposed AGFEB first extracts

features using four convolutions. These convolutions are all

point-wise convolutions (1 × 1 convolution) (Zhang and Tao,

2020), where the first three convolutions with pooling layers

form different receptive fields and the fourth convolution

is utilized for dimension reduction. Note that we replace

traditional convolutions with the kernel size of 3 × 3, 5 × 5,

and 7 × 7 to point-wise convolutions with 3 × 3, 5 × 5, and

7 × 7 pooling layer, and thus the AGFEB is computationally

efficient since no large convolutional kernel is used. Moreover,

the first three convolutions combine the features of the current

convolution with the features of the last one by channel-wise

concatenation to obtain more abundant features. After that, we

introduce an attention block consisting of channel attention,

pixel attention, and a point-wise convolution to make the

network pay more attention to improve feature representation.

During the channel attention, an adaptive average pooling is

firstly used to generate a channel vector with the shape of 1 ×

1 × C and then a 1 × 1 convolution followed by a sigmoid

function is utilized to produce channel attention maps, which

are used to weigh these inputs via element-wise multiplication.

After the channel attention, the enhanced features can concern

different channel maps unequally and effectively alleviate the

global color distortions. Different from the channel attention,

the pixel attention first adopts a 3 × 3 convolution followed

by a sigmoid function to generate spatial attention maps and

then weights the input by element-wise multiplication to pay

more attention to high frequency regions, such as textures

and structures. Finally, we adopt the point-wise convolution to

change the shape to 32 × 256 × 256 and get the output. The

parameter settings of the proposed AGFEB are shown in Table 1.

Early-exit branches

To combine both model-based methods and model-free

methods, we add three early-exit branches after each AGFEB.

The first two branches are named as TNet and ANet to estimate

the transmission map and atmospheric light respectively

and then acquire the intermediate dehazed images by the

atmospheric scattering model. The details of the TNet and ANet

can be seen in article (Zhang and Patel, 2018). Moreover, the

third branch is constructed with a convolution, an instance

normalization, and the Tanh function, which directly acquires

intermediate dehazed images in a model-free way, and the

parameter settings of the convolution used here are set to 32,

3, 3, 1, and 1, respectively.

Forward prediction and self-distillation

To effectively combine the complementary merits of model-

based methods and model-free dehazing methods, we divide

the training process into two parts: forward prediction and self-

distillation.

Forward prediction

As shown in Figure 2, we divide the forward prediction into

two stages. In the first stage, we send the input hazy images

Iin into the PMGSDN, and obtain the preliminary transmission
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TABLE 1 The parameter settings of the proposed AGFEB.

Conv1 Pool1 Conv2 Pool2 Conv3 Pool3 Conv4 Adaptive Avgpool Conv5 Conv6 Conv7

Input channel 32 – 64 – 96 – 128 – 32 32 32

Output channel 32 – 32 – 32 – 32 – 32 1 32

Kernel size 1 3 1 5 1 7 1 1 1 3 1

Stride 1 1 1 1 1 1 1 – 1 1 1

Padding 0 1 0 2 0 3 0 – 0 1 0

The convolution and pooling used in AGFEB are expressed as Conv 1 to Conv 7 and Pool 1 to Pool 3 from left to right and top to bottom. Notice that the kernel size of the adaptive average

pooling represents the target output size of the feature.

FIGURE 4

Self-distillation.

map t0 and atmospheric light A0 by the first two early-exit

branches. Meanwhile, we embed dark channel prior (DCP) (He

et al., 2011) into a network to acquire the preliminary dehazed

images JDCP. Hence, based on the atmospheric scatteringmodel,

reconstructed hazy images IDCP can be produced, which can be

expressed as Equation 2:

IDCP = JDCPt0 + A0 (1− t0) (2)

Compared with the synthetic hazy images Fin, the

reconstructed hazy images IDCP are more similar to real-world

hazy images since the DCP is a statistical rule based on the

observation of haze-free images. Hence, in the second stage,

we regard the reconstructed hazy images IDCP as the input of

PMGSDN and acquire the final dehazed images Out by the deep

feature extraction network (DFEN). Similar to the first stage, the

intermediate transmission map t1 and atmospheric light A1 are

generated to acquire the model-based dehazed images J mod .

Differently, the model-free dehazed images Jfree are generated

simultaneously by the third early-exit branch.

Self-distillation

The intermediate dehazed images J mod and Jfree are

generated by the features from different depths and have

complementary advantages in terms of image contrast

and color fidelity in local regions. Hence, we adopt a

one-stage knowledge distillation called self-distillation

to effectively combine the merits of them. As shown in

Figure 4, we propose a self-distillation strategy, which

builds extra distillation loss among intermediate model-

based dehazed images J mod , model-free dehazed images

Jfree, and the final dehazed images Out. In this way, the

final dehazed images Out combine the features from

different depths and improve the generalization ability of

a model.

Loss function

Several experiments (Liu et al., 2020; Fu et al., 2021) have

proven that the combination of pixel-wise and feature-wise loss

can effectively improve training efficiency. Hence, the overall
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loss consists of reconstruct loss and distillation loss, which can

be expressed as Equation 3:

Lloss = Lrec + Ldist (3)

where Lloss represents the overall loss, Lrec represents the

reconstruct loss, and Ldist represents the distillation loss.

Reconstruct loss

Previous work (Qin et al., 2020) has shown that pixel-wise

loss can rapidly match the feature distribution between the

dehazed images and ground truths. Different from L2 loss (mean

square error), L1 loss (standard deviation error) can make the

network training more stable. Moreover, as a feature-wise loss,

the negative structural similarity loss (SSIM) (Wang et al., 2004)

can effectively match the luminance, contrast, and structure

between two images. Hence, we combine the L1 loss and the

negative SSIM as reconstruct loss to train our network, which

can be expressed as Eqaution 4:

Lrec =

3
∑

i=1

(

‖GT − Ji‖1 − SSIM (GT, Ji)
)

(4)

where Lrec represents the reconstruct loss andGT represents

the ground truths. As shown in Figure 4, J1, J2, and J3

represents the final dehazed images Out, intermediate model-

based dehazed images J mod , and the model-free dehazed

images Jfree, respectively.

Distillation loss

In our PMGSDN, the dehazed images obtained from deeper

layers play a role of teacher and transfer the knowledge to the

shallow early-exit branches (performs as a student) within the

network. Hence, the Distillation loss Ldist can be expressed as

Eqaution 5:

Ldist =

∥

∥

∥
Out − Jfree

∥

∥

∥

1
+

∥

∥Out − J mod

∥

∥

1

+

∥

∥

∥
Jfree − J mod

∥

∥

∥

1
(5)

where ‖·‖1 represents the L1 loss.

Training and inference

During the training, the deeper AGFEBs are regarded as the

teacher and they are utilized to guide the training of shallow

AGFEB (student) by a distillation loss among the final dehazed

images Out, intermediate model-based dehazed images J mod ,

TABLE 2 The proposed algorithm.

Training:

Input: Hazy input image Iin , Corresponding haze-free image

(Ground Truth, GT), PMGSDN

Output: The trained PMGSDN

Step 1 Start the training

Step 2 Iin ,→ PMGSDN get A0 , t0 , and, JDCP

Step 3 A0 , t0 , and, JDCP → atmospheric scattering model, get IDCP

Step 4 IDCP → PMGSDN, get A1 , t1 , Jfree , and, Out

Step 5 A1 , t1 , and, IDCP → atmospheric scattering model, get Jmod

Step 6 GT, Out, Jmod , and, Jfree → Equation (4), get Lrec

Step 7 Out, Jmod , and, Jfree → Equation (5), get Ldist

Step 8 Lrec and Ldist → Equation (6), get Lloss

Step 9 Back Propagation and update the PMGSDN

Step 10 Repeat the above steps until the end of the training

Inference:

Input: Hazy input image Iin , The trained PMGSDN

Output: The final output Out

and the model-free dehazed images Jfree. After the training, the

whole PMGSND is optimized by model-based methods and

model-free methods, which makes the PMGSDN to combine

their merits. During the inference process, all of the early-exit

branches are dropped so they do not bring additional parameters

and computation.

Moreover, to make our manuscript readable, we list out the

training process of the proposed algorithm and add it to the

manuscript as a pseudocode (Table 2).

Experiments

To verify the effectiveness of the proposed PMGSDN, we

quantitatively and qualitatively compare it with existing state-

of-the-art methods, including DCP (He et al., 2011), DCPDN

(Zhang and Patel, 2018), PSD (Chen et al., 2021),MSBDN (Dong

et al., 2020), RefineD (Zhao et al., 2021), FFA (Qin et al., 2020),

and DA (Shao et al., 2020). Moreover, we conduct an ablation

study to verify the effectiveness of each part in PMGSDN.

Datasets

In this article, we adopt the Indoor Training Set (ITS)

in RESIDE (Li B. et al., 2019) to train our network, which

contains 13990 synthetic hazy images and the corresponding

clear images. During the training of the network, we adopt the

Synthetic Objective Testing Set (SOTS) indoor datasets as the

validation set, which contains 500 synthetic hazy images and the

corresponding clear images. For testing, we use three synthetic
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datasets [I-HAZE (Ancuti C. et al., 2018), O-HAZE (Ancuti C.

O. et al., 2018), and HazeRD (Zhang et al., 2017)] to evaluate

the performance of the PMGSDN. Among them, the I-HAZE

and O-HAZE contain 35 pairs of indoor and 45 pairs of outdoor

hazy images. The HazeRD includes 75 pairs of hazy images

degraded by different levels of haze. Considering the discrepancy

that exists between synthetic and real-world hazy images, we

further adopt real-world images from paper (Fattal, 2014) and

Unannotated Real Hazy Images (URHI) (Shao et al., 2020) to

evaluate the dehazing effect in real scenes.

Implementation details

The proposed method is trained and tested in the Pytorch

framework on a PC with the NIVIDIA GeForce RTX 3080 Ti.

During the training, we resize input images to 256× 256, set the

batch size to 4, and train the network for 30 epochs. To effectively

train the PMGSDN, we adopt the Adam optimizer with a default

value for the attenuation coefficient to accelerate the training

process (β1 = 0.9, β2 = 0.999). Moreover, we set the initial

learning rate to 0.001 and reduce it by half every five epochs.

Comparisons with state-of-the-art
methods

Results on synthetic datasets

Compared with indoor hazy images, outdoor hazy images

have different scene depths and transmission maps. Hence,

we pay more attention to the comparison results of outdoor

images since the proposed PMGSDN is trained on indoor

images. As shown in Figure 5, DCP effectively dehaze images

but darken the results. Another model-based DCPDN estimates

the transmission map and atmospheric light by CNN and

generates better dehazed images but suffers from illumination

distortion. By contrast, the model-freeMSBDN restores dehazed

images with better color fidelity but leads to a large amount of

residual haze due to the over-fitting on training datasets. The

FFA constructs a feature fusion attention network to effectively

dehaze images but dims the brightness of results. Another

method PSD can generate high contrast images but tend to

overenhance the results due to simply guiding the pretrained

network by priors. Compared with the above methods, the

DA can restore dehazed images with satisfactory visual effect

due to the use of domain adaption, and the RefineD restores

dehazed images with vivid color but causes residual haze.

Only our PMGSDN (see Figure 5I) acquires dehazed images

with distinctive textures and abundant details, which verify the

effectiveness of our method.

To further validate the performance of the proposed

method, two metrics [peak signal-to-noise ratio (PSNR) and

structural similarity (SSIM)] are adopted for quantitative

comparison. As shown in Table 3, for I-HAZE, the DCP,

DCPDN, and PSD perform poorly, which means that the

abnormal illuminance and unwanted artifacts degrade the

quality of dehazed images. By contrast, the end-to-end MSBDN

and DA acquire a high value of PSNR and SSIM. Compared with

other methods, the proposed PMGSDN achieves the highest

value of these twometrics being 17.41 dB and 0.813, respectively.

For O-HAZE, compared with the second-best method DA, the

proposed PMGSDN improves the PSNR from 18.37 dB to 18.48

dB and improves the SSIM from 0.712 to 0.802, which validates

its generalization ability. For HazeRD, the proposed PMGSDN

achieves the PSNR and SSIM being 16.94dB and 0.867, which

are slightly lower than that of RefineD.

Results on real-world datasets

Considering the discrepancy between synthetic and real-

world hazy images, we further validate the performance of our

method on real-world images in Unannotated Real Hazy Images

(URHI). As shown in Figure 6, DCP can produce dehazed

images with distinct textures but inevitably causes halos and

color distortions, which degrade the visual effect of results.

Another model-based method DCPDN improves the brightness

and contrast of dehazed images but simultaneously introduces

some color changes since the atmospheric scattering model is

a simplified model. By contrast, the model-free methods can

restore dehazed images with better color fidelity but fail to

deal with dense haze due to the lacking of extra knowledge

as guidance. For example, MSBDN cannot effectively dehaze

images due to over-fitting in synthetic datasets. Due to the

feature fusion mechanism, FFA can effectively remove the

haze in the local area of the image. However, due to the

insufficient generalization ability of this method, it still causes

residual haze and color changes in some regions. By building a

bidirectional network to reduce the gap between synthetic and

real-world hazy images, DA dehazes most haze and restores high

quality results. Unfortunately, the sky regions are still degraded.

Moreover, PSD simply guides the pretrained network by using

multi priors, and the results are degraded by a large amount of

residual haze. Another method RefineD embeds the DCP into

the network and restores high quality images. Better than the

above methods, the proposed PMGSDN (see Figure 6I) acquires

dehazed images with distinctive textures and vivid color, which

verify that it sufficiently exploits the features from different

depths by self-distillation and combines the merits of model-

based and model-free methods.

To further validate the generalization ability of our

PMGSDN, we compare these methods on real-world images

(Fattal, 2014). As shown in Figure 7, the DCP still effectively

restores the textures but causes obvious color distortion in some

regions. Another model-based DCPDN dehazes most haze but

suffers from illumination oversaturation. By contrast, MSBDN

cannot dehaze effectively in the real scene due to the lacking
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FIGURE 5

Qualitative comparisons on synthetic images from O-HAZE and HazeRD. The above two rows are images in O-HAZE and the others are images

in HazeRD. (A) Haze. (B) DCP. (C) DCPDN. (D) MSBDN. (E) FFA. (F) DA. (G) PSD. (H) RefineD. (I) Ours. (J) GT.

TABLE 3 Qualitative comparisons on I-HAZE, O-HAZE, and HazeRD.

Datasets Metric DCP DCPDN MSBDN FFA DA PSD RefineD Ours

I-Haze PSNR 12.31 dB 14.27 dB 16.73 dB 13.10 dB 17.10 dB 12.92 dB 16.02 dB 17.41 dB

SSIM 0.676 0.826 0.798 0.657 0.807 0.712 0.777 0.813

O-Haze PSNR 14.94 dB 13.79 dB 18.08 dB 14.66 dB 18.37 dB 14.46 dB 17.71 dB 18.48 dB

SSI 0.672 0.726 0.765 0.713 0.712 0.677 0.692 0.802

HazeRD PSNR 13.26 dB 15.76 dB 15.23 dB 15.24 dB 16.88 dB 13.56 dB 17.81 dB 16.94 dB

SSIM 0.795 0.781 0.839 0.745 0.818 0.742 0.850 0.867

Number in red and blue indicate the best and second-best results, respectively.

of knowledge guiding. Another model-free method FFA restores

dehazed images with good color fidelity. However, this method

neglects the generalization ability in the training process, which

leads to the insufficient ability of the model. By contrast, DA

removes most haze but suffers from slight color distortion. PSD

suffers from illumination oversaturation and the sky regions

contain some residual haze. Another method RefineD dehazes

effectively and restores visually pleasing dehazed images. Better

than the above methods, the proposed PMGSDN acquires high

quality images with natural color and discriminative textures,

which further shows that it conducts better generalization in

real scenes.

In order to objectively evaluate the performance of the

algorithm on real world datasets, we further select non-reference

criteria that are widely used in image quality assessment

for quantitative comparison. These criteria are Natural Image

Quality Evaluator (NIQE) and Blind/Referenceless Image

Spatial Quality Evaluator (BRISQUE), which can be used to

evaluate the effect of haze, color shifts, illumination changes,

and other image degraded phenomena. Table 4 gives the

quantitative comparison results on the real-world images

from paper (Fattal, 2014) and URHI datasets. For images

in paper (Fattal, 2014), the proposed method achieves the

best values of NIQE (Mittal et al., 2013) and BRISQUE

(Mittal et al., 2012) being 2.891 and 13.56, respectively. For

URHI datasets, the proposed method also achieves good

dehazing results, with NIQE and BRISQUE of 3.705 and

21.38, respectively.

Discussion

To verify the effectiveness of each part of the proposed

PMGSDN, we conduct ablation studies to evaluate the

performance of the following four key modules: the AGFEB,

the guidance of preliminary dehazed images JDCP generated

by DCP, the guidance of intermediate dehazed images J mod

generated in a model-based way, and the guidance of

intermediate dehazed images Jfree generated in a model-free

way. Hence, we construct the following variants: Variant A,

the proposed method without the AGFEB, Variant B, the

proposed method without the guidance of JDCP, Variant
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FIGURE 6

Qualitative comparisons on real-world images in URHI. (A) Hazy. (B) DCP. (C) DCPDN. (D) MSBDN. (E) FFA. (F) DA. (G) PSD. (H) RefineD. (I) Ours.

FIGURE 7

Qualitative comparisons on real-world images from Fattal (2014). (A) Hazy. (B) DCP. (C) DCPDN. (D) MSBDN. (E) FFA. (F) DA. (G) PSD. (H)

RefineD. (I) Ours.

C, the proposed method without the guidance of J mod ,

Variant D, the proposed method without the guidance of

Jfree, and Variant E, the proposed PMGSDN. We train

these variants on ITS for 30 epochs and test them on

I-HAZE and O-HAZE to evaluate the performance of each

variant. As shown in Table 5, the proposed method achieves
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TABLE 4 Quantitative comparison results on the images in paper (Fattal, 2014) and URHI datasets.

Datasets Metric Haze DCP DCPDN MSBDN FFA DA PSD RefineD Ours

Images in paeper (Fattal, 2014) NIQE 3.783 3.521 4.201 4.003 3.671 4.499 3.835 3.047 2.891

BRISQUE 18.96 13.74 18.97 15.36 16.88 14.47 16.59 14.70 13.56

URHI NIQE 4.715 3.982 4.058 4.605 3.707 4.388 3.822 3.511 3.705

BRISQUE 33.73 27.62 27.89 27.36 27.53 21.79 24.26 22.64 21.38

The numbers in red, blue indicate the first and second-best results, respectively. Lower values of NIQE and BRISQUE represent better performance.

TABLE 5 Results of ablation study.

Variant A Variant B Variant C Variant D Variant E

IHAZE 15.85 dB 16.05 dB 16.72 dB 17.27 dB 17.41 dB

0.728 0.719 0.738 0.759 0.813

OHAZE 16.24 dB 16.51 dB 16.33 dB 17.09 dB 18.48 dB

0.702 0.647 0.692 0.697 0.802

superior performance with PSNR and SSIM both on I-HAZE

and O-HAZE, which validates that each part contributes to

the PMGSDN.

Conclusion

In this article, we propose a physical-model guided self-

distillation network for single image dehazing named PMGSDN.

First, we extract abundant features by the deep feature extraction

network and acquire two intermediate dehazed images based on

themodel-basedmethods andmodel-free methods, respectively.

Second, we embed the dark channel prior information to the

network to combine the merits of both model-based methods

and model-free methods to improve the dehazing effect. Finally,

we adopt self-distillation strategy to improve the dehazing

effect. For I-HAZE and O-HAZE datasets, the proposed method

achieves the highest values of PSNR and SSIM being 17.41dB,

0.813, 18.48dB, and 0.802, respectively. For real-world images

in URHI datasets, the proposed method also achieves the best

value of BRISQUE being 21.38. The experimental results on

both synthetic and real-world images show that the proposed

PMGSDN dehazes more effectively and causes less distortions

when compared with the state-of-the-art methods.
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