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Multi-view SoftPool attention
convolutional networks for 3D
model classification

Wenju Wang, Xiaolin Wang*, Gang Chen and Haoran Zhou

College of Communication and Art Design, University of Shanghai for Science and Technology,

Shanghai, China

Introduction: Existing multi-view-based 3D model classification methods

have the problems of insu�cient view refinement feature extraction and poor

generalization ability of the network model, which makes it di�cult to further

improve the classification accuracy. To this end, this paper proposes a multi-

view SoftPool attention convolutional network for 3D model classification

tasks.

Methods: This method extracts multi-view features through ResNest and

adaptive pooling modules, and the extracted features can better represent

3D models. Then, the results of the multi-view feature extraction processed

using SoftPool are used as the Query for the self-attentive calculation, which

enables the subsequent refinement extraction. We then input the attention

scores calculated by Query and Key in the self-attention calculation into

the mobile inverted bottleneck convolution, which e�ectively improves the

generalization of the network model. Based on our proposed method, a

compact 3D global descriptor is finally generated, achieving a high-accuracy

3D model classification performance.

Results: Experimental results showed that our method achieves 96.96% OA

and 95.68% AA onModelNet40 and 98.57%OA and 98.42% AA onModelNet10.

Discussion: Compared with a multitude of popular methods, our algorithm

model achieves the state-of-the-art classification accuracy.

KEYWORDS
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1. Introduction

With the rapid development of 3D acquisition technology, various types of sensor

devices (e.g., 3D scanners, LIDAR, and RGB-D cameras) can collect 3D data conveniently

and quickly (Grenzdörffer et al., 2020). 3D data are abundant in geometry, shape, and

scale information and simple in expression, so are well suited for 3D scene perception

and understanding. 3D model-based classification is an important fundamental task

in 3D visual perception tasks such as target segmentation, recognition and tracking,

and matching. 3D model classification methods are currently extensively applied in

the fields of robotics (Kästner et al., 2020), autonomous driving (Yu et al., 2021), 3D

scene reconstruction (Pontes et al., 2017), augmented reality (Adikari et al., 2020), and

medicine (Liu et al., 2020); hence, 3D model classification methods have become a

research hotspot.
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3D model classification methods can be divided into two

fields: traditional and recent deep learning. Early 3D model

classification tasks focused on hand-designed feature extraction

followed by machine learning methods for classification (e.g.,

extreme learning machines and support vector learning).

Lalonde et al. (2005) investigated the automatic data-driven scale

selection problem using an approach driven by the Gaussian

mixture model geometry. The method does not consider the

relationship between neighbors, and the results are affected by

noise, leading to poor classification accuracy. To solve these

problems, Niemeyer et al. (2014) combined the contextual

information and then embedded the random forest classifier

into the conditional random field (CRE), which improved the

classification accuracy to some extent. However, optimization

is still essential in terms of feature extraction and the graph

structure, as well as research on reducing the amount of data and

the training time.

Traditional methods generally have several deficiencies,

including limited manual feature extraction and low

classification accuracy. Deep learning technology has achieved

considerably good performance in computer vision, natural

language processing, speech recognition, and other fields. In

recent years, ModelNet (Wu et al., 2015), ShapeNet (Yang et al.,

2021), ScanNet (Zou et al., 2021), and other publicly available

datasets have also driven research in 3D model classification

based on deep learning. 3D model classification methods based

on deep learning can be divided into three categories based

on the representation of the input data: voxel-based, point

cloud-based, and multi-view-based.

1.1. Voxel-based methods

The voxel-based model method aims to voxelize the point

cloud first, then employ a 3D convolutional neural network

(CNN) to extract features, and finally complete the classification

task. Maturana and Scherer (2015) proposed VoxelNet based

on the idea of voxels, which is the voxelization of unstructured

point cloud data into regular grid data for classification. The

method corresponds each grid to a voxel, and the values in

the grid cells are normalized and input to the convolutional

layer in the network for feature extraction and classification.

However, this method consumes a large amount of memory

because of the large number of zero-valued voxels that appear

in the process. Wu et al. (2015) proposed a convolutional

deep belief network (3DShapeNet) for the classification of 3D

models of different kinds and different poses. Both VoxNet and

3DShapeNet have the problems of prohibitive memory overhead

in the computation and low accuracy of model classification.

To reduce the memory consumption and running time, Riegler

et al. (2017) proposed OctNet, a sparse 3D data representation

method. The spatial stratification is represented as a series of

unbalanced octree structures with pooled features stored on the

leaf nodes in the octree. This method allows CNNs to handle

high resolutions with reduced memory consumption, yet the

problem of losing local geometric information has not been

solved. Aiming to solve the problem, Wang et al. (2018) divided

the whole space into voxels of different scales and employed the

proposed multi-scale convolutional network (MSNet) to learn

local features adaptively and fuse the local features to predict the

class probability of the model. The network allows for improved

classification accuracy and the ability to retain a large amount

of information, but the training time of a voxelized grid can be

exceedingly long. To reduce the time consumption, Le and Duan

(2018) proposed the 3D convolutional grid PointGrid. It belongs

to the regular embedded voxel grid, and the network can extract

a large number of local features for 3D model classification.

In summary, the voxel-based method converts 3D point

clouds into voxel meshes, solving the problem of unstructured

3D point clouds. However, as the voxelization requires the input

voxel format to be regular for a convolution operation, a large

amount of information is lost when the voxel resolution is

low, which causes the problem of low classification accuracy.

Moreover, it has the problem of high computational cost when

the resolution is high.

1.2. Point cloud-based methods

The point cloud-based method aims to directly classify

point cloud data obtained by 3D scanners, LIDAR, and RGB-

D cameras using the corresponding approaches. Qi et al.

(2017a) considered the direct processing of point cloud data

and proposed the PointNet network, which transforms the

input point cloud through the T-Net matrix and applies the

multilayer perceptron (MLP) to learn the features of the points

and aggregate them into global features. Their experiment

and analysis showed that PointNet made a great breakthrough

in point cloud classification and segmentation, but it could

not capture local information and had poor generalization

ability. PointNet++ (Qi et al., 2017b) was proposed based

on the shortcomings of PointNet in recognizing fine-grained

patterns. By introducing a hierarchical neural network and

metric spatial distance, the context ratio can be increased,

and thus the network can better learn local features. The

introduced ensemble learning layer can adaptively combine

multiple scale features for classification. Nevertheless, this

method lacks some structural information between points. Ma

et al. (2018) proposed the 3DMAX-Net architecture influenced

by the contextual information mechanism. This network can

obtain the contextual features in 3D point cloud space through

the introduced multi-scale feature learning block, while the

features learned by the network are aggregated through a local-

global feature aggregation block. Qiu et al. (2021) proposed a

density resolution network by introducing an adaptive extended

point algorithm; an error minimization module in the network
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is utilized to extract multi-resolution information, and local

features are fused to achieve the point cloud classification task.

The classification accuracy of the model was shown to be higher

than that in the PointNet network. Additionally, both 3DMAX-

Net network and density-resolution network are not applicable

to large-scale point clouds; they are also especially insufficient in

the case of many object classes.

To address the problem that most networks cannot adapt

to large-scale point clouds, Hu et al. (2020) proposed RandLA-

Net, which is based on a complex sampling technique that

devises random point sampling to reduce computation and

memory, while the introduced local feature aggregation blocks

retain important information among neighbors. RandLA-Net

can directly handle large-scale point clouds, and using a

lightweight network can improve classification accuracy while

greatly reducing the computational memory and time overhead.

However, because the RandLA-Net network chooses random

sampling, there is a loss of useful information. Liang et al.

(2019) proposed a deep graph CNN for local geometric feature

extraction, which obtains a large amount of useful information

and has a smaller memory consumption compared to previous

graph convolution methods. Zhang et al. (2020) proposed an

omnidirectional graph neural network for further improving the

performance of the network and reducing the complexity of the

model. The method proposes LKPO-GNN for obtaining local

and global spatial information, learning the local topology of the

point cloud using the omnidirectional local KNNs pattern, and

aggregating the local information spatial structure to obtain the

global map using GNN. In contrast, the KNN pattern still has

defects in neighborhood search. Feng et al. (2020) considered

the lack of performance in neighborhood search and constructed

local graphs based on searching neighborhood points inmultiple

directions while assigning attention coefficients to each edge

of the graph and aggregating centroid features as a weighted

sum of its neighboring points to obtain local features. Moreover,

the point-by-point spatial attention module is used to generate

the interdependency matrix of points so that local features

and contextual information can be obtained simultaneously.

The performance of this method is enhanced in point cloud

classification and segmentation. Wen et al. (2020) proposed

a novel deep learning network of Point2SpatialCapsule based

on aggregating local features and spatial relationships of point

clouds. This network consists of two modules, geometric feature

aggregation, and spatial relationship aggregation, which are

capable of aggregating local features to clustering centers and

aggregating their spatial relationships in the feature space using

spatially aware capsules. This method has greatly elevated the

accuracy of tasks (e.g., point cloud classification retrieval).

However, owing to the disorderly and unstructured nature

of 3D point clouds, as well as the fact that scanned models in

real scenes can be obscured and result in partial data loss and

complex scenes, direct methods of processing point clouds are

often more complex and take longer to train.

1.3. Multi-view-based methods

The multi-view-based method aims to project the 3D model

from multiple virtual cameras into the 2D plane and then

perform convolutional feature extraction and fusion on the

obtained multi-views to accomplish the task of 3D model

classification. The earliest rendering of 3D point clouds into

multi-views and applying them to model classification is the

MVCNNnetwork proposed by Su et al. (2015). The classification

accuracy and performance of MVCNN represent a remarkable

breakthrough in point cloud classification, but because of the

maximum pooling, keeping only the largest elements in these

views can lead to a large amount of information loss. To reduce

the loss of effective information, Wang et al. proposed RCPCNN

(Wang C. et al., 2019) to perform dominant set clustering

from the views of the same cluster. RCPCNN is updated

iteratively in the pooling layer in a round-robin fashion. This

method improves the classification performance but ignores

the relationships among views. Feng et al. (2018) introduced

a hierarchical view-group-shape framework, called GVCNN,

which is based on MVCNN to better utilize the connection

between multiple views. It can find more discriminative

features among views and offers a significant improvement in

classification accuracy. Yet, this method relies too much on the

choice of the viewpoint angle and is not applicable to the case of

a small number of views. Yu et al. (2018) proposedMHBN using

the relationship between the polynomial kernel and bilinear

pool and considered that local complementary information

exists among different views. Bilinear pooling aggregates local

features to measure similar pairs of related patch pairs and

coordinates the merging of bilinear features to generate a

more discriminative 3D object representation. MHBN offers an

improvement in classification accuracy and storage efficiency,

and also effectively suppresses irrelevant matching pairs. Ma

et al. (2019) combined CNNs with long short-term memory

(LSTM) based on the sequential nature among views and used

LSTM and sequential voting layers to aggregate multi-view

features into shape descriptors for object recognition.

Han et al. (2019b) proposed the SeqViews2SeqLabels

network considering the spatial relationship of views. It is

composed of an encoder for aggregating sequence views and

a decoder for global feature prediction sequence labels. An

attention mechanism is incorporated in this decoder, and

specific views are assigned more weights to improve the

discriminative ability. Moreover, better classification accuracy

is obtained. For this reason, they further proposed the

3D2SeqViews network (Han et al., 2019a), which has more

novel hierarchical attention to efficiently aggregate the content

information of views and spatially related information between

views. It affords great progress in global feature aggregation.

However, CNN and LSTM combined with SeqViews2SeqLabels

networks can only aggregate ordered views, not unordered

views. Based on this problem, Yang and Wang (2019) proposed
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a relational network from the perspective of relationships

among different view regions and views. The training methods

effectively connect the corresponding regions through the self-

attention module, combining the inter-view relationships to

highlight the salient information more, which can enhance the

information of single-view images. In contrast, there are still

shortcomings in the selection of relationships among views,

and selecting views that do not overlap and just complement

each other still needs to be studied further. To improve the

generalization ability and performance of the model, Sun et al.

(2021) proposed a dynamically routed CNN. The method is

based on a dynamic routing algorithm for adaptive selection

of features for transformation, which does not ignore the

inconspicuous information in the pooling layer and effectively

fuses the features of all views. Wei et al. (2020) proposed

view-GCN from the perspective of graph convolution. It is a

hierarchical network based on view-graph representation, which

is a viewgraph constructed by using multiple views as graph

nodes and sampling representative views by the introduced

view selection mechanism. The local and non-local convolution

of this network performs feature transformation, which can

obtain 3D object descriptors with different levels of feature

combinations. Yet, this network is less flexible and scalable for

shallow GCNs, and cannot pass the labels with little training

data to the whole graph structure. On this basis, Liu et al.

(2021) proposed a hierarchical multi-view context modeling

approach, which consists of four main components: view-

level context learning, the multi-view grouping module, the

primitive group level, and the group fusionmodule. The method

can fuse group-by-group contextual features into compact

3D object descriptors for object classification according to

their importance.

So far, the view-based approach has achieved the best

results on 3D model classification tasks. Compared to the

direct point cloud and voxel processing approach, it can

capture the features of the view more easily and learn the

view features to synthesize true global feature descriptors

with the help of a proven CNN. However, the method

still has shortcomings in feature extraction, because the

traditional pooled downsampling method cannot treat each

view equally and only retains the information considered

important. This leads to the problem of the insufficient

extraction of view refinement feature information and the

loss of a large amount of view feature information. However,

different convolutional models learn different classification rules

through a given dataset, so the classification accuracy predicted

by the network model for unknown datasets varies greatly.

Therefore, different convolutional models do not have the same

degree of generalization. Both insufficient extractions of view

refinement feature information and weak model generalization

affect the further improvement of 3D model classification

accuracy. Based on the above analysis, we propose a multi-

view SoftPool attention convolutional network framework

(MVMSAN) for 3D model classification tasks. Compared

with traditional methods, our method employs a SoftPool

attention convolution framework that can extract refined view

feature information, effectively solving the problem of feature

information loss and insufficient detail feature extraction during

downsampling while enhancing the generalization ability of

the model. Thus, the framework improves the accuracy of 3D

model classification.

This study made the following contributions:

(1) We propose the MVMSAN network framework.

It employs ResNest with the adaptive pooling method,

SoftPool attention method, and self-attention convolution

method to generate discriminative global descriptors for 3D

model classification. Compared with a multitude of popular

methods, our network framework achieves the state-of-the-art

classification accuracy.

(2) ResNest with the adaptive pooling method removes the

last fully connected layer and adds an adaptive pooling layer.

This method can be applied to the extraction of view feature

information, which focuses more on the feature information

among view channels, reinforces the representation of feature

maps, and better obtains real 3D features from 2D views.

(3) The SoftPool attention method can obtain finer view

feature information, emphasize the importance of detailed

features, and obtain more distinguishing features with model

categories, because SoftPool uses the processed view feature

value as the Query value of the self-attention. The self-

attention-based convolution method can also improve the

generalization ability of the model and focus on the learning

ability of the algorithmic framework to increase the accuracy

of 3D model classification, because Mobile inverted Bottleneck

Convolution (MBConv) is used to process the Query and Key

of self-attention.

(4) Our extensive experiments on the ModelNet40 and

ModelNet10 datasets demonstrate the effectiveness of the

proposed method. The experimental results show that,

compared with existing state-of-the-art classification methods,

the overall classification accuracy of our method on the two

datasets reaches 96.96 and 98.57%, respectively.

2. Methods

The framework diagram Multi-view SoftPool Attention

Convolution (MVMSAN) proposed by us is divided into

three modules (Figure 1): the 3D model multi-view acquisition

module, multi-view refinement feature extraction module, and

feature fusion classification module. The multi-view acquisition

module presents the 3Dmodel inmultiple views. Themulti-view

refinement feature extraction module employs ResNest with

an adaptive pooling method to extract the feature information

of the view. Then it uses our proposed SoftPool attention

convolution method for view feature refinement extraction,
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which enables the subsequent fusion to generate more compact

global descriptors. The feature fusion classification module

aggregates refined features through pooling layers to generate

global representation and completes 3Dmodel classification by 1

× 1 convolution. TheMVMSANnetwork framework will obtain

a trained classification network model in the training phase,

which uses datasets including ModelNet40 and ModelNet10

as training data. Any 3D mesh model can be input into

the MVMSAN classification model trained for classification

prediction in the testing phase.

2.1. 3D model multi-view acquisition

Our input is a mesh, point cloud representation of the

3D model. Then, a set of images from different angles V =

{v1, ...vi..., v20} are used instead of the virtual 3D model, where

Vi denotes the 2D images generated from 1 to 20 different

viewpoint angles for any 3D model. The process applies the

viewpoint selection method proposed by Kanezaki et al. (2018),

which involves placing the 3D model at the center of the ortho

dodecahedron and 20 virtual cameras on 20 vertices of the ortho

dodecahedron. The dodecahedron is chosen because it has the

highest number of vertices among the ortho polyhedra, and all

viewpoints are evenly distributed in the 3D space where the 3D

model is located.

2.2. Multi-view refinement local feature
extraction

2.2.1. Extraction of view features based on
ResNest with the adaptive pooling method

For the 20 views V = {v1, ...vi..., v20} obtained from the

3D model rendering, we use ResNest (Zhang et al., 2022)

to extract the view features. ResNest is based on ResNet

with the addition of split-attention blocks, which can exploit

the interrelationship among view channels. Thus, it increases

the perceptual field of feature extraction, strengthens the

representation of feature maps, and reduces information loss.

The view feature information extracted by ResNest is denoted

as{m1, ...mi...,m20}. See Equation (1):















































m1 = ResNest(v1)

...

mi = ResNest(vi)

...

m20 = ResNest(v20)

(1)

where {m1, ...mi...,m20} denotes the 20 extracted view

features.

All the view features are stitched together to obtain the

following Equation:

M =

i=20
∑

i=1

ResNest(vi) (2)

To satisfy the data input requirements for the subsequent

SoftPool attention convolution processing (Section 2.2.2), we

propose a combination of ResNest and adaptive pooling for view

feature extraction. In this method, ResNest removes the final

fully-connected layer and adds an AdaptiveAvgPool2d process.

This is because adaptive pooling can obtain the output of a

specified size based on an input, and the number of features

in the input and output does not change. Therefore, the output

of ResNest after adaptive pooling ensures that the view feature

information extracted by the network remains unchanged and

also satisfies the input requirements for the subsequent SoftPool

attention convolution.

The view features extracted by ResNest are processed by the

adaptive pooling layer to obtain F, as shown in Equation (3):

F = AAP(M) (3)

2.2.2. Refined feature extraction based on
SoftPool attention convolution

There is also some unnecessary information in the view

features (F) extracted using ResNest with the adaptive pooling

method. This information is redundant for aggregation into

a global descriptor. For this purpose, we propose a SoftPool

attention convolution method to accomplish refined feature

extraction. This method mainly relies on the self-attention

mechanism (Zhang et al., 2019). As self-attention can process

the entire input view feature information globally, its strong

global perception capability enables global feature extraction

of view features. However, it is deficient in the refinement

extraction of local features of the view. Moreover, it lacks the

inductive bias property, so it has poor generalization. Also,

our proposed SoftPool attention convolution method solves

these problems and can achieve fine-grained extraction of view

features. It contains the following two modules: Refinement

feature extraction based on the SoftPool self-attention method;

and Model generalization enhancement based on self-attention

convolution (Figure 2).

2.2.3. Refined feature extraction based on
softPool self-attention method

The pooling layer used in most neural networks is either

max pooling or average pooling. Max pooling selects only

the max activation values in the region, resulting in a large

amount of information loss. In contrast, average pooling

averages all activation values, which reduces the overall region
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FIGURE 1

Multi-view SoftPool attention convolution (MVMSAN) network framework. (A) Multi-view acquisition module. (B) Multi-view refined feature

extraction module. (C) Feature fusion classification module.

FIGURE 2

SoftPool attention convolution method. (A) Refinement feature extraction based on SoftPool. (B) Model generalized enhancement based on

self-attention convolution.

characteristics. Therefore, it is not appropriate to choose either

max pooling or average pooling for view feature extraction.

The SoftPool method (Stergiou et al., 2021) first selects the

activation graph, divides the individual activation values in the

activation graph by the sum of the natural exponents of all

activation values to obtain the corresponding weight values,

multiplies all the weights by the corresponding activation values,

and sums them to obtain the output. This makes all activation
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values of the feature map act on the final output, which is

the greatest difference between SoftPool and max and average

pooling. To this end, this paper proposes the SoftPool self-

attention method, which makes full use of the strong global

perception capability of self-attention and preserves the detailed

information of multi-view features by using SoftPool. The self-

attention mechanism obtains the corresponding V-value after

calculating the similarity between Q and K vectors, and then

the V-value is weighted and summed to obtain the value of

the self-attention method. In this method, SoftPool uses the

processed view feature F-value as the Q value of self-attention,

which can refine the multi-view feature downsampling process

and retain more multi-view feature detail information to achieve

refined feature extraction (Figure 2A). It effectively overcomes

the shortage of the self-attention mechanism in viewing the local

feature refinement extraction and helps to generate ultimate

global descriptors with discriminative ability.

The process is divided into two steps:

(1) For the F =
{

f1, ...fi..., f20
}

view features extracted by

ResNest with the adaptive pooling method, fi denotes the feature

of the i-th view. We take the view feature (F) as input and

generate a feature map (Q) by SoftPool (Stergiou et al., 2021)

processing. Two 1 × 1 convolutions are also used to generate

the feature maps K and V . See Equations (4), (5), and (6):

Q = SoftPool(F) (4)

K = Conv1×1(F) (5)

V = Conv1×1(F) (6)

where F denotes the feature vector of size m × n, Conv1×1

is a 1 × 1 convolution kernel, K and V are the feature vectors

obtained by the 1× 1 convolution operation, andQ is the feature

vector obtained by the output of the SoftPool operation.

(2) The vector S is obtained by multiplying the vector K with

the transpose vector QT , as shown in Equation (7):

S = K × QT (7)

where T is the transpose operation, × is the product

operation between two vectors, and S denotes the matrix vector

of the multiplication of K and QT .

2.2.4. Model generalization enhancement
based on self-attention convolution

The self-attention mechanism has weak generalization

owing to the lack of inductive bias (Dai et al., 2021). In

contrast, convolution has good generalization ability owing to

its convolution kernel, which is static and possesses translational

invariance. To this end, we introduce the mobile inverted

bottleneck convolution (MBConv) (Sandler et al., 2018), which

is currently the most advanced convolution, in the self-attention

mechanism to enhance the generalization (Figure 2B). The main

principle of MBConv is that the input features are first up-

dimensioned using 1× 1 convolution, and then the information

between their length and width is extracted by depth-separable

convolution. The dimensionalized input feature information

is downscaled by point convolution to obtain information

across channels. A linear activation function is adopted in

the dimensionality reduction process to prevent information

loss. To prevent network degradation, a reversal residual

block is added at the end to sum the reduced-dimensional

features with the input features, which significantly improves the

generalization performance of the model.

The process is divided into two steps.

(1) Input the vector S intoMBConv (Sandler et al., 2018) and

use the SoftMax function for scaling and normalization to obtain

the attention weight values, as follows:

beta = Softmax

(

MBConv(S)
√

dk

)

(8)

(2) Take this attention weight value and multiply it with the V

vector to obtain the result of the self-attention calculation O :

O = beta× V (9)

where beta denotes the attentionweights obtained by passing

the S matrix through the SoftMax function, SoftMax is the

activation function, and
√

dk is used to prevent the S value from

being too large when the dimensionality is large.

We combine ResNest with the multi-view features (F)

obtained by the adaptive pooling method with the result of

the self-attention calculation (O) to finally obtain the refined

features (Y) extracted by the SoftPool attention convolution

method:

Y = F + gamma ∗ O (10)

where gamma is the parameter, and Y denotes the

refined features.

2.3. Feature fusion classification

In this section, we describe the multi-view feature fusion

classification module. It is shown in Figure 3. For the refined

features (Y) obtained from the above equation, Maxpooling is

utilized to aggregate the features and thus generate a compact

global descriptor (Global), as shown in Equation (11). The 1

× 1 convolution allows the number of channels to be reduced

by controlling the number of convolution kernels, and it does

not limit the size of the input features. Therefore, we input the

generated global descriptor (Global) to the 1 × 1 convolution

to obtain the result of the 3D model classification, as shown in

Equation (12).

Global = Max(Y) (11)

Z = Conv1×1(Global) (12)
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FIGURE 3

Feature fusion classification.

where Z denotes the result of the determination of N classes

of objects, Max denotes the pooling aggregation operation,

Global denotes the resulting global descriptor, and Conv1×1

denotes the convolution operation with a 1 × 1 convolution

kernel.

3. Experiment

3.1. Datasets

To evaluate the performance of our proposed MVMSAN

network, we conducted extensive classification comparison

experiments using the ModelNet40 and ModelNet10 datasets.

ModelNet40 includes 3D CAD models in 40 common grid

forms, including 9,843 trainingmodels and 2,468 testingmodels.

ModelNet10 contains 10 categories of 3D CAD models, with

3,991 training models and 908 testing models.Since the number

of models varies across categories, we chose the overall accuracy

OA (Uy et al., 2019; Equation 13) for each sample and the

average accuracy AA (Zhai et al., 2020) (Equation 14) for each

category as metrics to evaluate the classification performance. It

is noteworthy that OA is the ratio of the number of correctly

classified samples to the total number of samples, and AA is the

average of the ratio of the number of correct predictions to the

total number of predictions for each category. See Equations (13)

and (14) for details.

OA =
1

N

∑c
i=1xii (13)

AA =
sum(recall)

C
(14)

where N is the total number of samples, xii is the number of

correct classifications, and C denotes the category of the dataset,

and recall denotes the ratio of predictions to samples.

3.2. Experimental setup and analysis

We conducted our experiments using a computer with

Windows 10, Inter 8700K CPU, 64 GB RAM, and the RTX2080

graphics card. In all experiments, our environment was set

to PyTorch 1.2 (Paszke et al., 2017) and Cuda 10.0. The

experiment was divided into two training phases. The first phase

classified only a single view to enable fine-tuning of the model

while removing the SoftPool attention convolution module.

The second stage added SoftPool attention convolutional blocks

to train all views of the 3D model, which was used to train

the whole classification framework. We only performed test

experiments in the second stage and set 20 epochs.We optimized

the entire network architecture using the Adam (Zhang, 2018)

optimizer. The initial learning rate and L2 regularization weight

decay parameters were set to 0.0001 and 0.001, respectively, to

accelerate model convergence and reduce model overfitting.

3.3. Impact of CNN on classification
performance

A pretrained CNN is used as a backbone model to

improve the performance of various tasks, e.g., classification and

segmentation. To extract view feature information more quickly

and effectively, we connected the SoftPool attention convolution

module to the encoders, such as ResNet18 (He et al., 2016),

Densenet121 (Huang et al., 2017), ResNest50d, ResNest26d,

and ResNest14d, in the ModelNet40 and ModelNet10 datasets.

The experimental results are shown in Table 1. On the

ModelNet40, the whole network had the shortest training

time when using ResNet18, while the network deepened

and the training time prolonged when using DenseNet121

and ResNest50d. In particular, the training process of the

ResNest50d network model took 809 min (312 min more than

ResNest14d). Employing ResNest14d as the backbone model,

the OA and AA metrics of the MVMSAN network reached

96.96% and 95.68%, respectively, achieving the best classification

performance. Hence, we chose ResNest14d as the backbone

model for extracting multi-view features.

3.4. The e�ect of di�erent number of
views on classification performance

To more intuitively observe the view feature information

in different angles, we selected 2D views of seven different

categories of 3D models for display. As shown in Figure 4, the

view V in the piano category ignores the key feature information

of the keys; therefore, if a single view is used for experiments, the

loss of feature information will affect the classification accuracy.

Multiple views can fuse the feature information of different
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TABLE 1 E�ects of di�erent backbone models on classification performance.

Network ModelNet40 ModelNet10

Tim(min) OA(%) AA(%) Tim(min) OA(%) AA(%)

Resnet18 366 96.31 94.43 147 98.45 98.22

Densenet121 748 96.59 94.81 290 98.23 97.98

ResNest50d 809 96.31 94.22 327 98.24 98.07

ResNest26d 599 96.72 95.33 239 98.67 98.45

ResNest14d 497 96.96 95.68 200 98.57 98.42

The bold values represent the best performance.

FIGURE 4

Six views of di�erent models.

views to make up for the loss of single view feature information.

To further investigate the effect of the number of views on the

model classification performance, we randomly selected 3, 6,

and 12 views from the 20 views obtained from 20 viewpoint

angles for each 3D model in experiments. At the same time,

the classification performance of MVMSAN was also compared

with other advanced methods [such as MVCNN (Su et al., 2015),

RCPCNN (Wang C. et al., 2019), 3D2SeqViews (Han et al.,

2019a), VERAM (Chen et al., 2019), MHBN (Yu et al., 2018),

and RN (Yang and Wang, 2019)] under 3, 6, and 12 number of

views. The experimental results are shown in Table 2.

On the ModelNet40 dataset, MVMSAN network

outperformed other methods (such as MVCNN, RCPCNN,

3D2SeqViews, VERAM, MHBN, and RN). Compared with

the RN network, our network improved OA by 3.0, 2.8, and

2.6% in each view configuration. In comparison with the

classic MVCNN network, it improved by 5.2, 5.0, and 5.5%,

respectively. From Table 2, we can see that the classification

accuracy did not increase with the number of views; for example,

our method achieved the best experimental results in six views.

Meanwhile, it can be seen from the Table 2 that OA of our

MVMSAN model can still reached 96.35, 96.84, and 96.80% in

3, 6, and 12 views. This experiment shows that our network has

high robustness.

TABLE 2 The e�ect of the number of views on classification

performance.

Methods ModelNet40

3 views 6 views 12 views

MVCNN 91.33 92.01 91.49

RCPNN 92.10 92.22 92.18

3D2SeqViews 92.10 93.07 93.40

VERAM 92.40 93.30 93.70

MHBN 93.78 94.12 93.42

RN 93.50 94.10 94.30

MVMSAN(Ours) 96.35 96.84 96.80

The bold values represent the best performance.

TABLE 3 Ablation study (ModelNet40).

ATT Soft MBConv OA(%) AA(%)

X 96.43 94.70

X X 96.11 94.47

X X 96.40 94.62

X X X 96.96 95.68

ATT represents attention calculation, Soft represents the SoftPool method, and MBConv

represents the mobile inverted bottleneck convolution. The bold values represent the

best performance.

TABLE 4 Ablation study (ModelNet10).

ATT Soft MBConv OA(%) AA(%)

X 98.34 98.20

X X 98.23 97.98

X X 98.24 97.99

X X X 98.57 98.42

ATT represents attention calculation, Soft represents the SoftPool method, and MBConv

represents the mobile inverted bottleneck convolution. The bold values represent the

best performance.

The high robustness achieved by the MVMSAN model

is mainly attributed to our proposed SoftPool attention

convolution method. SoftPool uses the processed view feature

value as the Query value of the self-attended to obtain

refined view feature information. Under any number of 1–

20 views, these fine-grained view features can hold salient
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features related tomodel categories. SubsequentMobile inverted

bottleneck convolution (MBConv) can process the Query

and Key of self-attentive, which significantly improve the

generalization performance of MVMSAN model. The learning

ability for our model also becomes stronger, so that it can

achieve high classification accuracy with any number of

1–20 views.

TABLE 5 Comparison of the e�ect of 1 × 1 convolution on

classification performance.

Network OA(%) AA(%) Time(min)

FC 96.79 95.20 524

1× 1Conv 96.96 95.68 497

The bold values represent the best performance.

3.5. Ablation experiments

We supplement a set of ablation experiments to demonstrate

the generalization performance of SoftPool attentional

convolution method proposed by us (see Tables 3, 4). The

experimental results on the ModelNet40 dataset show that our

proposed SoftPool attentional convolution method achieved the

best classification performance on ModelNet40 (96.96% for OA

and 95.68% for AA). The OA and AA obtained by applying only

the output of SoftPool as the Query vector of attention were

96.11 and 94.47%, respectively, which were lower than those

of the SoftPool attention convolution method. This is because

the network model at this point is less generalizable, i.e., the

classification ability learned by this network from the training

set performs poorly. Adopting only MBConv to process the

computational results of Query and Key of attention led to an

insufficient feature extraction capability of the network. The loss

FIGURE 5

Confusion matrix visualization of MVMSAN on ModelNet40.
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FIGURE 6

Confusion matrix visualization of MVMSAN on ModelNet10.

of this feature information further reduced the classification

accuracy (96.40 and 94.62% for OA and AA, respectively).

We also obtained consistent experimental results on the

ModelNet10 dataset (see Table 4).

It further proves that the best performance of the entire

model can be achieved with the output result of SoftPool

as the Query value of attention and MBConv to process

the computational results of Query and Key of attention.

It is worth noting that our algorithm can achieve 96.96%

on OA and 95.68% on AA. The result is closely related

to the refined feature extraction of SoftPool self-attention

method and the model generalization enhancement of self-

attention convolution method. The above two factors are

indispensable.

We also employed a 1 × 1 convolution alternative to

the fully connected layer that the network ends up using for

classification. As shown in Table 5, the OA and AA using 1 ×

1 convolution reached 96.96 and 95.68%, respectively, which is

0.17 and 0.48% improvement compared with fully connected

layers. By using 1 × 1 convolution with fewer parameters, the

training time in the same environment was also reduced by

27 min.

3.6. Confusion matrix visualization

Confusion matrix visualization can intuitively demonstrate

the advanced performance of the MVMSAN method on the

3D model classification task. Especially in the case that some

view features have high similarity, our method still has high

classification prediction performance. We plot the confusion

matrix on the ModelNet40 and ModelNet10 datasets. On

ModelNet40, it can be seen from Figure 5 that MVMSAN

achieved 100% classification accuracy on categories such as

airplane, bed, sofa, and guitar. In some harder categories, such

as night stand, table, and xbox, some views have high similarity.
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TABLE 6 Classification performance comparison with other methods.

Network Modality ModelNet40 ModelNet10

OA(%) AA(%) OA(%) AA(%)

3D ShapeNets Voxel 84.70 77.30 - 83.54

VoxNet Voxel 85.90 83.00 - 92.00

Pointgrid Voxel 92.0 88.90 - -

PointNet Point Cloud 89.20 86.20 - -

PointNet++ Point Cloud 91.90 - - -

Mo-Net Point Cloud 92.40 90.30 - -

DGCNN Point Cloud 93.50 90.70 - -

MVCNN 12-Views 92.10 89.90 - -

GVCNN 12-Views 92.6 - - -

MHBN 6-Views 94.12 92.20 95.00 95.00

12-Views 93.42 - - -

RN 6-Views 94.10 - - -

12-Views 94.30 92.30 95.30 95.10

HMVCM 12-Views 94.57 - 95.7 -

MVMSAN (Ours) 3-Views 96.35 94.62 97.80 97.65

6-Views 96.84 95.65 98.56 98.50

12-Views 96.80 95.31 98.57 98.37

20-Views 96.96 95.68 98.57 98.42

The bold values represent the best performance.

In this case, our MVMSAN model can also classify correctly. It

can be seen from Figure 5 that 76 samples are correctly classified

among the 86 the night stand models.

For the ModelNet10 dataset, it can be seen from Figure 6

that our MVMSAN also achieved 100% classification accuracy

on the chair and monitor categories. In some views, desk,

dresser, sofa and other 3D models have high similarity. The

existing networks will confuse the feature information of 3D

models and cause classification errors. However, our MVMSAN

model still has high classification performance for this situation.

For example, 78 samples are correctly classified among the 86

the desk models in Figure 6.

The data in the figure is enough to demonstrate the

superiority of our approach on the model classification

task. Especially for view features with high similarity, our

network model is still able to achieve high classification

prediction performance.

3.7. Comparison with other methods

We compared the classification performance of voxel-based

methods [3DShapeNets (Wu et al., 2015), VoxNet (Maturana

and Scherer, 2015), and Pointgrid (Le and Duan, 2018)], point

cloud-based methods [PointNet (Qi et al., 2017a), PointNet++

(Qi et al., 2017b), MO-Net (Joseph-Rivlin et al., 2019) and

DGCNN (Wang Y. et al., 2019) and view-based methods

[MVCNN (Su et al., 2015)], GVCNN (Feng et al., 2018), MHBN

(Yu et al., 2018), RN (Yang andWang, 2019), and HMVCN (Liu

et al., 2021)]

As shown in Table 6, the proposedMVMSAN outperformed

other deep learning methods. Compared with the most classical

multi-view-based model classification method (MVCNN),

MVMSAN improved OA and AA by 5 and 6%, respectively.

Compared with the GVCNN, MHBN, and RN methods,

MVMSAN showed considerable improvement. HMVCN is

a recently proposed model classification method based on

bidirectional LSTM, and its OA reached 94.57%. Our method

achieved 2.5% higher OA compared to HMVCN. On the

ModelNet10 dataset, the MVMSAN method also achieved

the best classification performance (98.57% for OA and

98.42% for AA).

The excellent performance of our MVMSAN method

on the two ModelNet datasets is attributed to three factors:

(1) ResNest removes the last fully connected layer and adds

an adaptive pooling layer. It can prove that the relationship

between view channels can increase the receptive field

of view feature extraction, so that the network obtains

more detailed features from the input data related to the

output. (2) Using the output result of SoftPool as the

Query vector of attention can realize the refined down-

sampling processing of view feature information, and

effectively solve the problem of insufficient extraction and

loss of detailed information in the process of view feature

extraction. (3) MBConv is employed to process the calculation

results of Query and Key of attention. It can enhance
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the generalization of the model, thereby improving the

classification accuracy.

4. Conclusion

In this paper, we proposed a multi-view SoftPool attention

convolutional network framework, MVMSAN, for 3D model

classification. The traditional method does not treat each

view equally in the view feature extraction process, and only

extracts the feature information that is considered important.

This causes the problem of insufficient extraction of the view

refinement feature information and loss. Our proposed SoftPool

attention convolution framework could achieve refined down-

sampling processing for all view features equally, thereby

obtaining more useful information from the input data related

to the output results, improving the generalization of the

model, and achieving high-precision 3D model classification.

To better evaluate our network framework, we conducted

several experiments to validate the impact of each component

of the framework. The experimental results demonstrate that

our framework has achieved better classification accuracy on

the ModelNet40 and ModelNet10 datasets compared to other

advanced methods.
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