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Online recorded data-based
finite-time composite neural
trajectory tracking control for
underactuated MSVs

Chunbo Zhao, Huaran Yan* and Deyi Gao

Merchant Marine College, Shanghai Maritime University, Shanghai, China

This paper presents an online recorded data-based composite neural

finite-time control scheme for underactuated marine surface vessels (MSVs)

subject to uncertain dynamics and time-varying external disturbances.

The underactuation problem of the MSVs was solved by introducing the

line-of-sight (LOS)method. The uncertain dynamics of MSVs are approximated

by the composite neural networks (NNs). A modified prediction error signal is

designed by virtue of online recorded data. The weight updating law of NN

is driven by both tracking error and prediction error, introducing additional

correction information to theweights of NN, thus improving the learning ability

of the NN. Furthermore, disturbance observers can be devised to estimate

the compound disturbances consisting of the approximation errors of NNs

and external disturbances. Moreover, the smooth function is inserted into the

design of the control scheme, and the finite-time composite neural trajectory

tracking control of MSVs is achieved. The stability of the MSVs trajectory

tracking closed-loop control system is guaranteed rigorously by the Lyapunov

approach, and the tracking error will converge to the set of residuals around

zero within a finite time. The simulation tests on anMSV verify the e�ectiveness

of the proposed control scheme.

KEYWORDS

MSVs, trajectory tracking, online recorded data, finite-time control, composite neural

networks

1. Introduction

Due to the rapid exploitation of marine resources, marine surface vehicles (MSVs)

have been extensively deployed in various fields, such as scientific research applications,

commercial cargo transport, missions related to maritime search and maritime

emergency rescue (Dai et al., 2015; He and Geng, 2021). The trajectory tracking of MSVs

plays a significant and important role in accomplishing different missions at sea (Xiao

and Yin, 2018; Zhu et al., 2021b). However, in the complex maritime environment, MSVs

will inevitably be affected by unknown external disturbances and uncertain dynamics,

which bring great challenges to accurate trajectory tracking control.

In recent years, scholars have proposed fruitful approaches to mitigate the effects of

unknown external disturbances and uncertain dynamics, such as neural network (NN)

control (Rout et al., 2020; Zhu et al., 2021a), fuzzy control (Wang et al., 2018, 2020),
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observer-based nonlinear control (Gao and Guo, 2019; Van,

2019; Guo and Zhang, 2020), and the finite-time control

(Ning et al., 2020; Wang and Deng, 2020; Zhu et al.,

2020). The NNs and fuzzy logic systems are introduced to

approximate the uncertain terms of the MSVs, including

unmodeled dynamics and unknown dynamics in Wang et al.

(2018, 2020), Rout et al. (2020), and Zhu et al. (2021a).

In Gao and Guo (2019), Van (2019), and Guo and Zhang

(2020), the nonlinear disturbance observers (NDOs) have been

devised to estimate the compound uncertainties consisting of

model parameter perturbations and unknown disturbances.

Combining parameter adaptive technique and backstepping

vector design scheme, the unmodeled dynamics of MSVs were

addressed in Do (2016) and Ghommam and Saad (2018).

However, most of the literature mentioned above only

focuses on the control problem of fully actuated MSVs. In

fact, for most MSVs, there are three degrees of freedom, but

only two control inputs are available for control, which means

that they are underactuated. The methods to solve the problem

of underactuation control mainly focus on additional control

methods (Do, 2010; Seok Park, 2014; Park and Yoo, 2016),

output redefinition control (Shojaei and Arefi, 2015; Zhu et al.,

2021c), line-of-sight (LOS) (Shojaei, 2015; Gao et al., 2017;

Elhaki and Shojaei, 2021), etc.

The problems of uncertain dynamics and time-varying

disturbances deserve further attention, although the above-

mentioned literature has yielded fruitful results. The purpose

of approximating system uncertainty information with NN has

been completed in Xu (2017) and Xu and Sun (2018). To

obtain better tracking control performance, uncertain dynamic

terms need to be approximated as accurately as possible.

By constructing a serial-parallel estimation model, the model

prediction error can be obtained in Peng et al. (2016), and it

is integrated into the design of the weight update rate of the

NN, which effectively improves the transient performance of the

system. To reduce the high-frequency oscillations and improve

the transient performance of the system, adaptive control

modification (Yucelen and Haddad, 2013) and auxiliary filters

(Na et al., 2015, 2017; Huang et al., 2018) were introduced to

design the adaptive law and NN weight update law, respectively.

The error feedback information is embedded into the reference

model in Gibson et al. (2013) to reduce the oscillation caused

by large gain. The updating law of NNs weights was designed by

fusing model prediction errors and the system tracking errors in

Xu et al. (2014).

In the above literature, the tracking error of a closed-

loop control system can only reach uniformly boundedness.

However, tracking errors of MSVs frequently require achieving

finite time convergence. Recently, finite-time (FT) control

methods have been intensively investigated and adopted for

various control systems because of their advantages of fast

convergence and strong robustness (Yang et al., 2021, 2022a).

For the FT convergence problem, scholars have proposed a

large number of advanced FT control techniques, In addition to

the sliding-mode-based FT control method, uniformity and the

addition of a power integrator (API) are also effective methods

to achieve FT stability. Scholars have proposed a large number

of effective techniques to achieve FT control, including sliding-

mode based FT control methods, homogeneity, and the addition

of power integrators (Wang et al., 2017, 2018). The FT trajectory

tracking control (Wang et al., 2016) and formation Control

(Zhang et al., 2020; Yang et al., 2022b) of the MSVs are well

implemented. It can be clearly seen that the control performance

of the MSV system is obviously improved under FT control.

However, the FT control of MSVs is still a largely open problem

suffering from unknown external disturbances and uncertain

dynamics.

In this article, we develop an online recorded data-based

FT composite neural control scheme for underactuated MSVs

suffering from uncertain dynamics and unknown external

disturbances. Moreover, the contributions of this article can be

listed as follows.

• In this article, an FT composite neural control

scheme based on online recorded data is proposed for

underactuated MSVs suffering from uncertain dynamics

and unknown external disturbances for the first time, and

high precision tracking is guaranteed. Compared with

the control scheme based on NN, the proposed control

scheme can achieve both higher tracking accuracy, faster

tracking speed, and a more precise approximation of

uncertain dynamics.

• Unlike existing composite learning control schemes, which

either converge exponentially (Xu and Shou, 2018; Xu et al.,

2019) or in finite time (Pan et al., 2022) but exhibit potential

singularity problems, we introduce a smoothing function

into the design of the composite learning control scheme

such that the tracking errors can achieve FT converge to

the neighborhood of zero without singularity.

The remainder of this article is organized as follows. Section

2 introduces the mathematical model of MSV, the problem

formulation, some preliminaries, and the principle of NN.

Section 3 describes the details of the control scheme design

process. The simulation results and comparison are shown in

Section 4. Section 5 concludes this paper. Notations: •̃ indicates

the error value between • and its estimate •̂, which satisfies that

•̃ = • − •̂.

2. Problem formulation

2.1. Mathematical model of MSV

The mathematical model of underactuated MSVs moving in

the horizontal plane is given by

ẋ = u cosϕ − v sinϕ (1a)

ẏ = u sinϕ + v cosϕ (1b)
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ϕ̇ = r (1c)

u̇ =
1

m11
(m22vr − d11u+ τu + fu + τeu) (1d)

v̇ =
1

m22
(−m11ur − d22v+ fv + τev) (1e)

ṙ =
1

m33

[

(m11 −m22)uv− d33r + τr + fr + τer
]

(1f)

where (x, y) represents the position and ϕ denotes the

orientation of MSVs in the earth-fixed frame. Here, [u, v, r]T

represents surge velocity, sway velocity, and angular rate of

MSVs in the body-fixed frame, respectively. The m11, m22, and

m33 are nominal values of the inertia mass. The d11, d22, and

d33 are hydrodynamic damping parameters. The τeu, τev, and τer

denote unknown external disturbances.
[

fu, fv, fr
]T

represents

uncertain dynamics including uncertain parts of the model

parameters of the MSVs. τu and τr are the control input signal

in the surge and yaw directions.

Assumption 1. The unknown external disturbances τej, (j =

u, q, r) satisfies that
∣

∣τej
∣

∣ ≤ l̄j and
∣

∣τ̇j
∣

∣ ≤ τ̄ej, where l̄j and d̄j are

unknown positive constants.

Assumption 2. The desired trajectory signal xd, yd and their

first two time derivatives are available.

The position error in the body-fixed frame is given

xe =
(

x− xd
)

cosϕ +
(

y− yd
)

sinϕ (2a)

ye = −
(

x− xd
)

sinϕ +
(

y− yd
)

cosϕ (2b)

Differentiating (Equations 2a,b) with respect to time yields

ẋe = u+ rye − ẋd cosϕ − ẏd sinϕ (3a)

ẏe = v− rxe + ẋd sinϕ − ẏd cosϕ (3b)

Then, we can describe the position error ze and angle error

θe as

ze = zs − z0 =

√

x2e + y2e − z0 (4a)

θe = arctan 2(ye, xe) (4b)

Together with Equations (2a,b), we can obtain

xe = zs cos θe (5a)

ye = zs sin θe (5b)

A user-design positive constant z0 is embedded in the design

of virtual control law to avoid possible singularity. The main

objective of this article is to conceive an online recorded data-

based FT composite neural control scheme for underactuated

MSVs satisfying Assumptions 1–2 suffering from uncertain

dynamics and environmental disturbances tracking the desired

trajectory satisfies that tracking errors ze and θe can converge to

a small residual set within a finite time.

2.2. Some preliminaries

Lemma 1 (Qi et al., 2020). Consider the nonlinear system

ε̇ = g(ε), g(0) = 0, ε ∈ Rn, if Lyapunov function V(ε)

satisfies that

V̇(ε) ≤ −aV(ε)− bVJ(ε) (6)

where a and b are positive constants and 0 < J < 1. The system

is finite-time stable and there exists a setting time function T

T ≤
1

a(1− J)
ln

aV1−J(ε0)+ b

b
(7)

Lemma 2 (Zhang and Zhang, 2014). For arbitrarily positive

constant f and 0 < δ < 1, the following inequality always holds.

(

n
∑

i=1

∣

∣f
∣

∣)δ ≤

n
∑

i=1

∣

∣f
∣

∣

δ
(8)

Lemma 3 (Wang and Lin, 2015). For arbitrarily positive

constant ̟ and positive constant ̺, the following inequality

always holds.

0 < |̺| −
̺2

√

̺2 + ̟ 2
< ̟ (9)

2.3. Introduction to the principle of radial
basis function NN

In general, for any continuous function L(X) that can be

parameterized through the Radial Basis Function NNs with

approximation errors ξ , and can be described as

L(X) = WT8(X)+ ξ (10a)

8(X) = exp[−(X − ch)
T(X − ch)/b

2
h], h = 1, 2, ...N (10b)

where 8(X) is the basis function vector. ch and bh denote

the center and the width of the basis function, respectively. N

represents the number of the node. ξ is the approximation error

that satisfies |ξ | ≤ ξm and ξm is an unknown positive constant.

Ŵ is the estimate of theW. In practice, the uncertain nonlinear

function can usually be expressed as L̂ = ŴT8.

3. Details of control law design and
stability analysis

Together with Equations (4a) and (5a)-(5b), differentiating

ze with respect to time yields

że = u cos θe + v sin θe + ζ1 cos θe + ζ2 sin θe (11)
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where ζ1 and ζ2 are expressed as

ζ1 = −ẋd cosϕ − ẏd sinϕ (12a)

ζ2 = ẋd sinϕ − ẏd cosϕ (12b)

The virtual control law αu is designed as

αu =
1

cos θe
(−kz1

ze
√

ze2+ιz2
− kz2ze − v sin θe

− ζ1 cos θe − ζ2 sin θe) (13)

where kz1, kz2, and ιz are positive user-designed constants.

In the surge direction, the velocity error can be expressed as

ue = u − αu. From Equation (13), the Equation (11) can be

further rewritten as

że = −kz1
ze

√

ze2+ιz2
− kz2ze + ue cos θe (14)

In the light of Equations (1d) and (13), the equation for the

derivative of ue is given by

m11u̇e = m22vr − d11u+ τu + fu + τeu −m11α̇u (15)

The uncertain dynamic of MSVs can be estimated using

NN such that m22vr − d11u + fu = WT
u8u + ξu. Here, let

du = ξu + τeu. The ξu is the approximation error of NN and

the time derivative of ξu is bound.

In the light of Assumption 1, we have

∣

∣du
∣

∣ ≤ ϒu0,
∣

∣

∣
ḋu

∣

∣

∣
≤ ϒu (16)

where ϒu0 and ϒu are positive constants.

The following error equation is further expressed as

m11ueu̇e = ue(W
T
u8u + du + τu −m11α̇u) (17)

Then, the following control law is constructed

τu = −ku1
ue

√

ue2+ιu2
− ku2ue − ŴT

u8u − d̂u +m11α̇u (18)

where ku1, ku2, and ιu are positive constants.

Therefore, the Equation (17) can be expressed as

m11u̇e = −ku1
ue

√

ue2+ιu2
− ku2ue + W̃T

u8u + d̃u (19)

The prediction error is designed as

Eu = Au − ŴT
u pu (20)

where pu and Au are constructed as

pu =

∫ t

t−τd

8udτ (21)

Au =

∫ t

t−τd

(m11u̇e + ŴT
u8u + d̂u + ku1

ue
√

ue2+ιu2

+ ku2ue)dτ (22)

where τd is an integral interval.

From Equations (21) to (23) can be expressed as

Eu = φu +

∫ t

t−τd

dudτ (23)

where φu = W̃T
u pu.

The composite neural update law can be designed as

˙̂Wu = γu(ue8u + kwupuEu − ϑuŴu) (24)

where γu, kwu, ϑu1, and ϑu2 are positive parameters.

The NDO for the surge direction is designed as

d̂u = m11u− σu (25a)

σ̇u = ŴT
u8u + d̂u + τu + ue (25b)

where σu is the auxiliary variable.

Using Equations (1d) and (25a)-(25b), taking the time

derivative of d̃u, we can get

˙̃
du = ḋu − W̃T

u8u − d̃u − ue (26)

Combining Equation (4b) and (5a)-(5b), taking the time

derivative of θe

θ̇e = −r +
1

zs
(−u sin θe + v cos θe − ζ1 sin θe + ζ2 cos θe)

(27)

The virtual control law αr can be designed as

αr = kθ1
θe

√

θe
2+ιθ

2
+ kθ2θe +

1

zs
(−u sin θe + v cos θe

− ζ1 sin θe + ζ2 cos θe) (28)

where kθ1, kθ2, and ιθ are positive constants.

In the yaw direction, the velocity error can be expressed as

re = r−αr . FromEquation (28), the Equation (27) can be further

rewritten as

θ̇e = −re − kθ1
θe

√

θe
2+ιθ

2
− kθ2θe (29)

In the light of Equations (1f) and (28), the equation for the

derivative of re is given by

m33 ṙe = (m11 −m22)uv− d33r + τr + fr + τer −m33α̇r

(30)

The uncertain dynamic of MSVs can be estimated using NN

such that (m11 − m22)uv − d33r + fr = WT
r 8r + ξr . Here, let
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dr = ξr + τer . The ξr is the approximation error of NN and the

time derivative of ξr is bound.

In the light of Assumption 1, we have

∣

∣dr
∣

∣ ≤ ϒr0,
∣

∣

∣
ḋr

∣

∣

∣
≤ ϒr (31)

where ϒr0 and ϒr are positive constants.

The following error equation is further expressed as

m33re ṙe = re(W
T
r 8r + dr + τr −m33α̇r) (32)

Then, the following control law is constructed

τr = −kr1
re

√

re2+ιr2
− kr2re − ŴT

r 8r − d̂r +m33α̇r (33)

where kr1 and kr2 are positive constants.

Therefore, the Equation (32) can be expressed as

m33 ṙe = −kr1
re

√

re2+ιr2
− kr2re + W̃T

r 8r + d̃r (34)

The prediction error is designed as

Er = Ar − ŴT
r pr (35)

where pr and Ar are constructed as

pr =

∫ t

t−τd

8rdτ (36)

Ar =

∫ t

t−τd

(m33 ṙe + ŴT
r 8r + d̂r + kr1

re
√

re2+ιr2
+ kr2re)dτ

(37)

From Equations (36–38) can be expressed as

Er = φr +

∫ t

t−τd

drdτ (38)

where φr = W̃T
r pr .

The composite learning update law can be designed as

˙̂Wr = γr(re8r + kwrprEr − ϑrŴr) (39)

where γr , kwr , and ϑr are positive parameters.

The NDO for the yaw direction is designed as

d̂r = m33r − σr (40a)

σ̇r = ŴT
r 8r + d̂r + τr + re (40b)

where σr is the auxiliary variable.

Using Equations (1f) and (40a)-(40b), taking the time

derivative of d̃r , we can get

˙̃
dr = ḋr − W̃T

r 8r − d̃r − re (41)

Remark 1. In the view of Equations (24) and (39), the online

recorded data-based prediction errors and tracking errors are

fused to construct the composite NN weight updating. More

information is introduced to construct the weight updating to

approximate uncertain dynamics. Hence, the trajectory tracking

speed and accuracy of MSVs are improved.

Remark 2. Different from Xu and Shou (2018) and Xu et al.

(2019), prediction errors are constructed through online data

recording and a smooth function, which realizes the FT converge

under the composite neural control scheme based on online

recorded data.

Remark 3. kwu and kwr in Equations (24) and (39) are

designed to enhance the learning competence of the NN. The

magnitude of the values of kwu and kwr determines whether the

values of Ŵu and Ŵr mainly depend on the tracking error or the

prediction error.

Remark 4. Combined with the approximation results of

uncertain dynamics of MSVs, the NDOs were designed to

estimate the lumped disturbances consisting of approximation

residuals of NNs and unknown external disturbances. In

this article, the developed control scheme guarantees both

higher tracking accuracy and a more precise approximation of

uncertain dynamics.

The compounded unknown information lumped by

the uncertain dynamics of MSVs and unknown external

disturbances is represented as Du and Dr .

m22vr − d11u+ fu + τeu =Du (42a)

(m11 −m22)uv− d33r + fr + τer =Dr (42b)

Remark 5. It is worth noting that one cannot definitively tell

whether ŴT
u8u and Ŵ

T
r 8r can approximate them22vr−d11u+

fu and (m11−m22)uv−d33r+ fr , respectively. Because the NNs

and NDOs are sharing each other’s information, which means

FIGURE 1

Reference and actual trajectories of the MSV in Case 1.
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FIGURE 2

Tracking position error and yaw angle error in Case 1.

FIGURE 3

Du and its estimation in Case 1.
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both are sharing “estimation work”. If the estimation D̂u and D̂r

can closely follow the compounded unknown information Du

andDr , respectively, then the purpose of composite neural using

NNs and NDOs is realized effectively.

Theorem 1: Applying the virtual control laws equation (13),

(28), the NN updating laws equation (24), (39), NDOs equation

(25a)-(25b), (40a)-(40b) to the MSVs trajectory tracking system

(1a)-(1c) and (2a)-(2c) with uncertain dynamics and unknown

external disturbances under Assumptions 1–2. Tracking errors

can achieve FT converge to the neighborhood of zero. All

the signals in MSVs trajectory tracking closed-loop system are

uniformly ultimately bounded.

Proof: The Lyapunov function can be selected as

V =
1

2
ze
2 +m11u

2
e +

1

γu
W̃T

u W̃u + d̃2u + θ2e +m33r
2
e

+
1

γr
W̃T

r W̃r + d̃2r (43)

Taking the time derivative of Equation (43), we have

V̇ = zeże +m11ueu̇e +
1

γu
W̃T

u (−
˙̂Wu)+ d̃u(−

˙̂
du)

+ θeθ̇e +m33reṙe +
1

γr
W̃T

r (−
˙̂Wr)+ d̃r(−

˙̂
dr) (44)

Along with Equations (14) and (29), Lemma 3, and Young’s

inequality, we have

zeże ≤ −kz1 |ze| − (kz2 −
1

2
)ze

2 +
1

2
ue

2 + kz1ιz (45)

θeθ̇e ≤ −kθ1 |θe| − (kθ2 −
1

2
)θe

2 +
1

2
re
2 + kθ1ιθ (46)

In the light of Equations (19) and (34) and Lemma 3, we have

m11ueu̇e ≤ −ku1 |ue| + ku1ιu − ku2ue
2 + ueW̃

T
u8u + ued̃u

(47)

m33re ṙe ≤ −kr1 |re| + kr1ιr − kr2re
2 + reW̃

T
r 8r + red̃r (48)

In view of Equations (24) and (39), we can get

−
1

γu
W̃T

u
˙̂Wu = −W̃T

u (ue8u + kwupuEu − ϑuŴu) (49)

−
1

γr
W̃T

r
˙̂Wr = −W̃T

r (re8r + kwrprEr − ϑrŴr) (50)

From Equations (26) and (41), we can get

d̃u
˙̃
du = d̃uḋu − d̃u(W̃

T
u8u + d̃u + ue) (51)

d̃r
˙̃
dr = d̃r ḋr − d̃r(W̃

T
r 8r + d̃r + re) (52)

FIGURE 4

Dr and its estimation in Case 1.
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The Equation (44) can be rearranged as

V̇ ≤ −kz1 |ze| − (kz2 −
1

2
)ze

2 − ku1 |ue| − (ku2 −
1

2
)ue

2

+ ϑuW̃
T
u Ŵu − d̃2u + d̃uḋu − d̃uW̃

T
u8u − kwuφuδu

− kwuφu
2 − kθ1 |θe| − (kθ2 −

1

2
)θ2e − kr1 |re|

− (kr2 −
1

2
)re

2 + ϑrW̃
T
r Ŵr − d̃2r + d̃r ḋr − d̃rW̃

T
r 8r

− kwrφrδr − kwrφr
2 + kz1ιz + ku1ιu + kθ1ιθ + kr1ιr

(53)

where δg =
∫ t
t−τd

dgdτ , g = u, r. From Equations (16) and (31),

δg
2 has the supreme expressed as δgm

2.

According to Young’s inequality, we can get

ϑuW̃
T
u Ŵu ≤ ϑu(−

1

4
W̃T

u W̃u −
1

4
W̃T

u W̃u −
1

4
+

1

4
+

1

2
WT

uWu)

≤ −
ϑu

4
W̃T

u W̃u −
ϑu

2
(W̃T

u W̃u)
1
2 +

ϑu

2
WT

uWu +
ϑu

4
(54)

Similarly, we can obtain

ϑrW̃
T
r Ŵr ≤ −

ϑr

4
W̃T

r W̃r −
ϑr

2
(W̃T

r W̃r)
1
2 +

ϑr

2
WT

r Wr +
ϑr

4
(55)

The Equation (53) can be further rearranged as

V̇ ≤ −kz1 |ze| − (kz2 −
1

2
)ze

2 − ku1 |ue| − (ku2 −
1

2
)ue

2

−
ϑu

2
(W̃T

u W̃u)
1
2 −

ϑu

4
W̃T

u W̃u − d̃2u + d̃uḋu − d̃uW̃
T
u8u

− kwuφuδu − kθ1 |θe| − (kθ2 −
1

2
)θ2e − kr1 |re|

− (kr2 −
1

2
)re

2 −
ϑu

2
(W̃T

u W̃u)
1
2 −

ϑu

4
W̃T

u W̃u − d̃2r

+ d̃r ḋr − d̃rW̃
T
r 8r − kwrφrδr + kz1ιz + ku1ιu + kθ1ιθ

+ kr1ιr +
ϑu

2
WT

uWu +
ϑu

4
+

ϑr

2
WT

r Wr +
ϑr

4
(56)

According to Young’s inequality, Equations (16) and (31), we

can get

d̃uḋu ≤
1

2
d̃2u +

1

2
ϒ2
u (57)

FIGURE 5
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∥
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of its estimation Ŵu and Ŵr in Case 1.
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d̃r ḋr ≤
1

2
d̃2r +

1

2
ϒ2
r (58)

−
1

4
d̃2u ≤ −

1

2

∣

∣du
∣

∣ +
1

4
(59)

−
1

4
d̃2r ≤ −

1

2

∣

∣dr
∣

∣ +
1

4
(60)

Then, the Equation (56) can be further rearranged as

V̇ ≤ −kz1 |ze| − (kz2 −
1

2
)ze

2 − ku1 |ue| − (ku2 −
1

2
)ue

2

−
ϑu

2
(W̃T

u W̃u)
1
2 −

ϑu

4
W̃T

u W̃u −
1

2

∣

∣du
∣

∣ −
1

4
d̃2u − d̃uW̃

T
u8u

− kwuφuδu − kθ1 |θe| − (kθ2 −
1

2
)θ2e − kr1 |re|

− (kr2 −
1

2
)re

2 −
ϑr

2
(W̃T

r W̃r)
1
2 −

ϑr

4
W̃T

r W̃r −
1

2

∣

∣dr
∣

∣

−
1

4
d̃2r − d̃rW̃

T
r 8r − kwrφrδr + kz1ιz + ku1ιu + kθ1ιθ

+ kr1ιr +
ϑu

2
WT

uWu +
ϑu

4
+

ϑr

2
WT

r Wr +
ϑr

4
+

1

2
ϒ2
u

+
1

2
ϒ2
r +

1

2
(61)

According to Young’s inequality and the Lemma 3, we have

the following fact

−d̃uW̃
T
u8u ≤

1

2
µud̃

2
u̟

2
u +

1

2µu
W̃T

u W̃u (62)

FIGURE 7

Reference and actual trajectories of the MSV in Case 2.

FIGURE 6

Control input τu and τr in Case 1.
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FIGURE 8

Tracking position error and yaw angle error in Case 2.

FIGURE 9

Du and its estimation in Case 2.
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−φuδu ≤
1

2
δum

2 +
1

2
φu

2 (63)

−d̃rW̃
T
r 8r ≤

1

2
µr d̃

2
r̟

2
r +

1

2µr
W̃T

r W̃r (64)

−φrδr ≤
1

2
δrm

2 +
1

2
φr

2 (65)

where µu and µr are positive constants, ‖8u‖ ≤ ̟u and

‖8r‖ ≤ ̟r .

Therefore, the Equation (61) is further scaled as

V̇ ≤ −kz1 |ze| − (kz2 −
1

2
)ze

2 − ku1 |ue| − (ku2 −
1

2
)ue

2

−
ϑu

2
(W̃T

u W̃u)
1
2 − (

ϑu

4
−

1

2µu
)W̃T

u W̃u −
1

2

∣

∣du
∣

∣ − (
1

4

−
1

2
µu̟

2
u )d̃

2
u − kθ1 |θe| − (kθ2 −

1

2
)θ2e − kr1 |re| − (kr2

−
1

2
)re

2 −
ϑr

2
(W̃T

r W̃r)
1
2 − (

ϑr

4
−

1

2µr
)W̃T

r W̃r −
1

2

∣

∣dr
∣

∣

− (
1

4
−

1

2
µr̟

2
r )d̃

2
r + kz1ιz + ku1ιu + kθ1ιθ + kr1ιr

+
ϑu

2
WT

uWu +
ϑu

4
+

ϑr

2
WT

r Wr +
ϑr

4
+

1

2
ϒ2
u +

1

2
ϒ2
r +

1

2

+
1

2
kwuδum

2 +
1

2
kwuφu

2 +
1

2
kwrδrm

2 +
1

2
kwrφr

2 (66)

Therefore, we have

V̇ ≤ −aV − hV1/2 + b (67)

where a=min{(2kz2 − 1), (2kθ2 − 1), (2ku2 − 1), (2kr2 − 1),

( 12ϑu − 1
µu

), ( 12ϑr − 1
µr

), ( 12 − µu̟
2
u ), (

1
2 − µr̟

2
r )}, h =

min{2kz1,2kθ1, 2ku1, 2kr2,ϑu,ϑr , 1} and b = kz1ιz + ku1ιu +

kθ1ιθ +kr1ιr+
1
2 +

ϑu
2 W∗

uW
∗
u +

ϑu
4 + 1

2ϒ2
u +

ϑr
2 W∗

r W
∗
r +

ϑr
4 +

1
2ϒ2

r + 1
2kwuδum

2 + 1
2kwuφu

2 + 1
2kwrδrm

2 + 1
2kwrφr

2.

From Equation (67), we can obtain

V̇ ≤ −asV − a(1− s)V − hV1/2 + b (68)

According to Equation (68), if V > b
as we have

V̇ ≤ −a(1− s)V − hV1/2 (69)

From Lemma 1,V converges around b
as within a setting time

T ≤
2

a(1− s)
ln

a(1− s)V1/2(0)+ h

h
(70)

The theorem has been proved.

4. Simulation results and comparison

To validate the superiority of the proposed control

scheme in this article, simulation investigations together with

comprehensive comparisons of an MSV are addressed in

FIGURE 10

Dr and its estimation in Case 2.
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Do and Pan (2004), whereby the main parameters are as follows:

m11= 120 × 103kg,m22 = 177.9 × 103kg,m33 = 636 ×

105kg · m2. d11= 215 × 102kg/s, d22 = 147 × 103kg/s, d33 =

802× 104kg/m2s.

Next, the performance advantages of the proposed control

scheme (FT-ORDCL) are presented through a comprehensive

comparison with other neural network-based finite-time control

schemes (FT-NN). The simulations are carried out under the

proposed trajectory tracking control scheme in the following

two cases.

Case 1: Uncertain dynamics of MSV are assumed

as [fu, fv, fr]
T =[(0.2d11 |u|)u, (0.2d22 |v|)v, (0.2 |r|)r]

T .

The unknown external disturbances are assumed as

[τeu, τev, τer]
T =[104 sin(0.3t − π/4) + 104 cos(0.2t + π/4) +

2× 104N, 103 sin(0.2t−π/4)+103 cos(0.3t−π/4)+3× 103N ·

m, 105 sin(0.2t+ π/6)+ 105 cos(0.5t− π/4)− 3× 105N ·m]T.

The desired trajectory signal is given as xd =

200 sin(0.02t),yd = 200 cos(0.02t). User-defined parameters

for FT-ORDCL and FT-NN control schemes are as follows:

[x(0), y(0),ϕ(0), u(0), v(0), r(0)] = [20, 190, − 0.02π , 0, 0, 0].

z0 = 10, kz1 = 0.02, kz2 = 0.55, ιz = 0.2, kθ1 = 0.001,

ιθ = 0.3, kθ2 = 0.8, ku1 = 5, ιu = 0.2, ku2 = 6.5×103, kr1 = 3,

ιr = 0.3, kr2 = 3.18× 106, γu = 100, γr = 10, kwu = kwr = 50,

ϑu1 = ϑr1 = 0.0001, ϑu2 = ϑr2 = 0.001, τd = 0.05.

Simulation results under the FT-ORDCL and FT-NN control

schemes are illustrated in Figures 1–6. Figure 1 clearly shows

that the desired trajectory can be tracked under uncertain

dynamics and time-varying disturbances under both control

schemes. From Figure 2, the results show that FT-ORDCL can

accomplish faster convergence and more accurate tracking of

desired trajectories than FT-NN. The approximate results of

unknown information are clearly shown in Figures 3, 4, thus

further supporting the conclusion in Figure 2. The estimated

value of 2-norms of the NNweights are bounded and reasonable

as seen in Figure 5. The control force τu and control torque τr are

plotted in Figure 6. From a practical point of view, the control

force and control torque are bounded and reasonable.

Case 2: The unknown dynamics are increased

by +10% and the bigger unknown disturbance is

given as [τeu, τev, τer]
T =[1.2× 104 sin(0.3t − π/4) +

FIGURE 11
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FIGURE 12

Control input τu and τr in Case 2.

1.2× 104 cos(0.2t+π/4)+2.4×104N, 1.2× 103 sin(0.2t−π/4)

+1.2× 103 cos(0.3t−π/4)+3.6×103N ·m, 1.2× 105 sin(0.2t+

π/6)+1.2× 105 cos(0.5t−π/4)−3.6×105N ·m]T. The design

parameters and the initial conditions are given the same as those

in Case 1.

Simulation results under the FT-ORDCL and FT-NN control

schemes in Case 2 are provided in Figures 7–12. It is clearly

depicted from Figure 7, that MSVs can track the desired

trajectory in the presence of uncertain dynamics and time-

varying ocean disturbances under both control schemes in

Case 2. From Figure 8, the results show that FT-ORDCL can

accomplish faster convergence and more accurate tracking of

desired trajectories than FT-NN. It can be seen from Figures 9,

10, the same conclusion can be obtained in Case 1. The proposed

control scheme has good adaptability and robustness. The

estimated value of 2-norms of the NN weights are bounded as

seen in Figure 11. The control force τu and control torque τr are

plotted in Figure 12. From Figure 12, the corresponding control

inputs are bounded and reasonable.

5. Conclusion

In this article, the problem of FT trajectory tracking

control for underactuated MSVs, which suffer from uncertain

dynamics and unknown external disturbances, has been

solved by devising a composite neural control scheme based

on online recorded data. The uncertain dynamics and

unknown external disturbances were compensated exactly by

the composite NNs based on online recorded data and the

NDOs, respectively. By virtue of the LOS approach, the

underactuation problem of the MSV is addressed. A smooth

function is inserted into the design of the proposed control

scheme artistically, and the FT trajectory tracking control of

MSVs is realized based on online data recording composite

NNs. The comparison of simulation results and methods

shows the effectiveness and superiority of the developed

control scheme.

Furthermore, the developed control scheme in this

article can be extended to the trajectory tracking control
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of multiple-input multiple-output or single-input single-

output systems with unknown external disturbances and

uncertain dynamics. For extensions to the existing study, the

proposed control scheme can be combined with fault-tolerant

control and event-triggered schemes to achieve more complex

control objectives.
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