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Semantic enhanced for
out-of-distribution detection

Weijie Jiang and Yuanlong Yu*

College of Computer and Data Science, Fuzhou University, Fuzhou, China

While improving the performance on the out-of-distribution (OOD)

benchmark dataset, the existing approach misses a portion of the valid

discriminative information such that it reduces the performance on the same

manifold OOD (SMOOD) data. The key to addressing this problem is to

prompt the model to learn e�ective and comprehensive in-distribution (ID)

semantic features. In this paper, two strategies are proposed to improve the

generalization ability of the model to OOD data. Firstly, the original samples

are replaced by features extracted from multiple “semantic perspectives” to

obtain a comprehensive semantics of the samples; Second, the mean and

variance of the batch samples are perturbed in the inference stage to improve

the sensitivity of the model to the OOD data. The method we propose does

not employ OOD samples, uses no pre-trained models in training, and does

not require pre-processing of samples during inference. Experimental results

show that our method enhances the semantic representation of ID data,

surpasses state-of-the-art detection results on the OOD benchmark dataset,

and significantly improves the performance of the model in detecting the

SMOOD data.

KEYWORDS

out-of-distribution detection, semantic enhancement, label smoothing, multi-

perspective, deep learning

1. Introduction

Deep neural networks have been very successful in identifying images, but when

faced with out-of-distribution (OOD) data, they will be identified as in-distribution (ID)

data with high confidence (Hendrycks and Gimpel, 2017). This is limiting the application

of deep neural networks in high safety and reliability areas such as medical diagnosis

(Fernando et al., 2021) and autonomous driving (Wang et al., 2015). To better study

and improve the generalization performance of deep neural networks on OOD data,

Hendrycks and Gimpel (2017) formalized the OOD detection task. The task demands

that the model is able to first distinguish whether the input data is ID data or not during

the inference process, and then classify the ID data accurately.

The mainstream research suggests that the performance of OOD detection depends

on the features extracted by the model. In addition to using the conventional cross-

entropy loss to optimize the extracted features (Hendrycks and Gimpel, 2017; Lee et al.,

2018; Liang et al., 2018; Hsu et al., 2020; Sastry and Oore, 2020; Lin et al., 2021),

another part of the work hopes to improve the OOD generalization performance of

the features, such as constraining the distribution of the data in the feature space
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(Dhamija et al., 2018; Techapanurak and Okatani, 2019; Hassen

and Chan, 2020; Zaeemzadeh et al., 2021), extra use of OODdata

(Hendrycks et al., 2019a; Papadopoulos et al., 2021), and the use

of and multi-task learning (Hendrycks et al., 2019b; Perera et al.,

2020; Winkens et al., 2020).

The existing state-of-the-art method (Hsu et al., 2020; Sastry

and Oore, 2020) shows excellent performance on the OOD

benchmark dataset, but still shows poor performance on the

same manifold OOD (SMOOD) data (Liang et al., 2018), i.e.,

with a small maximum mean distance (MMD) distance from

the ID data. The essential reason is that the model contains

only limited semantic information in the extracted features, the

supervised learning-based feature extraction approach focuses

only on those features that minimize the loss during the learning

process (Winkens et al., 2020). In this process, the semantic

information contained in the extracted features is only “partial”

and “one-sided” with respect to the original sample. On the other

hand, the model learns using both foreground and background

information of the sample, so the extracted features also contain

both semantic and non-semantic information of the sample.

For example, non-semantic information such as sample mean

and variance are easily found in the SMOOD data. When the

model encounters the above SMOOD data without learning

enough effective semantic discrimination information, it is easy

to misclassify the OOD data as ID data.

The key to solving the above problem is that the

model extracts more essential semantics to distinguish features

from similar semantics during the learning process. In the

popular supervised learning framework, the features learned

by the model depend on the supervised information given

with the prior. For the same data, the model learns under

different supervised information and it will extract features

with differences. If these various supervised information

are representations of the same semantics, then the model

will capture representations of the same semantics under

different supervised “perspectives.” For example, in a binary

classification problem, the label description of the positive

sample can be [1, 0] or [0.9, 0.1]. Usually, both labels

can yield satisfactory models, indicating the representation

of the positive sample semantics under different supervised

information “perspectives,” respectively. For ease of reference,

the term “semantic perspective” is used later to denote a

supervisory information representation of semantics.

Inspired by the above “semantic perspective,” we found that

we can learn the same data from several different “perspectives”

to obtain a more “comprehensive” semantic feature. Based

on this motivation, we propose a semantic enhancement

approach for OOD data detection, using features from multiple

“semantic perspectives” to enhance the representation of

semantic information in samples. The overall framework is

shown in Figure 1. The model consists of three parts: feature

extractors, multi-perspectives feature learner, and classifier. The

training process of the model is divided into two stages. In

the first stage, the feature extractor is trained, and the model

is optimized for each given “semantic perspective,” and the

optimized feature extractor is able to learn the features of each

corresponding “semantic perspective.” In the second stage, the

parameters of the feature extractor are not changed, the multi-

view feature learner and classifier are trained. In this stage,

instead of using the original samples, the “multi-perspective”

features obtained by the feature extractor are directly used

instead of the original samples.

In addition to semantic enhancement through multiple

“semantic perspectives,” we also propose the self perturbing

batch normalization (SPBN) method for open set scenarios.

Perturbation is a common technique (Lee et al., 2018; Liang

et al., 2018; Hsu et al., 2020) in OOD testing and is usually

applied only in the inference phase of the model. Specifically,

the test sample xi needs to be preprocessed before inference,

and the preprocessed x̃i = xi − ε sign[∇xi log(ŷi,h)], where

ŷi,h is the predicted output of sample xi with respect to the hth

class and ∇xi log(ŷi,h) is the gradient of log(ŷi,h) with respect

to xi, ε is a hyperparameter that represents the magnitude

of the perturbation. Input perturbation of test samples in the

inference phase of the model can change the output of the

model, and the two types of test data, ID and OOD, do not

change to the same extent after perturbation. Using this different

level of change can improve the model’s ability to detect OOD

data. In addition to preprocessing the input samples to change

the output, the output can also be changed by altering the

parameters in the propagation process. The parameters of the

batch normalization (BN) layer (Ioffe and Szegedy, 2015) record

statistical information about the distribution of ID data that is

naturally different from the OOD data distribution. Inspired

by this, we propose the SPBN method to influence the output

by changing the parameters (i.e., mean and variance) of the

BN layer. Specifically, while standard BN uses fixed mean and

variance during inference, SPBN uses the mean and variance of

the current batch sample. In contrast to the previous approach

where a one-time perturbation was performed at the input, our

approach perturbs at all layers of the network. In our approach,

the statistical values of the ID test batch data differ less from the

fixed statistical values used in the standard BN and are subject to

less perturbation than the OODdata. SPBN is applied only in the

feature learner, which on the one hand still maintains accurate

prediction of the ID data; on the other hand, it increases the

difference in prediction results between the ID and OOD data.

We validate the proposed method on OOD datasets of

different scales and types, respectively, and the experimental

results show that our method not only obtains more

comprehensive semantic features, but also effectively enhances

the ability of the model to detect OOD and SMOOD data. The

contributions of this paper are mainly in two aspects:

• A semantic enhancement method based on multiple

“semantic perspectives” is proposed to effectively improve
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FIGURE 1

Semantic enhanced OOD detection model. The model consists of three parts: a feature extractor, a feature learner, and a classifier. The feature

extractor extracts the features f = {f1, f2, ..., fm} of the input samples with the given m “semantic perspectives” p = {p1,p2, ...,pm}, and the feature

learner fuses the m features in f to obtain the richer and more comprehensive features F, and the classifier obtains prediction results based on

the features F.

the generalization performance of the model on OOD data.

Compared with existing methods, the proposed approach

is able to learn more “comprehensive” semantic features,

which not only improves the accuracy of ID data, but

also enhances the detection of OOD and SMOOD data,

and exceeds the state-of-the-art performance on OOD

benchmark datasets.

• We propose SPBN method for open set scenarios, which

can be applied to OOD detection to maintain the semantics

of the data better while improving the efficiency of

detecting OOD data. SPBN method exploits the statistical

differences between ID and OOD data to improve the

performance of the model and does not require prior

acquisition of the gradient of the test data or careful

selection of the hyperparameters of the perturbation

magnitude in the process of use.

2. Related work

Hendrycks proposed an Area Under the Receiver Operating

Characteristic curve (AUROC) based performance metric and

benchmark dataset for the OOD detection task, and using the

maximum discriminant ID of the prediction probability of deep

neural networks (Hendrycks and Gimpel, 2017). Thereafter,

Liang et al. (2018) proposed a higher standard evaluation

metric True Positive Rate of 95% (TPR95) and proposed

the ODIN (Out-of-DIstribution detector for Neural networks)

method. ODIN uses two strategies, temperature scaling and

sample perturbation, to enhance the detection performance

of the model for OOD samples during the inference process.

Temperature scaling reduces the effect of the softmax function

on sample overconfidence, and sample perturbation can further

increase the difference between the prediction results of ID

samples and OOD samples. However, ODIN requires OOD

data as the validation set when calculating the magnitude

hyperparameters of the perturbation. Hsu et al. (2020) reduced

this requirement in the method GODIN (Generalized ODIN)

by using only the ID dataset in the search for the perturbation

magnitude, i.e., the same perturbation magnitude is used for

all detection data (both ID and OOD data). GODIN also

automatically learns the parameters of temperature scaling,

which greatly improves the performance of the model on the

benchmark dataset.

Another group of approaches motivates the network to

learn more robust features from a feature learning perspective.

Dhamija et al. (2018) starts from the motivation of separating ID

and OOD data by concentrating the OOD data near the origin

of the feature space and constraining the ID data away from

the central origin to maintain class spacing. Hassen and Chan

(2020) proposed two loss (intra spread—inter separation loss)

based on Fisher Criteria wishing to increase class spacing and

reduce intra-class spacing, by modifying the objective function

to achieve the constraint of features; Techapanurak and Okatani

(2019) used cos similarity instead of inner product as the

basis of data categories, and reduced the influence of softmax

function by compressing the range of logits. Zaeemzadeh et al.

(2021) discriminates OOD data by mapping ID data to a union

of one-dimensional space. To allow features to express richer
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information about ID data, Hendrycks et al. (2019a) and Perera

et al. (2020) combine self-supervised learning into the training

process of the model.

In addition to using the maximum of the predicted

probabilities, some methods use proprietary OOD detectors to

distinguish OOD samples. The detectors are usually trained to

obtain them based on the features extracted by the classifier.

Lee et al. (2018) uses Gaussian discriminant analysis to model

the class of features in each layer of the network to obtain

the martingale distance for each test sample, and uses the

martingale distance to detect OOD data. Similarly, Winkens

et al. (2020) uses the gram metric instead of the Mahalanobis

distance and shows excellent performance in the detection of

far OOD data types. Lin et al. (2021) compute and detect OOD

data by selecting some of the network layer features based on

OOD data types. DeVries and Taylor (2018) uses a detector

to learn the confidence of the classifier prediction results, the

detector shares features with the classifier and trains and learns

simultaneously, and finally detects the OOD samples based on

the results of the confidence; similar to the this, Corbière et al.

(2019) uses an independent network to directly predict the

maximum probability value of the test samples. Another line

of research assumes that auxiliary data sets are available during

the training process. For example, Hendrycks et al. (2019a) let

classifiers learn OOD example samples before generalizing to

other types of OOD data; Mohseni et al. (2020) uses auxiliary

data to train OODdetectors; andmore recently, Fort et al. (2021)

and Koner et al. (2021) fine-tune and improve on the pre-trained

Transtormer model.

3. Approach

3.1. Problem statement

Given the training set Dtr = {(xtri , y
tr
i )}

N
i=1 and test set Xte,

where Xtr = {xtri }
N
i=1 is sampled from the distribution Pin,

ytri ∈ {1, 2, . . .,C} is the label fromC categories corresponding to

xtri , X
te is sampled from a mixture of Pin and Pout distributions,

Pout 6= Pin. The goal of OOD detection is to use Dtr to obtain

a model f and f to determine whether xtej ∈ Xte comes from

Pin or Pout , and for xtej ∈ Pin, the label ŷj of xtej will be

further predicted.

3.2. Training

The method in this paper is shown in Figure 1. The training

process is divided into two stages: the first stage trains the feature

extractor, which learns features from several different “semantic

perspectives,” and the parameters of the feature extractor are

not changed after training. The second stage trains the multi-

perspective feature learner and classifier, in which the original

samples are not used, but the “multi-perspective” features

obtained by the feature extractor are directly used instead of the

original samples. Section 3.2.1 provides details on how to obtain

supervised information under different “semantic perspectives”

by using label smoothing regularization, and the corresponding

models; Section 3.2.2 presents the fusion network with multiple

features and the training process.

3.2.1. Feature extraction

In this stage, the model is required to learn features from

several different “semantic perspectives,” and the greater the

difference in “semantic perspectives,” the richer the semantics

can be learned. In supervised learning, labels are usually used

to express the semantic information of samples, and different

expressions of labels in the objective function represent different

“semantic perspectives.” Since samples from different classes

tend to have similar visual elements to each other, we introduce

the between-class smoothing assumption, assuming that the

samples are in high-density regions of the true class and also

in low-density regions of other classes with uniform probability.

According to the assumption, the smoothed one-hot labels can

be used as the representation of the labels under different

“semantic perspectives.” Different smoothing prior parameters

represent different “semantic perspectives,” and the smoothing

coefficients are sampled uniformly from [0, 0.5] to ensure the

validity and correctness of the “perspectives.” By this way, on the

one hand, these smoothing coefficients do not exceed 0.5, so that

the probability of the correct class is greater than the sum of the

probabilities of all other classes, ensuring the correctness of the

“perspective”; On the other hand, the use of uniform sampling

allows the smoothing coefficients to be spaced as far apart as

possible, increasing the difference in “perspective.”

Smoothing of labels is a model regularization technique that

can effectively prevent model overfitting (Szegedy et al., 2016)

and calibrate the confidence of the model predictions (Müller

et al., 2019). Label smoothing requires specifying the smoothing

factor ǫ and the prior distribution u(h) of the labels in advance.

The prior u(h) generally uses a uniform distribution in practice,

and the smoothed labels (ytri )
′ are as follows (1),

(ytri )
′ = (1− ǫ)δh,ytri

+ ǫ/C (1)

where δh,ytri
is the Dirac delta, which equals 1 for h = ytri

and 0 for h 6= ytri . The probability of the hth class of the

smoothed labels is no longer 1, and the probabilities of the

remaining classes are not 0. With smoothed labels, the model

does not need to overlearn semantically irrelevant features in the

process of fitting the labels in order to obtain limit values like

1 or 0. Thus, the smoothed labels can avoid model overfitting.

However, unsuitable smoothing coefficients may also lead to

poorer performance of the model. Getting the appropriate

smoothing coefficients is still an open research problem.
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Cross entropy is a metric used to measure the difference

in distribution. Larger values represent larger differences in

distribution and vice versa. In neural networks, cross entropy

is often used to measure the discrepancy between predicted

and labeled true values, and this discrepancy is used as a loss

function to guide the training of the network. Moreover, using

the cross-entropy loss minimization objective function, small

batch gradient descent can be used to optimize the parameters

and improve the convergence speed. For the smoothed label

y′i = (yi,1, yi,2, . . ., yi,C) and the output prediction ŷi =

(ŷi,1, ŷi,2, ..., ŷi,C) the cross-entropy loss is given by (2):

Lce(y
′
i, ŷi) = −

C
∑

h=1

y′i,h log(ŷi,h). (2)

3.2.2. Feature learning and classification

The feature learning stage uses a multilayer perceptron

to fuse features f = {f1, f2, ..., fm} under the “perspective”

to produce a global feature F with “comprehensive” semantic

information, and finally use F for classification. Inmeasuring the

similarity between features F and class h, our approach discards

the conventional inner product and uses a more compact cosin

similarity, the calculation of logits zh as shown in Equation (3):

zh =
wT
h
F

||wT
h
|| · ||F||

(3)

where wh is the weight corresponding to the class h. Compared

with the conventional use of inner product as logits, Equation

(3) normalizes the logits. The normalized logits are constrained

to values between (0, 1), preventing the network from rapidly

increasing the weights to reduce losses and falling into local

optimal points. Techapanurak and Okatani (2019) and Hsu

et al. (2020) shown that this regularization-like mechanism can

avoid the overfitting of the model to ID data and enhance the

generalization of the model to OOD data.

In order to make the feature learner pay more attention

to the features under good “perspectives,” we add an attention

mechanism to feature learning, i.e., first mapping the features f

linearly to an m-dimensional vector α, then using the softmax

function to normalize α to obtain the attention weights under

each “perspective,” and using the weighted features to calculate

F. Finally, a linear reconstruction regular term is added to the

feature learner in our method, requiring F to be able to linearly

reconstruct f , which is used to balance the undesirable effects

of the nonlinear transformation. The loss corresponding to the

reconstruction regular term is calculated using the l2-loss.

Thus, the total loss of the feature learner is expressed as (4):

L = Lce(y, y
′)+ λLrec(f , f

′) (4)

where y is the one-hot label of the sample, y′ is the

prediction result of the sample, f is the feature under different

“perspectives,” f ′ is the reconstructed feature. Lce is the cross-

entropy loss function, Calculated with Equation (2). Lrec is the

l2 loss function, Lrec =
∑

i(fi − f ′i )
2. λ is the balance factor

to balance the importance of the two objectives. Increasing

the weight of λ means that more information is needed to

maintain the original feature f. However, this may destroy the

model’s learning of the ID data, and a smaller λ is chosen in

our approach.

3.3. Inference

The model combines SPBN and temperature scaling in the

inference phase to obtain the predicted probability of the test

data, and then the entropy of the predicted probability is used as

the OOD detection score. Both SPBN and temperature scaling

are applied here only in the feature learner and classifier.

3.3.1. Self perturbation batch normalization

Our proposed SPBN normalizes the input data in the

inference process similar to the training process of standard BN.

Batch normalization as a regularization technique with state-of-

the-art network structure is widely used (He et al., 2016; Huang

et al., 2017). It can accelerate the training process of deep neural

networks by rescaling the mean and variance of activation values

in the BN layer (Ioffe and Szegedy, 2015). The rescaling process

consists of two steps: normalization, and scaling. The standard

BN is normalized in the training phase using the statistical values

of the current input data. Still, instead of using the existing data,

the fixed statistical values estimated from the training data are

used in the inference phase. The standard BN assumes that both

the test data and the training data belong to the ID distribution,

while our task encounters OOD data that do not belong to the

ID distribution. Our approach exploits this by no longer using

fixed statistical values µ̂, σ̂ to normalize the input data during

inference, but rather using the statistical values µB, σB of the

current data. The differences between the statistical values of the

current data are used to perturb the predictions.

Given the d-dimensional input data xi = (x
(1)
i , x

(2)
i , ..., x

(d)
i ),

normalization is applied to xi using the current batch of data

XB = {xi}
n
i=1 by using (5),

x̂i =
xi − µB
√

σ 2
B + ǫ

(5)

where µB = 1
n

∑n
i=1 xi, σ

2
B = 1

n

∑n
i=1(xi − µB)

2. The second

step scales the normalized activation values using the parameters

in the BN layer, which are learned during the training process

and are not changed during the inference process. Using the

trained BN layer parameters γ = [γ (1), γ (2), ..., γ (d)] and β =

[β(1),β(2), ...,β(d)] are scaled and biased for x̃ to obtain the
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corrected value x̃i, which is calculated as (6)

x̃
(k)
i = γ (k)x̂

(k)
i + β(k), k = {1, 2, ..., d} (6)

3.3.2. Temperature scaling

Temperature scaling changes the predicted probability

distribution of the model through the temperature parameter

T (Hinton et al., 2015). It not only corrects the predicted

probability distribution of the model output (Guo et al., 2017),

but also alleviates the problem of overconfidence of the model

(Liang et al., 2018). Logits zi,h of sample xi with respect to

category h and predicted probability ŷi,h are calculated as shown

in Equation (7)

ŷi,h =
exp (zi,h/T)

∑C
h=1 exp (zi,h/T)

(7)

When T ≥ 1, the probability vector becomes smooth. Further

studies (Liang et al., 2018) found that larger T is used (e.g.,

T ≥1,000), higher order differences between logits components

are masked out, which affects the OOD detection performance

of the model. In this paper, we use temperature scaling to further

amplify the difference between ID and OOD data.

4. Experiments

In this section, we validate the effectiveness of the

MPSE method on semantic enhancement and OOD detection

performance using four experiments. Section 4.1 visualizes

the OOD generalization capability of multiple “semantic

perspectives” using a toy dataset; Section 4.2 gives the metrics

and comparison methods for the OOD detection task; Section

4.3 illustrates the effectiveness of the MPSE approach in

semantic enhancement using the MNIST dataset; Section 4.4

conducts experiments on the OOD benchmark dataset to verify

the performance of the model to detect OOD and SMOOD data,

and ablation experiments; Section 4.5 verifies the performance

of MPSE on larger size images on the Oxford flowers102 dataset.

Our approach uses the corresponding basic network for

training and learning in different experiments based on different

datasets, but all use the same fusion network. The fusion network

uses a hidden layer of perceptron as the backbone network.

The hidden layer dimension is set to 1,000, and 100 epochs are

trained. The optimizer uses the SGD algorithm, and the initial

learning rate is 0.1, which is reduced to 0.01 and 0.001 after

epochs*0.5 and epochs*0.75, respectively, and the Dropout is

set to 0. Our method sets the number of semantic perspectives

to five in training and the coefficient of reconstruction loss to

0.01. Since our method uses cos similarity to calculate logits, the

temperature coefficient is set to 25 to avoid numerical problems.

4.1. Toy dataset experiment

Our method was validated on a ring-shaped toy dataset,

as shown in Figure 2. We can observe that the models based

on a single “semantic view” predict the inter-class boundaries

as low-confidence regions, i.e., all spaces outside the outer

ring data are considered as high-confidence ID data. Using

our method, we can clearly observe that the confidence level

of the inner data of the two loops is significantly higher

than that of the outer region, indicating that our method can

better characterize the overall boundaries of ID data and make

more accurate predictions for OOD samples after incorporating

multiple “semantic perspectives.”

4.2. Metrics and comparison methods

4.2.1. Performance metrics

The two most commonly used metrics in OOD detection

tasks are AUROC and TNR@TPR95, which represent a better

model when they are higher. To calculate the AUROC of the

model, the first step is to consider the identification of ID

and OOD samples as a binary classification problem, and then

calculate the True Positive Rate (TPR) and False Positive Rate

(FPR) under each threshold, respectively, and lastly plot the

curve and calculate the area under the curve based on the

values of TPR and FPR. TNR@TPR95 calculates the value of 1-

FPR when TPR = 95% for the ID dataset, which indicates the

identification rate of the OOD dataset when the identification

rate of the ID dataset reaches 95%.

4.2.2. Comparison methods

The comparison methods include Baseline (Hendrycks

and Gimpel, 2017), ODIN (Liang et al., 2018), and Deconf-

c in GODIN (Hsu et al., 2020), where ODIN and Deconf-c

use the methods in GODIN to perturb the input test data,

noted as ODIN* and Deconf-c*. Our methods include Multi-

Perspective Semantic Enhancement (MPSE), MPSE-attn, and

MPSE-both, MPSE-attn adds the attention mechanism and

MPSE-both incorporates reconstruction regular term with the

attention mechanism.

4.3. Semantic enhancement experiments

To verify the effectiveness of our method in extracting

and maintaining semantic information, this experiment divides

OOD data into two types: OOD data with the same semantics

as ID data, and the rest as the other type. The first type of data

has different distribution from the ID data, but the semantics is

the same, and they belong to the same class, which we refer to
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FIGURE 2

The e�ect of this method with the toy dataset. This toy dataset has two dimensions, represented by red and blue dots in a ring-like distribution

with inconsistent diameters. The two rings have a diameter ratio of 0.4 and are generated using a Gaussian noise of 0.2. A gradient color from

black to white is used to represent the maximum value predicted by the model for that coordinate point, with darker colors representing larger

values. The first three subplots are models obtained under di�erent “semantic perspectives,” which are trained using smoothing labels with

smoothing coe�cients of 0.0, 0.1, and 0.2, respectively. The rightmost subplot shows the model learned using our method without SPBN for the

three “semantic perspectives.” Obviously, our method more reasonably discriminates the region outside the two circles as a low confidence

region.

as the same class OOD (SCOOD) data. In contrast, another type

we simply call the different class of OOD (DCOOD) data.

In this subsection, we first learn to obtain the model on

ID data (training set), and then test the performance of the

model using ID data (test set), SCOOD data, and DCOOD data.

The test consists of three parts: (1) the ability of the model

to distinguish ID data from OOD data (both SCOOD and

DCOOD); (2) the ability of the model to distinguish SCOOD

from DCOOD; and (3) the classification performance of the

model on ID and SCOOD.

4.3.1. Datasets and training details

We use MNIST dataset (LeCun et al., 1998) as ID data. there

are 10 categories in MNIST, representing 0–9 10 handwritten

digits; there are 50,000 samples in training set, 5,000 samples

in each class; there are 10,000 samples in test set, 1,000 samples

in each class. Each sample is a 28*28 image of a single channel.

We use USPS dataset (Hull, 1994) as SCOOD data. USPS is

also a handwritten digit set with 0–9 classes, and the whole

dataset has 9,298 samples. Each sample is a single channel image

of 16*16, in using resize the image to 28*28 size. The rest

DCOOD data uses FashionMNIST (Xiao et al., 2017), omniglot

(Lake et al., 2015), cifar10-bw (Hendrycks and Gimpel, 2017),

and two noise datasets, Gaussian noise and uniform noise,

respectively. Each dataset is 10,000 samples, with the same size

and channels as MNIST.

In this experiment, we use Lenet as the backbone network.

Lenet was trained for 20 epochs using a batch size of 128 and a

weight decay of 0.0005 during training.

4.3.2. Experiment results and analysis

The OOD (both SCOOD and DCOOD) detection

performance results of the model are shown in Table 1. It can be

observed that (1) in the detection of SCOOD data, all methods

are able to discriminate better, indicating that USPS and MNIST

do belong to different distributions; (2) in all OOD data, our

method significantly outperforms the comparison method,

showing excellent performance in the more difficult tnr@tpr95

metric and more robust in noise detection in particular.

Table 2 shows the results of the model learned in the

ID data to distinguish between SCOOD and DCOOD types

of data. The results show that our approach is still able

to discriminate well-between the different types of OOD

data, except for the comparison approach, which fails almost

completely. It shows that learning under a single “semantic

perspective” is corrupted by a large amount of non-semantic

information; while our method learns under multiple “semantic

perspectives” and obtains more comprehensive and effective

semantic information. The results in Table 3 further confirm the

above conclusions. Although all methods were able to obtain

excellent accuracy in the test set of ID data, only our method

maintained a high accuracy in the SCOOD dataset with the same

class semantics.

4.4. OOD and SMOOD data detection
experiments

In Section 4.3, OOD data are classified into SCOOD

and DCOOD types according to semantics, This section

does not consider the semantics of OOD data and ID data,

but studies the similarity of the distribution between them.

We calculate the MMD distances between different datasets

according to the method provided in the literature (Sutherland

et al., 2016; Liang et al., 2018), and consider that OOD data

with particularly small MMD distances have similar statistical

features to ID data, and refer to such OOD data as SMOOD

data. Given two image sets V = v1, v2, ..., vm and W =

w1,w2, ...,wm, the MMD distance is calculated as shown in
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TABLE 1 Performance of the di�erent methods in OOD (both SCOOD and DCOOD) scenarios, with the best results shown in bold.

ID OOD AUROC TNR@TPR95

Baseline/ODIN*/Deconf-C*/ MPSE/ MPSE-attn/ MPSE-both

MNIST USPS 89.2/92.9/95.0/99.1/99.3/98.8 62.8/66.0/72.8/98.5/99.6/96.6

Fashion-MNIST 94.8/96.8/97.4/99.9/99.9/99.9 76.9/83.4/88.8/100./100./99.9

Omniglot 91.3/93.7/93.5/100./100./100. 51.2/61.0/71.8/100./100./100.

Cifar10-bw 92.2/93.1/99.6/100./100./100. 70.6/70.9/98.9/100./100./100.

Uniform 78.0/78.6/75.5/100./100./100. 19.0/1.10/27.9/100./100./100.

Gaussian 28.5/43.4/66.9/100./100./100. 0.00/0.00/0.30/100./100./100.

All results are averaged after 3 runs using the model.

TABLE 2 The model was trained using only the ID dataset (MNIST) to discriminate the performance of SCOOD against DCOOD data, and the best

results are shown in bold.

SCOOD DCOOD AUROC TNR@TPR95

Baseline/ODIN*/Deconf-C*/ MPSE/ MPSE-attn/ MPSE-both

USPS Fashion-MNIST 59.6/62.3/62.4/84.6/84.2/86.2 6.20/4.50/8.60/38.4/37.0/40.8

Omniglot 43.2/43.2/46.4/97.6/98.1/97.9 0.50/0.20/6.20/85.2/88.2/87.1

Cifar10-bw 56.7/59.3/84.0/95.0/95.2/94.9 4.10/4.10/29.9/72.7/74.0/72.3

Uniform 22.4/14.8/18.9/99.4/99.6/99.6 0.00/0.00/0.00/97.5/98.5/98.7

Gaussian 4.30/4.50/3.40/99.7/99.9/99.9 0.00/0.00/0.00/99.2/99.7/99.7

All results are averaged after 3 runs using the model.

TABLE 3 Classification accuracy of the model after training using the ID dataset (MNIST) on ID and SCOOD data, with the best results shown in bold.

TestData Accuracy

Baseline ODIN* Deconf-C* MPSE MPSE-attn MPSE-both

MNIST (ID) 99.2 99.2 99.3 99.5 99.5 99.5

USPS (SCOOD) 61.5 61.5 48.3 89.1 88.2 89.4

All results are averaged after 3 runs using the model.

Equation (8)

M̂MD
2
(V ,W) =

1
(

m
2

)

∑

i 6=j

k(vi, vj)+
1

(

m
2

)

∑

i 6=j

k(wi,wj)

−
2

(

m
2

)

∑

i 6=j

k(vi,wj) (8)

where k(·, ·) is the Gaussian RBF kernel function, i.e.,

k(x, x′) = exp

(

−
‖x−x′‖22
2σ 2

)

. 2σ 2 uses the median of

the set V ∪ W of all Eulerian distances. In the next

experiments, we first study the performance of the

model on the OOD benchmark dataset, and then on the

SMOOD data.

4.4.1. Datasets and training details

In this experiment, following the setup of Hsu et al.

(2020), Cifar10/Cifar100 was used for the ID data, and the

OOD data consisted of eight datasets, namely Imagenet(crop),

Imagenet(resize), LSUN(crop), LSUN(resize), iSUN, Gussian

Noise, Uniform Noise, and SVHN datasets. Cifar10/100 has

10/100 classes, 5,000/500 samples per class in the training set,

and 1,000/100 samples per class in the test set. Ten thousand

samples in the OOD data, except for iSUN, which has only 8,925

samples. All images are 32*32*3 in size. Our method was applied

to two types of networks, ResNet and DenseNet. ResNet, with a

depth of 34, was trained for 200 epochs using a batch size of 128

and a weight decay of 0.0005 during training decay. The depth of

DenseNet is set to 100 layers, the growth rate is 12, the training

process batch size is 64, the weight decay is set to 0.0001, and 300

epochs are trained.

4.4.2. OOD benchmark results and analysis

Results for the comparison methods Baseline, ODIN*,

and Deconf-c* are from Hsu et al. (2020), the results of
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our method use the mean value of the model after 3 runs.

Table 4, which shows the average values on the eight OOD

datasets. The data in Table 4 show that our method significantly

outperforms the other methods, substantially outperforming the

compared methods on both the cifar10 and cifar100 datasets.

It should be noted that Deconf-c* uses sample perturbation

for preprocessing, and our method also outperforms the

Deconf-c* method in terms of the average value of OOD

data detection metrics across the board without preprocessing.

In addition, our algorithm significantly outperforms the

comparison method in terms of classification accuracy of ID

data because it learns the semantic information of ID data

more effectively and comprehensively. It can also be observed

from Table 4 that the best ID accuracy is obtained using only

nonlinear transformations in the feature learner, but the OOD

generalization performance on the Cifar10 dataset is not as good

as the model with the addition of the attention mechanism

and reconstructed regular terms. It is indicated that it helps to

maintain the valid semantic information learned by the model

with rich samples and avoid overfitting of the model to ID

non-semantic information.

4.4.3. SMOOD results and analysis

In this experiment, we focus on verifying the performance

of our method for detecting SMOOD data. Table 5 shows

the MMD distances between the different data sets, and the

MMD distances are calculated using Equation (8). Obviously,

the MMD distance between the two datasets Cifar10 and

Cifar100 is much smaller than the other datasets. Here they

are used mutually as SMOOD data to test the performance

of the model. SMOOD data has similar semantics to ID data,

and this similar semantic information can interfere with the

model’s detection of OOD data, thus the detection of near

OOD data is more challenging in the OOD detection task.

The results are shown in Table 6, all results are the mean

values after 3 runs using the model. We found that the

detection performance of ODIN*, Deconf-c* methods did not

improve compared to baseline on SMOOD data, and even

decreased, indicating that the features learned by the model

under a single “perspective” have limited semantic information,

which is further corrupted by the sample perturbation and

feature statistics methods. Our method greatly outperforms

the comparison method on both ResNet and DenseNet,

TABLE 4 Performance of di�erent methods on OOD benchmark dataset with semantic extraction using ResNet/DenseNet as the bone network,

best results are shown in bold.

ID NET AUROC TNR@TPR95 ID Accuracy

Baseline/ODIN*/Deconf-C*/ MPSE/ MPSE-attn/ MPSE-both

Cifar10 ResNet 89.3/83.6/97.8/98.7/98.9/99.0 49.9/60.0/89.9/91.6/91.9/94.2 95.2/95.2/95.1/95.8/95.6/95.2

DenseNet 92.6/92.7/99.2/98.9/99.0/99.3 50.9/64.8/96.2/92.2/92.4/96.5 95.2/95.2/95.0/95.9/95.8/95.7

Cifar100 ResNet 72.4/86.7/96.2/98.7/98.4/96.7 15.6/46.0/77.8/93.2/90.5/82.9 78.5/78.5/75.8/79.1/77.6/77.3

DenseNet 72.5/86.9/98.0/98.6/98.7/89.2 17.3/53.2/89.9/95.1/93.2/59.8 77.0/77.0/75.9/80.7/78.7/73.0

Results for the AUROC and TNR@TPR95 metrics were averaged from the eight OOD datasets, and accuracy was obtained from the test set of ID data. All results are the mean values after

3 runs using the model.

TABLE 5 The maximummean distance between ID data and di�erent OOD data, the smallest distance is shown using bold and “–” represents a

possible case of semantic overlap and is therefore not computed.

Img(c) Img(r) LSUN(c) LSUN(r) iSUN Gaussian Uniform SVHN Cifar100 Cifar10

Cifar10 14.0 0.65 14.9 1.00 0.63 6.72 1.98 2.54 0.14 –

Cifar100 13.6 0.68 14.4 0.88 0.60 5.90 1.89 2.88 – 0.15

TABLE 6 Performance of di�erent methods on SMOOD data with semantic extraction using ResNet as the bone network, best results are shown in

bold.

ID OOD NET AUROC TNR@TPR95

Baseline/ODIN*/Deconf-C*/ MPSE/ MPSE-attn/ MPSE-both

Cifar10 Cifar100 ResNet 87.5/71.9/87.3/90.2/88.5/92.9 37.0/25.6/49.2/54.9/51.5/52.8

DenseNet 89.1/74.7/85.3/91.3/92.3/93.8 39.1/30.3/39.4/55.3/54.3/57.4

Cifar100 Cifar10 ResNet 75.7/72.3/73.5/92.9/92.7/84.9 16.3/14.2/16.3/51.0/51.1/23.9

DenseNet 77.2/64.2/73.2/88.7/91.2/66.3 18.6/9.41/17.4/52.7/47.4/17.2

All results are the mean values after 3 runs using the model.
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FIGURE 3

Regarding the e�ect of three parameters on the model performance: the number of “semantic views,” and the temperature scaling coe�cient.

The ID and OOD data used in this experiment correspond to Cifar100 and Cifar10, and the skeleton network for feature extraction is ResNet.

(Left) Selection of the number of “semantic perspectives.” (Right) E�ect of di�erent temperature scaling coe�cients on the model.

FIGURE 4

The e�ects of SPBN, temperature scaling SMOOD data are demonstrated, using both TNR@TPR95 and AUROC metrics. The feature extractor is

trained using ResNet as the bone network, using the method proposed in this paper. The ID, OOD datasets for training and testing the model

use Cifar100 and Cifar10, respectively.

except for the version that adds refactored regular terms.

The reconstruction regular term has a positive impact on

Cifar10, showing the best detection performance, however, a

negative impact is observed on Cifar100. This is due to the

limited accuracy of the Cifar100’s feature extractor itself, the

extracted features do not accurately represent the semantic

information of the ID data, and the reconstruction regular

term hinders the feature learner from further optimizing

to learn more accurate semantic information. The overall

results show that our method learns from multiple “semantic

perspectives” and the features extracted by the model contain

richer discriminative information, which helps the model to

detect SMOOD data.

4.4.4. Parameter selection

This experiment verifies the impact of different numbers

of “semantic perspectives” and temperature scaling coefficient,

using the more difficult to detect SMOOD data for ID and OOD

data, corresponding to Cifar100 and Cifar10, and ResNet as the

skeleton network for feature extraction.

As you can see from Figure 3 on the left, the number

of “semantic perspectives” increases, the accuracy of ID data,

the AUROC metric of OOD data and the TNR@TPR95

metric improve, but the improvement becomes slower as the

number increases. We believe that the number of perspectives

set to 5 is sufficient to demonstrate the effectiveness of

the method.
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TABLE 7 Performance of di�erent methods on large size image data (Flowers90).

OOD MMD AUROC TNR@TPR95

Baseline/ODIN*/Deconf-C*/MPSE/MPSE-attn/MPSE-both

CUB200-2011 5.85 83.7/80.9/94.4/86.6/81.9/87.2 31.1/42.8/70.4/38.2/36.0/43.8

Stanford Car 6.69 84.2/82.8/91.1/95.2/94.4/96.5 28.4/29.6/48.3/74.7/74.5/80.3

Gaussian 9.30 49.0/3.80/58.9/99.9/100./99.9 0.00/0.00/0.00/99.9/100./99.9

Uniform 7.09 77.3/7.70/67.7/100./100./99.9 0.00/0.00/0.00/100./100./99.7

Flowers12 0.71 78.8/66.9/73.0/80.9/79.3/83.5 17.5/8.60/9.50/22.1/25.0/27.3

Resnet18 is used as the backbone network. Best results are shown in bold, all results are the mean values after 3 runs using the model.

In the Figure 3 on the right, a slight temperature scaling

has some improvement effect, but a slightly larger scaling factor

leads to a decrease in performance. It is the number of categories

that are too large (100) that causes numerical problems when

calculating entropy.

4.4.5. Ablation study

Our method applies both SPBN and temperature scaling

techniques in the inference. In this experiment ResNet is

used as the feature extraction network, and Cifar100 and

Cifar10 are used for ID and OOD data, respectively, to study

their effects on the model. Figure 4 shows the impact caused

by different inference tricks. Our approach outperforms the

baseline approach in all cases, using the full inference trick

to achieve the best performance on the test set. The ablation

of SPBN has a significant impact on our approach, suggesting

that multiple “semantic perspective” feature statistics play an

important role in the learning process of fused feature semantics.

The temperature scaling has a negative impact on the SMOOD

dataset when used alone, because the model uses the wrong

statistics without applying SPBN, and still improves the model

performance slightly when SPBN is applied.

4.5. Large size dataset experiment

Unlike the previous use of a small size (32*32) input image,

this section verifies the performance of the proposed method

on a larger size (224*224) input image. In the experiments, the

MMD distances of ID data and OOD data are first given, and

then reported for the two metrics AUROC and TNR@TPR95.

4.5.1. Datasets and training details

In this experiment ID data and SMOOD data were used in

the Oxford Flowers102 dataset (Nilsback and Zisserman, 2008).

This dataset has 102 categories with the number of each category

ranging from 40 to 258, for a total of 8,189 samples. The short

edge of each sample is 500 pixels. ID data used the first 90

classes, noted as Flowers90, with a total of 7,254 samples, of

which 1,000 samples were randomly divided as the test set and

the rest as the training set; SMOOD data used the last 12 classes,

Flowers12, with a total of 935 samples. The remaining OOD

data are also available in four datasets, namely the CUB200-2011

Bird dataset (Wah et al., 2011), the Stanford Car dataset (Krause

et al., 2013), Gaussian noise, and uniform noise. Each is 1,000

samples. Resnet-18 was selected as the backbone network for the

experiment, was trained for 200 epochs using a batch size of 256

and a weight decay of 0.0005 during training decay. For model

inference, a batch size of 200 is used.

4.5.2. Experiment results and analysis

First, the results in Table 7 show that the MMD distance

for flowers12 is much lower than the rest of the OOD data set,

indicating similar statistical properties to the ID data. Second,

the ODIN method obtains worse performance than the baseline

method in the absence of the OOD data tuning perturbation

magnitude parameter; while the GODIN method enhances the

performance of detecting OOD data, its performance decreases

instead when encountering SMOOD type data. Our approach

is able to further improve performance beyond the baseline

approach even in the face of SMOOD data. Finally, it is worth

mentioning that our method exhibits excellent performance

when detecting noise.

5. Conclusion

Our proposed multiple “semantic perspectives” approach is

simple to train, as it is model-irrelevant in the feature extraction

phase, and only requires a set of labels with the correct semantics

when extracting different “semantic perspectives”; and in the

feature fusion phase, it only utilizes In the feature fusion phase,

a simple perceptron network structure is utilized. Our proposed

SPBN perturbation method does not require any preprocessing

of the input images for model inference, and only utilizes the

different normalized mean values of the BN layers. However,

this also limits the scope of application of the SPBN method to

network structures containing BN layers.
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Our proposed “multi-perspective” semantic enhancement

and SPBN strategy can learn more comprehensive and accurate

semantic information from ID data, which can effectively resist

the interference of SMOOD data and improve the performance

of the model in detecting OOD data. Our method works well not

only for small size images but also for larger ones.
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