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Cable-driven continuum robots (CDCRs) can flexibly travel through narrow

space for complex workspace tasks. However, it is challenging to design

the trajectory tracking algorithm for CDCRs due to their nonlinear dynamic

behaviors and cable hysteresis characteristics. In this contribution, a model

predictive control (MPC) tracking algorithm based on quantum particle swarm

optimization (QPSO) is designed for CDCRs to realize e�ective trajectory

tracking under constraints. In order to make kinematic analysis of a CDCR,

the forward and inverse mapping among actuation space, joint space and

work space is analyzed by using the piecewise constant curvature method and

the homogeneous coordinate transformation. To improve the performance of

conventional MPC for complex tracking tasks, QPSO is adopted in the rolling

optimization of MPC for its global optimization performance, robustness

and fast convergence. Both simulation and operational experiment results

demonstrate that the designed QPSO-MPC presents high control stability

and trajectory tracking precision. Compared with MPC and particle swarm

optimization (PSO) based MPC, the tracking error of QPSO-MPC is reduced

by at least 43 and 24%, respectively.
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Introduction

The continuum robots, designed by imitating the biological characteristics of snakes

and elephant trunks, have multiple degrees of freedom (DOFs) (Guo et al., 2018; Guan

et al., 2020). In comparison with conventional industrial robots, continuum robots

are more suitable for working in the uncertain environment due to their deformable

structures. The actuation mechanism of continuum robots includes flexible fluidic

actuations (FFAs) (Garriga-Casanovas et al., 2018; Renda et al., 2020), shape memory

alloy materials (SMAs) (Yang et al., 2018; Jiang et al., 2020), electroactive polymers

(EAPs) (Chang et al., 2018; Bar-Cohen and Anderson, 2019) and cable-driven actuations

(CDAs) (Jin et al., 2018; Hamida et al., 2021). Cable-driven continuum robots (CDCRs)

are activated by changing link lengths, which make them easy to operate (Khomami and

Najafi, 2021). Compared with other continuum robots, CDCRs have many advantages

such as light weight, small moment of inertia and easy to realize variable stiffness control.
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CDCRs are supported by passive joints and elastic backbones.

By changing the lengths of the driving cables, CDCRs are able

to achieve bending, stretching, twisting, grasping and other

actions. Therefore, CDCRs are widely used in rescue operations

(Kim et al., 2020; Takahashi et al., 2021), minimally invasive

surgery (Miyasaka et al., 2015; Hwang et al., 2020), rehabilitation

applications (Zhang et al., 2020; Shi et al., 2021) and human–

robot interaction (Ma et al., 2021a,b). The trajectory tracking

is essential for CDCRs to realize various tasks. However, it is

challenging for CDCRs to track the desired trajectory accurately

and smoothly due to their nonlinear response, parameters

variation and non-rigid structures.

In recent years, a series of researches have emerged in

motion control and trajectory tracking of CDCRs. A bio-

inspired CDCR was designed in Li and Du (2013), where the

kinematic model derived from the piecewise constant curvature

method was used to control the motion of the robot. A

segmented constant curvature method was employed to derive

the forward and inverse kinematic model of a CDCR, which

achieved simple shape and posture control of the CDCR (Liu

et al., 2021). The kinematic model based controllers are well-

understood and easy to apply. However, uncertainties incurred

in exact kinematic calculations make kinematic-based tracking

controllers suffer from accumulative errors in performing

complex trajectory tracking tasks.

Researchers have developed adaptive trajectory tracking

methods to solve the problem of modeling errors. Wang

et al. (2020) designed an adaptive time-delay approach for

the trajectory tracking of CDCRs, which enhances robustness

of the controller. Li et al. (2020) introduced a pretension-

based adaptive robust controller, which solved the problem

of the cable slack in the process of trajectory tracking.

However, the performance of adaptive controllers depends

on a computational expensive process of updating the

controller parameters.

Neural network control method is also used to achieve

trajectory tracking by previous training samples. Tan et al. (2021)

adopted neurodynamics method to track the preset trajectory of

a CDCR. The end position control of a CDCR was implemented

based on deep reinforcement learning in Wu et al. (2020). Since

the CDCR has a nonlinear structure with continuous bending

and infinite DOFs, the training samples are difficult to obtain

and the huge amount of computation cannot meet the demand

of complex tasks.

Researchers have also focused on sliding mode control

(SMC) for its simple structure. Liu and Xia (2020) introduced

a trajectory tracking control system based on SMC for a three

DOFs CDCR. Abu et al. (2019) designed a multi-surface SMC to

solve the nonlinear problem of CDCRs. However, sliding mode

controllers produce buffeting due to the cable-related effects.

Fuzzy control calculates tracking strategy from expert

knowledge, which has a strong anti-interference ability. Ba et al.

(2021) implemented a fuzzy-logic feedback controller to track

evenly distributed points. Compared with the piecewise constant

curvature (PCC) based controller, the proposed controller

provides a solution to the problem of failing to converge. A

closed-loop fuzzy PID controller was proposed for position

control of a CDCR in Xu et al. (2018). However, the fuzzy

rules are subjective and difficult to obtain in practice due to the

complex structure of CDCRs.

The shape-changing structures of CDCRs result in control

constraints, which make it difficult to control CDCRs to follow

the desired trajectory. Moreover, the error of state estimation

and external interference can also affect the tracking precision.

This makes conventional control methods difficult to achieve

stable trajectory tracking for complex tasks. MPC is widely used

for trajectory tracking tasks thanks to its ability of dealing with

various constraints (Chu et al., 2021). The rolling optimization is

essential for MPC based controllers, which can compensate for

model uncertainties and disturbances. However, the nonlinear

and time-varying dynamic characteristics of CDCRs make the

rolling optimization design of MPC challenging. A nonlinear

MPC based on the particle swarm optimization (PSO) was

designed for a CDCR to track the expected trajectory (Amouri

et al., 2022). However, PSO cannot ensure global optimal

outputs due to the limitation of the search space of particles.

The quantum particle swarm optimization (QPSO) cancels

the particle moving direction attribute of PSO to increase

the randomness of particle motion, so the update of particle

positions is no longer constrained by the previous motion

state and the problem of local minima is also alleviated. A

QPSO based path optimization approach was used to achieve a

smooth trajectory in a complex plane with obstacles, which can

avoid local minimum and enhance the probability of searching

global optimal control points (Dian et al., 2022). In this paper,

a QPSO based MPC is designed to the trajectory tracking

control for CDCRs, where the QPSO is used in the rolling

optimization process of MPC. Compared with the traditional

rolling optimization process of MPC, the QPSO algorithm

adopts the average optimal position to improve the cooperation

between particles, which can improve global search performance

significantly. The proposed MPC controller achieves global

optimal performance, robustness and fast convergence. The

contribution of our work is that the proposed QPSO algorithm

provides optimal control outputs of MPC to compensate

the uncertainties caused by model mismatch, distortion and

interference. Simulations and experiments show that the QPSO-

MPC trajectory tracking controller has high tracking stability

and accuracy in complex tasks.

This paper is arranged as follows: Section Modeling of the

CDCR designs the structure and model of the CDCR. The

QPSO-MPC trajectory tracking controller is designed in section

QPSO-MPC trajectory tracking strategy. Section Simulation

results presents the simulation and analysis results in detail. In

Section Experiment results, three typical experiments are made

and discussed. Finally, Section Conclusions draws conclusions.
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FIGURE 1

The structure of the CDCR.

Modeling of the CDCR

Mechanical structure of the CDCR

The structure of the designed CDCR is shown in Figure 1.

The robot is composed of 6 joint disks (diameter, 4 cm; distance

between joint disks, 6 cm) and a flexible backbone made of

silicone rubber (diameter, 1 cm; length, 30 cm). Four high-

strength polyethylene fiber cables are evenly distributed at an

interval of 90◦ along the length of the backbone. Each cable is,

respectively, attached to a servo driver and terminated at the last

joint disk. The cables are pulled by the drivers to make the robot

bend at a particular angle.

Kinematic model of the CDCR

It is difficult to derive the kinematic model of the under-

actuated CDCR owing to its complex structure. Before analyzing

the kinematic model of the robot, the following key assumptions

need to be made and emphasized:

(1) Assume that the robot bends with a constant curvature.

(2) Assume that the flexible backbone of the robot

is incompressible.

(3) The robot is driven by four evenly distributed traction

cables that are also incompressible.

The CDCR is not a kind of direct driving robot, which is

controlled by the length changes of the cables. The actuation

space L is denoted as the length changes of the cables. The joint

space Θ is the set of the bending angle and the rotation angle,

which is controlled by the length changes of the cables. The work

spaceW represents the position of the end joint disk, which can

be obtained from the joint space. Hence, the kinematic models of

the robot can be derived from the mapping relationship among

L, Θ andW.

The single joint geometric model of the CDCR is shown

in Figure 2A. The routing holes of the 4 driving cables are

marked from 1 to 4. The base frame and end-effector frame of

the CDCR are established in the center of the base joint and

the end joint disk, respectively. The robot has a bending DOF

and a rotation DOF, which are expressed by bending angle θ

and rotation angle α, respectively. O is denoted as the center

of the bending curve. α is the intersection angle between plane

X0Z0O0 and plane OO0O1, and θ is the center angle of the

curvature arc.

Figure 2B provides a vertical view of the base section.

Under the premise of the assumption of constant curvature,

the radius of curvature for each driving cable is expressed

as follows:

ζ i=ζ -rcosα i (1)

where ζ stands for the radius of curvature measured from

the center of the disk, ζi stands for the bending curvature radius

of the i-th cable (i = 1, 2, 3, 4), r is the distance between the

center of the disk and the center of each routing hole, and the

rotation angle of the i-th cable is denoted as αi= α - (i - 1) π/2.

The 4 driving cables are parallel to each other. Multiplying

the bending angle θ with Equation (1), the length change of the

driving cables is derived as follows:

1 li=(ζ -ζ i)θ =r θ cosαi (2)

where 1li represents the length change of the i-th driving

cable. The relationship between joint space and work space can

be derived by applying Equation (2) to the i-th and the i+1-th

actuators and getting the quotient of them. Since αi+1 = αi -

iπ/2, the joint space variables are obtained as follows:

α =arctan(
1 li+1

1 li
) (3)

θ =
1 li
rcosα

(4)

The relative pose from the base frame to the end-effector

frame is represented by the transformation matrix T ∈ R4×4,

which is composed of the rotation matrix R ∈ R3×3 and the

position vectorQ ∈ R3. Based on the geometric analysis method,

the rotation matrix R is given by the consecutive rotations about

the Z and Y axis as follows:

R=







c2αcθ+s2α cαsαcθ−cαsα cαsθ

cαsαcθ−cαsα s2αcθ+c2α sαsθ

−cαsθ −sαsθ cθ






(5)

where c and s represent cos and sin, respectively. The

position vector Q is expressed as follows:

Q=
[

l
θ
cα (1−cθ) l

θ
sα (1−cθ) l

θ
sθ

]T
(6)
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FIGURE 2

Kinematic model of the CDCR: (A) Single joint bending geometric; (B) Vertical view of the base section.

FIGURE 3

The block diagram of the trajectory tracking controller based on QPSO-MPC.

TABLE 1 The control parameters for the three controllers.

Controller Mq Md N Nimax

QPSO-MPC 20 1 50 50

PSO-MPC 20 1 50 50

MPC 20 1 / /

Then the pose transformation matrix T is expressed

as follows:

T =

[

R Q

0 1

]

(7)

The relationship between joint space and work space can be

derived by the transformation matrix T. In order to solve the

inverse kinematic transformation from work space to joint

space, the end-effector transformation matrix T is presented

as follows:

T =











wx ex bx qx
wy ey by qy
wz ez bz qz
0 0 0 1











(8)

where w, e, b are the unit vectors corresponding to the X1,

Y1, Z1 axes, respectively, and Q is the position vector. The
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FIGURE 4

Simulation results of setpoint tracking.

bending angle θ and the rotation angle α of the robot is given

by Equation (9)-(10):

θ = arccos(bz) (9)

α = arctan(
qy

qx
) (10)

QPSO-MPC trajectory tracking
strategy

The rolling optimization process of MPC is essential because

it can repeatedly produce online control signals to compensate

system uncertainties. To reduce the tracking error of MPC,

QPSO is adopted in the rolling optimization process to improve

tracking stability and accuracy. The block diagram of the

designed tracking algorithm is shown in Figure 3, which is

mainly composed of system constraints, the error model and

the optimization process based on QPSO. According to the

inverse kinematic equation from work space to joint space, the

reference trajectory and the real trajectory are transformed into

the joint space as input to the QPSO-MPC controller. The linear

error model predicts the future position of the CDCR through

mathematical description. The optimization process based on

QPSO makes the CDCR has high control stability and tracking

precision. Compared with the rolling optimization process of

MPC, QPSO ensures an optimal feasible control value at every

moment, which makes the robot track the target trajectory more

stably and accurately.

Linear error model

The configuration state vector of the control system

is s = [x, y, z, θ , α]T, and the control vector is h =
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FIGURE 5

Simulation results of circular trajectory tracking.

[θ̇ , α̇]T. The state of the control system can be expressed

as follows:

ṡ = f (s, h) (11)

The velocity kinematics of the end-effector is described by

taking the Jacobianmatrix of the work space with respect to joint

space. By taking the derivative of Equation (6), the velocity of the

end-effector V̇ = [ẋ, ẏ, ż]Tis obtained as follows:

V̇ = J(Θ)Θ̇ =







−lcα 1−cθ−sθθ
θ2

−lsα 1−cθ
θ

−lsα 1−sθθ−cθ
θ2

−lcα cθ−1
θ

−l cθθ−sθ
θ2

0







[

θ̇

α̇

]

(12)

where J(Θ) ∈ R3×2 is the Jacobian matrix. According

to Equation (12), the state space of the system is expressed

as follows:

[

V̇

Θ̇

]

=

[

J(Θ)Θ̇

Θ̇

]

(13)

By performing Taylor series expansion of Equation (11) at

the reference trajectory sd and ignoring the higher order terms

(11) can be defined as follows:

ṡ = f (sd, hd)+
δf

δs

∣

∣

∣

∣

∣

s=sd
h=hd

(s− sd)+
δf

δh

∣

∣

∣

∣

∣

s=sd
h=hd

(h− hd) (14)

The linear error model of the robot is obtained by

subtracting Equation (11) from (14):

˙̃s = Et s̃+ Ft h̃ (15)

where ˙̃s = ṡd − ṡ, s̃ = sd − s, h̃ = hd − h,Et =

δf
δs

∣

∣

∣

∣

∣

s=sd
h=hd

, Ft =
δf
δh

∣

∣

∣

∣

∣

s=sd
h=hd

.

Prediction model

To be adopted by the MPC controller, Equation (15) is

discretized as follows:

s̃(m+ 1) = Et s̃(m)+ Ftw̃(m) (16)

In order to compute system outputs in the future time

horizon, Equation (16) is converted to the state space form

ξ (m|t) =

[

s̃(m|t)

w̃(m− 1|t)

]

, and the new state space is as follows:

ξ (m+ 1|t) = Ẽtξ (m|t)+ F̃t1w(m|t) (17)

s(m|t) = G̃tξ (m|t) (18)

where Ẽt =

[

Et Ft

0i×j Ii

]

, F̃t =

[

Ft

Ii

]

, G̃t = [Gt 0], j = 5

and i = 2, Ii =

[

1 0

0 1

]

. Thus, the predictive output is described

as follows:

Z(t) = Ψ tξ (t|t)+ Γ t1W(t) (19)
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FIGURE 6

Tracking errors of circular trajectory tracking.
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where Z(t) =









s(t + 1|t)
...

s(t +Mq|t)









,Ψ (t) =









G̃tẼt
...

G̃tẼ
Mq

t









,1W =

FIGURE 7

Experimental platform of the CDCR.









1w(t|t)
...

1w(t +Md|t)









,

Γ t =













G̃tF̃t 0 0 0

G̃tẼtF̃t G̃tF̃ 0 0
...

...
. . .

...

G̃tẼ
Mq−1
t F̃ G̃tẼ

Mq−2
t F̃t · · · G̃tẼ

Mq−Md−1
t F̃t













.

Mq and Md are the predictive domain and control

domain, respectively.

QPSO rolling optimization

Objective function and constraints

By minimizing the deviation between the reference

trajectory and the current trajectory, the CDCR achieves the

optimal trajectory that tracks the desired path. The excessive

tracking errors are penalized by the objective function.

F(m) =

Mq
∑

j=1

∥

∥

∥
s(m+ j|t)− sref (m+ j|t)

∥

∥

∥

2

B

+

Md−1
∑

j=1

∥

∥1w(m+ j|t)
∥

∥

2
C + ρε2 (20)

where B, C represent the state increment weighting matrix

and the control increment weighting matrix, respectively,m+j|t

is the state quantity of m+j step at time t, 1w is the

control increment, ρ represents weight coefficient, ε stands for

relaxation factor.

FIGURE 8

Experiment results of the cardioid trajectory tracking.
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FIGURE 9

Tracking errors of the cardioid trajectory tracking.

The control quantity and control increment constraints need

to be appended to avoid the sharp mutation of the speed when

the servo controllers pull the cables, which are defined as follows:

wmin(t +m) ≤ w(t +m) ≤ wmax(t +m) (21)

1wmin(t +m) ≤ 1w(t +m) ≤ 1wmax(t +m) (22)

wherem= 0, 1, . . . ,Md-1.

In addition, the movement of the robot should be limited

within its feasible region, which is defined as follows:

smin(t +m) ≤ s(t +m) ≤ smax(t +m) (23)

wherem= 0, 1, . . . ,Mq-1.

Therefore, the objective function is as follows:
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FIGURE 10

Experiment results of the polyline trajectory tracking.

F(ξ (t),w(t − 1),1W(t)) = 1W(t)Ht1W(t)T + Lt1W(t)T

(24)

where the positive definite matrix Ht =

[

Γ T
t BΓ t + C 0

0 ρ

]

is used to punish the control change rate. Lt =
[

2D(t)TBΓ t 0
]

,

where D(t) is the tracking error.

Sort out Equations (21)–(24), the optimization process

under constraints that need to be solve by QPSO can be

presented as follows:

min
1W(t)

1W(t)Ht1W(t)T + Lt1W(t)T

1Wmin ≤ 1Wt ≤ 1Wmax

s.t. Wmin ≤ 1Wt +Wt ≤ Wmax

Zmin ≤ Zt ≤ Zmax

(25)

QPSO algorithm

Classical PSO algorithm only allows the optimal particles to

appear in a limited space for lack of randomness, which can lead

to local minima. In contrast, QPSO allows particles to appear

anywhere in the whole space with a certain probability, which

improves the performance of optimization. Besides, there is only

one parameter of QPSO need to be tuned, which makes it easy

to be implemented. In the QPSO model, particles update their

positions in accordance with the following equations:

mbesty(t) =

N
∑

x=1

Pxy(t)

N
=





N
∑

x=1

Px1(t)

N
, . . . ,

N
∑

x=1

Pxe(t)

N



(26)

PPxy(t) = σy(t)Pxy(t)+ [1− σy(t)]Pgy(t) (27)

Ixy(t + 1) = PPxy(t)± η
∣

∣mbesty(t)− Ixy(t)
∣

∣ ln[
1

raxy(t)
] (28)

where mbest(t) represents the average of all the particles’

optimal positions, vector Px(t) = (Px1(t), Px2(t), . . . , Pxe(t))

represents the optimal individual position of particles,

vector Pg(t) = (Pg1(t), Pg2(t), . . . , Pgy(t)) represents the

global best position of particles, vector Ixy(t) = (Ix1(t),

Ix2(t), . . . , Ixe(t)) represents the particle position, PPxy(t)

represents the stochastic point between Px(t) and Pg(t), N

is the total number of particles and e is the dimension of

particles. Random parameters σ and ra(t) are distributed

uniformly in [0, 1]. η represents shrinkage and expansion

coefficient, which is used to adjust the convergence

speed of the controller. The QPSO algorithm is described

as follows:

(1) Initialize the particle swarm, where Ixy is a

random value.

(2) Calculatembest(t) by Equation (26).

(3) Calculate the loss function value F(Ixy(t+1)) according

to Equation (25). Update Px(t) and Pg(t).

(4) Update the new position Ixy(t+1) of all particles

according to Equation (28).

(5) Let t = t+1, and skip back to step 2 until the algorithm

reaches the maximum number of iterations.

By derivatizing Equation (2), the tensile speed of the driving

cables is computed as follows:

.
1li = d(

.
θ cos(Γ − α)− θ

.
ϕ sin(Γ − α)) (29)
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FIGURE 11

Tracking errors of the polyline trajectory tracking.

where
.

1li stands for the driving speed of i-th cable, Γ =

(n - 1)π/2 is the division angle.

Simulation results

A set of simulations have been made to evaluate the

effectiveness of the proposed QPSO-MPC controller in

comparison with a conventional MPC controller and a PSO-

MPC controller. For simulation studies, the initial positions

of the robot are set to the natural relaxation state, where

the initial position vector is set as [0, 0, l, 0, 0]T and the

flexible support length l is 30 cm. The parameters are set

as Table 1, where Nimax means the maximum number of

iterations. In the first simulation, the static performances of

the three controllers are verified by the setpoint trajectory

tracking. The static target position of the robot is set as [10.69,

18.52, 5.73, 5π/6, π/3]T and the sampling period is 0.05 s.

The simulation results of the three controllers are shown in

Figure 4.
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FIGURE 12

Experiment results of the spiral trajectory tracking.

It can be seen that all the three controllers track the desired

position accurately within a certain time period and make the

robot deformed into the desired shape. However, the QPSO-

MPC controller yields smaller overshoots and more accurate

tracking performance.

In the second simulation, the dynamic trajectory tracking

performance is evaluated by tracking the circular-shaped

trajectory, which is defined as follows:



























x = l(1 - cosθ)cosα/θ

y = l(1 - cosθ)sinα/θ

z = lsinθ/θ

θ = π/2

α = t t ∈ [0, 2π]

(30)

The simulation results of circular trajectory tracking are

shown in Figure 5. The tracking errors of circular trajectory

tracking are given in Figure 6. The tracking errors of the QPSO-

MPC are smaller than those of other controllers. The tracking

errors of QPSO-MPC, PSO-MPC and MPC controllers are

2.64, 3.73, and 4.16 cm, respectively. The response time of

QPSO-MPC, PSO-MPC and MPC controllers are 3.0, 3.1, and

3.5 s, respectively. The simulation results verify the effectiveness

of the control sequences generated by the QPSO-MPC in

suppressing the system overshoot, reducing oscillation, and

improving convergence.

Experiment results

Experimental implementations are utilized to verify the

trajectory tracking effectiveness of the QPSO-MPC controller

in comparison with the PSO-MPC and the conventional

MPC controller. The CDCR is shown in Figure 7, which

consists of a flexible backbone (diameter, 1 cm; length,

30 cm), a MTI-630 inertial sensor, four anti-winding driving

cables (diameter, 0.1 cm), four servo motors with reducers

(servo motors type, QDD Plus-NU80-6; reduction ratio, 6:1;

maximum torque, 6 N·m; rated full-load speed, 200 rpm),

six joint disks (diameter, 4 cm; distance between joint disks,

6 cm) and twenty stainless steel springs. The servo motors

are used in Position Mode. The flexible backbone provides

bending stiffness for the robot. Each joint disk, mounted

on the flexible backbone, has eight uniformly distributed

cable holes.

The stainless steel springs (diameter, 1 cm) are used

to maintain the external contour of the robot. The servo

controllers, using CAN bus communication, are evenly

distributed on the operating chassis. The MTI-630 inertial

sensor is an industrial inertial measurement unit (IMU) and

the direction error is <0.5◦, which can produce an accurate

measurement of the attitude and position of the robot end-

effector. In order to ensure the trajectory tracking performance

of the CDCR, themaximal load that the end-effector can support

is 300 g. A higher maximal load of the CDCR can be achieved

by increasing backbone strength, spring stiffness, cable strength,

and motor power. The double-integration of the acceleration

measured from theMTI-630 sensor is processed by the Extended

Kalman Filter, which can reduce the estimated error of position

and provide reliable motion data for trajectory tracking. Besides,

when the output of the servo motors is zero, the velocity should

also be zero, which can be used for the Extended Kalman Filter

to reduce zero-shift effect.

In this paper, the tracking performances of QPSO-MPC,

PSO-MPC and MPC controllers are assessed with respect to

three typical trajectory tracking tasks: the cardioid curve, the

polyline curve and the spiral curve, which can be presented as

(31), (32), and (33), respectively.
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FIGURE 13

Tracking errors of the spiral trajectory tracking.







































x = l(1− cosθ)cosα/θ

y = l(1 - cosθ)sinα/θ

z = l sin θ/θ

θ =

{

π/6+ 2π × t/3 t ∈ (0,π]

3π/2− 2π × t/3 t ∈ (π , 2π]

α = t t ∈ (0, 2π]

(31)







































x = l(1 - cosθ)cosα/θ

y = l(1 - cosθ)sinα/θ

z = l sin θ/θ

θ =

{

∣

∣1.5× lsin(t)
∣

∣ t ∈ [π/4, 3π/4] ∪ [5π/4, 7π/4]
∣

∣1.5× lcos(t)
∣

∣ other

α = t t ∈ (0, 2π]

(32)
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x = l(1 - cosθ)cosα/θ

y = l(1 - cosθ)sinα/θ

z = lsinθ /θ

θ = π t/4+ π/3 t ∈ (0, 2π]

α = 2t t ∈ (0, 2π]

(33)

The control parameters of all the controllers for the

experiments are set as follows in Table 1. The sampling periods

of the three tasks are 0.05, 0.02, and 0.01 s, respectively. The

tracking results and tracking error curves of the cardioid

trajectory are shown in Figures 8, 9, respectively. The tracking

results and tracking error of the polyline trajectory are shown

in Figures 10, 11, respectively. The tracking results and tracking

error of the spiral trajectory are shown in Figures 12, 13,

respectively. It is shown that all the controllers could control the

robot to move along the reference trajectories within a certain

time. However, the QPSO-MPC controller fits the reference

trajectory best in all the three tracking tasks.

The tracking errors are quantified as the mean value of

the Euclidean distance between the real position and the target

trajectory, which are shown in Table 2. In each task, the QPSO-

MPC controller achieves the lowest tracking errors. The average

tracking errors of QPSO-MPC, PSO-MPC and MPC controllers

in all the three tasks are 2.61, 3.25, and 3.74 cm respectively, and

the standard deviations are 0.44, 0.48, and 0.62 cm, respectively.

Compared with the PSO-MPC and the MPC controllers, the

average tracking errors of the QPSO-MPC is reduced by 24.52

and 43.30%, respectively, which further proves the tracking

effectiveness of QPSO-MPC outperforms the other controllers.

The experiments show that QPSO-MPC controller achieves

accurate and stable tracking performance in complex trajectory

tracking tasks. The proposed QPSO-MPC controller achieves

substantial improved performance by comparing with MPC and

PSO-MPC controllers because it ensures the system get a global

optimal output at every moment.

Conclusions

In this paper, a QPSO-MPC is applied to trajectory tracking

tasks of CDCRs. The kinematic model of the CDCR is built

based on the piecewise constant curvature assumptions, which

simplifies the mathematical model of the CDCR and reduces

the computation of the control system. The QPSO is applied to

the rolling optimization process of the MPC based controller,

which guarantees stable and accurate trajectory tracking under

constraints. The QPSO provides optimal control outputs of

MPC to compensate various uncertainties. Moreover, the QPSO

solves the local minima problem of PSO algorithm.

The effectiveness of the proposed QPSO-MPC in typical

tracking tasks is demonstrated by both simulations and

experiments. Compared with PSO-MPC and MPC controllers,

the QPSO-MPC algorithm shows greatly improved performance

TABLE 2 The tracking errors of the experiments.

Controller Error (cm) Average

error (cm)

Standard

deviation

(cm)

Task 1 Task 2 Task 3

QPSO-MPC 2.19 2.57 3.07 2.61 0.44

PSO-MPC 2.79 3.22 3.74 3.25 0.48

MPC 3.05 3.91 4.26 3.74 0.62

in three typical tracking tasks. It has been proved that the

QPSO-MPC controller is more suitable for controlling CDCRs

to track complex trajectories. Future studies will focus on the

extended applications of the QPSO-MPC algorithm for CDCRs

with different structures, such as CDCRs with multi-backbone

structures and CDCRs with nested backbone.
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