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Underwater Localization and
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School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an, China

SLAM (Simultaneous Localization And Mapping) plays a vital role in navigation tasks

of AUV (Autonomous Underwater Vehicle). However, due to a vast amount of image

sonar data and some acoustic equipment’s inherent high latency, it is a considerable

challenge to implement real-time underwater SLAM on a small AUV. This paper presents

a filter based methodology for SLAM algorithms in underwater environments. First, a

multi-beam forward looking sonar (MFLS) is utilized to extract environmental features. The

acquired sonar image is then converted to sparse point cloud format through threshold

segmentation and distance-constrained filtering to solve the calculation explosion issue

caused by a large amount of original data. Second, based on the proposed method, the

DVL, IMU, and sonar data are fused, the Rao-Blackwellized particle filter (RBPF)-based

SLAM method is used to estimate AUV pose and generate an occupancy grid map. To

verify the proposed algorithm, the underwater vehicle is equipped as an experimental

platform to conduct field tasks in both the experimental pool and wild lake, respectively.

Experiments illustrate that the proposed approach achieves better performance in both

state estimation and suppressing divergence.

Keywords: SLAM, multi-beam forward looking sonar, point cloud, grid map, underwater vehicle

1. INTRODUCTION

AUVs (Autonomous Underwater Vehicles) have been widely applied to perform various complex
underwater tasks such as resource exploration (Ohta et al., 2016), environmental monitoring
(Williams et al., 2012; Barrera et al., 2018), underwater rescue (Venkatesan, 2016), and military
operations (Hagen et al., 2005), etc. To satisfies the safety and reliability, AUVs should acquire
accurate localization in underwater unknown environments.

To achieve this goal, Doppler Velocity Logging (DVL) and Inertial Measurement Unit (IMU)
are fused with acoustic long baseline (Matos et al., 1999), short baseline (Vickery, 1998), and ultra-
short baseline (Hao et al., 2020) to calculate the position of AUVs. However, these traditional
methods have shortcomings regarding to error divergence. DVL measures the speed by integrating
the acceleration andmeanwhile further calculates localization from dead-reckoning, the final result
may, therefore, contain cumulative errors; The method based on the acoustic baseline needs to
arrange the equipment in the environment in advance; Therefore, it is essential to use a more
robust and reliable method to solve above problems. On the other hand, SLAM enables AUVs
to fuse sensor data and build a map of an unknown environment, while localizing simultaneously.
So far, sensors applied in underwater slam include cameras, side-scan sonar (SSS), single-beam
mechanical scanning sonar (SMSS), and multi-beam forward-looking sonar (MFLS).
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Camera-based underwater SLAM estimates the ego-motion
by extracting and matching features from adjacent images and
optimizing the pose at the back-end (Kim and Eustice, 2015;
Hong et al., 2016). Jongdae Jung et al. proposed a vision-based
SLAM, where artificial underwater landmarks help visualize
camera poses (Jung et al., 2017). Suresh et al. proposed a novel
method for underwater localization using natural landmarks
(Suresh et al., 2019). Sparse features were obtained via an onboard
upward-facing stereo camera through water for underwater
localization. Although the cost of the camera is low, vision-
based underwater SLAM has significant limitations. The camera’s
detection range is close and can only work in a clean environment
with good light.

Compare to cameras, sonar emits sound waves in single
or multiple directions and obtains information about the
surrounding environment by analyzing each echo’s strength and
return time. Sonar-based method is, therefore, the development
trend of underwater SLAM (Wang et al., 2017; Wang and
Cheng, 2020). Chen et al. proposed an RBPF SLAM algorithm
to tackle the issues of scan distortion and data sparseness caused
by the slow-sampling mechanical scanning sonar, by carefully
designed a sliding window-based scan module (Chen et al.,
2020). The formed scans are then fed into the modified RBPF
to build a consistent grid-based map. Siantidis et al. described
a SLAM system with a dead reckoning system and a side-
scan sonar (Siantidis, 2016), which can compensate for the
position drifts. Aulinas et al. proposed a feature-based sub-
mapping SLAM approach, which considered side-scan salient
objects as landmarks (Aulinas et al., 2010). However, the long
scanning period is quite challenging to meet underwater real-
time performance, as the return of the side-scan sonar and
mechanical scanning sonar image is delayed.

Meanwhile, MFLS is becoming more and more popular
in underwater perception because of its solid real-time
performance, small size, and easy installation (Hurtós et al.,
2014; Wright and Baldauf, 2016). Wang et al. proposed a
novel approach for underwater SLAM using an MFLS for 3D
terrain mapping tasks (Wang et al., 2019). Instead of repeatedly
projecting extracted features into Euclidean space, they applied
optical flow within bearing-range images for tracking extracted
features and assumed these features are sampled from a
Gaussian Process terrain map. Neves et al. introduced a novel
multi-object detection system, which outputs object position
and rotation from MFLS images (Neves et al., 2020). Pyo
et al. proposed a novel localization method in shallow water,
where localization is based on passive-type acoustic landmarks.
Through modeling, the distance from landmark to MFLS
could be calculated (Pyo et al., 2017). However, a complete
occupancy grid map using underwater vehicles with MFLS is
still missing.

This paper presents a methodology for the SLAM algorithm
based onMFLS, by building an accurate occupancy grid map and
providing an accurate estimation of AUV poses. The occupancy
grid graph can be used for subsequent global positioning
and path planning. The main contributions of the proposed
algorithm are in two aspects. (1) Aiming at the slow processing
speed caused by a large amount of MFLS image data, a method is

proposed to convert the collected sonar image into sparse point
cloud format data through threshold segmentation and distance-
constrained filtering. (2) Based on the proposed method, the
DVL, IMU, and MFLS data are fused, and then the RBPF-based
SLAM method is used to generate an accurate occupancy grid
map, and at the same time, the drift of the inertial navigation can
be suppressed.

The structure of the proposed approach is as follows. Section
2 introduces the characteristics of the MFLS used in this article.
The proposed SLAM method for underwater vehicles is detailed
in section 3. The experimental results are shown in section
4. Section 5 presents a brief conclusion and section 6 is our
future work.

2. PROBLEM DESCRIPTION OF MFLS
SLAM

MFLS is an image sonar. It can emit multiple sound waves
with a vertical width in the horizontal direction and detect the
environment based on the echoes. The working principle is
shown in Figure 1. However, it has no resolution in the vertical
direction, so the result is a two-dimensional image. By measuring
the flight time and intensity of the echo, images with different
degrees of brightness will be obtained, as shown in Figure 2. The
bright part indicates an obstacle with high echo intensity, and the
dark part indicates that the echo intensity at that location is weak.

Generally, there are two MFLS data processing methods:
image-level processing and echo intensity processing. However,
due to the dense beams, high resolution, and the relatively
large amount of image sonar data, processing directly from
the image level will cause a large amount of calculation in the
SLAM process, and it is difficult for the processor installed on
the small AUV to process the data in real-time. In order to
solve this problem, this paper converts the sonar image data
into corresponding point cloud data and then uses distance-
constrained filtering to extract the necessary information and
reduce the amount of calculation. In the case of limited
processor performance, the goal of real-time SLAM is achieved
on a small AUV.

3. PROPOSED SLAM METHOD

Figure 3 is the overall framework of the SLAM algorithm
proposed in this article. We first fuse DVL data and IMU
data to obtain odometer data in the algorithm and use it
for dead reckoning. At the same time, the MFLS sonar data
is preprocessed. First, the sonar data is converted into point
cloud data through threshold segmentation and data conversion.
The obtained point cloud data is then subjected to sparse
processing using distance constraints filtering. Finally, send the
processed data into the RBPF-SLAM algorithm for positioning
and composition.

3.1. Dead Reckoning
The function of the dead reckoning module is to apply the IMU
and DVL to provide a rough estimate of the AUV pose. When the
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FIGURE 1 | Schematic diagram of MFLS working mode.

FIGURE 2 | Example of scanning effect of 3 targets. The bright part indicates

an obstacle with high echo intensity, and the dark part indicates that the echo

intensity at that location is weak.

sonar samples the data, the dead reckoning module applies the
extended Kalman filter (EKF) to estimate the attitude by fusing
the data from these sensors.

Suppose the AUV estimated state is Xk = [pT
k
,ϕT

k
]T in the

global coordinate system at time k, where pk represents the
position of the AUV, and ϕk represents the attitude of the AUV.

pk and ϕk are, respectively, defined as

pk = [xk yk zk]
T , ϕk = [φk θk ψk]

T

where xk, yk, zk are the position coordinates in each axis in the
global coordinate frame, and φk, θk,ψk are the Euler angles roll,
pitch, and yaw in each corresponding axis.

Assuming that the linear velocity and angular velocity of the
AUV are υk and ωk, they are jointly used as the control input
uk = [υT

k
,ωT

k
]T . Specifically, υk and ωk are expressed as

υk = [lk mk nk]
T , ωk = [ok qk rk]

T

where each element in the two vectors is the linear velocity and
angular velocity on each axis in the AUV coordinate system. Then
the kinematics model of AUV can be expressed as

Xk+1 = f (Xk, uk) = Xk +1T ∗ J(Xk) ∗ uk (1)

where J(Xk) is the transformation matrix, and1T is the sampling
time interval. uk can be represented by DVL measurement value
and IMU measurement value with Gaussian noise ωk N(0,Qu).
Due to this kind of noise, there will be error accumulation in
dead reckoning. Therefore, other sensor information is called
to correct the error during the update phase of EKF. Through
formula (1), the AUV state can be estimated as

X̂k+1|k = f (X̂k|k, ûk) (2)
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FIGURE 3 | Architecture of the proposed SLAM algorithm.

The covariance matrix used for the prediction error can be
expressed as

Pk+1|k = Fk+1 ∗ Pk|k ∗ F
T
k+1 + Gk+1 ∗ Qu ∗ G

T
k+1 (3)

where Fk+1 and Gk+1 are the Jacobian matrices obtained by
solving the partial derivative of the nonlinear model function f
about the state Xk and the noise ωk.

Finally, the model prediction is updated by applying the
standard EKF update equation to generate the estimated pose of
the AUV.

3.2. Threshold Segmentation and Data
Conversion
The working principle of sonar is to generate an echo according
to the sound wave encountering an object and then generate an
image according to the time and intensity of the return of the
echo. Due to water quality and acoustic interference, multi-beam
sonar data will carry a lot of clutter and outliers in a natural

environment. Direct conversion into lidar data for mapping will
distort the resulting map. Therefore, it is necessary to filter
according to the environment so that the data can better reflect
the characteristics of the environment.

In this experiment, the raw sonar data were processed in three
steps: threshold segmentation, data conversion, and distance-
constrained filtering. The flow chart of the proposed algorithm
is presented in Algorithm 1.

SI is sonar’s original data, an image generated with parameters
with a scanning angle of 130◦ and a scanning distance of 40m.
Figure 4 is an image generated by aiming at the corner of the pool
with sonar, which contains a lot of clutter. T1 is the threshold for
filtering selection. In general, we use the average pixel value as
the threshold for filtering. At the same time, the threshold can
also be manually set according to the water quality environment.
Under normal circumstances, we put several targets in the water
or look for an environment with apparent characteristics in
the background. Then, we use sonar to scan in real-time and
continuously adjust the threshold manually until the generated
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Algorithm 1: Sonar data process.

Data: [SI] Sonar’s raw image data and the average value of
pixels.

Result: [SP] Processed sonar data.
1 begin

2 SI = ReadSonarData();
3 //Threshold segmentation and data conversion
4 for Pixel(i∗j) ∈ SI do

5 if Pixel(i∗j) < T1 then

6 Pixel(i∗j) = 0;

7 else

8 Pixel(i∗j) = Pixel(i∗j);

9 end

10 end

11 for k = 0; k < i; k++ do

12 for Pixel(k∗jth) ∈ Pixel(k∗j) do

13 Pixel(k∗jth) = FindMaxValue(Pixel(k∗j));

14 end

15 rangei = jth ∗ range_step;
16 anglei = i ∗ angle_step;
17 PointC.PushBack(rangei, anglei);

18 end

19 //Distance-constrained filtering
20 num = 0, sum = 0;
21 for p = 0; p < i; p++ do

22 num = num+ 1;
23 sum = sum+ rangep;
24 if p%T2 == 0 && p! = 0 then
25 average_value = sum/num;

26 for n = p− num; n < num; n++ do

27 dif = rangep − average_value
28 if dif > T3 then

29 rangep = 0
30 else

31 rangep = rangep
32 end

33 end

34 num = 0, sum = 0;

35 else

36 end

37 end

38 SP.PushBack(rangep)

39 end

point cloud data can better reflect the target profile. At the same
time, when watching open waters, less noise is generated, and
the current threshold is selected as the optimal threshold in the
current environment.

The pixel value below T1 is assigned a value of 0, and the
pixel value above T1 remains unchanged. Since only the features
of the surface of the object are considered when constructing
the map, we believe that the brightest point on the beam is
formed by the sound wave hitting the surface of the object and

FIGURE 4 | Sonar raw data. This is the raw data picture of the sonar facing

the corner of the experimental pool.

returning. Therefore, we only select a point with the highest
intensity on each beam as the target of interest. After preliminary
filtering, we calculate the position of the target pixel in the sonar
coordinate system according to the angular resolution angle_step
and distance resolution range_step of the sonar. The resolution
value can be changed by setting the sonar parameters. Calculating
all the pixels of the sonar image, we can get the point cloud data,
as shown in Figure 5A.

3.3. Distance-Constrained Filtering
From Figure 5A, we can find that many bright spots are
generated behind the wall of the pool. This is not the data we
want, and it will affect the positioning accuracy and mapping
effect of the AUV. Aiming at these clutter interference, this paper
uses a distance constraint-based method to filter out clutter while
reducing the amount of data. Doing so can improve the real-
time performance of the algorithm while ensuring positioning
accuracy and mapping quality. The flow chart of this algorithm
is shown in the lower part of Algorithm 1.

Process the obtained point cloud data PointC:

• Set a beam threshold T2, and divide all range data
rangei into A = {[range(0) − range(T2−1)], [range(T2) −

range(2∗T2−1)].....[range(i−T2−1) − range(i)]} according to the
angle order(−65◦ − 65◦).

• Set the distance threshold T3, calculate the average of all rangei
inAk, and then calculate the difference dif between each rangei
and the average. If dif is greater than T3, the data is judged to
be noise deleted, if it is less thanT3, it is judged to be valid data.

• Save the valid data into the SP, and the sonar data
processing ends.

Figure 5B is the point cloud image obtained after distance
constraint filtering. It can be found that the clutter behind the
wall of the pool is successfully filtered, and data that can truly
reflect the environmental characteristics are obtained.

3.4. RBPF SLAM With MFLS
The flow chart of the proposed algorithm is presented in
Algorithm 2. PS is the particle set generated according to the
initial state of the AUV. According to the theory that the joint
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FIGURE 5 | Panel (A) shows the point cloud data of the sonar raw data after threshold segmentation and data conversion. Panel (B) is the result of filtering based on

distance-constrained.

Algorithm 2: RBPF with multi-beam forward looking sonar.

Data: [Xt−1, SP] The AUV’s initial pose and processed sonar
data.

Result: [Xt] The pose of the most weighted particles.
1 begin

2 PSt−1 = Init();
3 for SP = ProcessSonarData() do
4 Xk = DeadReckoning();
5 zt = SP;
6 ut−1 = Xk − Xk−1;

7 for PS
(i)
t−1 ∈ PSt−1 do

8 < x
(i)
t−1,ω

(i)
t−1,m

(i)
t−1 >= PS

(i)
t−1;

9 x̃
(i)
t = Sample(x

(i)
t−1, ut−1); //sampling

10 x̂
(i)
t = IW(m

(i)
t−1, zt , x̃

(i)
t−1); //scan matching and

importance weighting

11 if x̂
(i)
t = φ then

12 x
(i)
t = x̃

(i)
t ;

13 ω
(i)
t = ω

(i)
t−1p(zt|m

(i)
t−1, x

i
t);

14 else

15 [x
(i)
t ,ω

(i)
t ] = Resample(x̂

(i)
t ,ϒ , ut−1,m

(i)
t−1);

//resampling
16 end

17 m
(i)
t = MapUpdate(m

(i)
t−1, zt , x

(i)
t ); //map

updating

18 PSt = PSt ∪ (x
(i)
t ,ω

(i)
t ,m

(i)
t );

19 end

20 Neff = 1
6N
i=1(ω̃

(i))2
;

21 if Neff < T then

22 PSt = resample(PSt);
23 else

24 PSt−1 = PSt;
25 end

26 end

27 end

probability can be converted into the product of conditional
probabilities, the solution of RBPF SLAM is to decompose the
original SLAM problem into separate positioning and mapping
parts (Grisetti et al., 2007).

p(x1 : t ,m|z1 : t , u1 : t−1) = p(m|x1 : t , z1 : t) · p(x1 : t|z1 : t , u1 : t−1)
(4)

where p(x1 : t|z1 : t , u1 : t−1) is the posterior of potential trajectories
x1 : t given observations z1 : t and odometry measurements u1 : t
of the AUV, p(m|x1 : t , z1 : t) is the posterior of maps, and
p(x1 : t ,m|z1 : t , u1 : t−1) is the posterior of maps and trajectories.
Given the values of x1 : t and z1 : t , p(m|x1 : t , z1 : t) can be
calculated analytically, so the key to the problem is to calculate
p(x1 : t|z1 : t , u1 : t−1).

To estimate the posterior p(x1 : t ,m|z1 : t , u1 : t−1), a group of
particles is first introduced. Each particle is composed of the pose
x of the AUV, the grid mapm, and the weightω. The particle filter
algorithm incrementally uses dead reckoning values and sonar
scan data to update the particle set. This process can be divided
into four steps, sampling, scanmatchingandimportanceweighting,

resampling, and mapupdate. Function x̂
(i)
t = IW(m

(i)
t−1, zt , x̃

(i)
t−1)

is a scan matching and importance weighting module, and its
function is to calculate the pose that best matches the currentmap

m
(i)
t−1 based on the current observation zt and all samples x̃

(i)
t−1.

Then each particle is assigned a separate importance

weighting based on the importance sampling principle w
(i)
t .

w
(i)
t = w

(i)
t−1 ·

ηp(zt|m
(i)
t−1, x

(i)
t )p(x

(i)
t |x

(i)
t−1, ut−1)

p(xt|m
(i)
t−1, x

(i)
t−1, zt , ut−1)

(5)

∝ w
(i)
t−1

p(zt|m
(i)
t−1, x

(i)
t )p(x

(i)
t |x

(i)
t−1, ut−1)

p(zt |m
(i)
t−1 ,xt)p(xt |x

(i)
t−1,ut−1)

p(zt |m
(i)
t−1,x

(i)
t−1 ,ut−1)

(6)

= w
(i)
t−1 · p(zt|m

(i)
t−1, x

(i)
t−1, ut−1) (7)
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TABLE 1 | The algorithm parameters.

Parameter Value

Map-update-intervel 0.3

maxRange 25

maxUrange 24

Number of particles 150

Resample threshold 0.5

Number of iterations 7

= w
(i)
t−1 ·

∫
p(zt|x

′)p(x′|x
(i)
t−1, ut−1)dx

′ (8)

Here, η = 1/p(zt|z1 : t−1, u1 : t−1) is the normalization factor
produced by Bayes’ rule where all particles are equal.

In function Resample(x̂
(i)
t ,ϒ , ut−1,m

(i)
t−1), the Gaussian

approximation of the proposed distribution is calculated, and
new particles are sampled for the next iteration based on the
calculated result. ϒ is the interval threshold for resampling in

the vicinity area of x̂
(i)
t .

Finally, the map m
(i)
t is updated based on the estimated pose

x
(i)
t and the observed value zt . Then, select the map and pose of
the particle with the largest weight among all the particles as the
final constructed map and estimated AUV pose.

4. EXPERIMENTAL RESULT

Both simulation and practical experiments are conducted to
verify the effectiveness of the proposed SLAM algorithm. Table 1
shows the main parameters of our algorithm for experiments.

4.1. Simulation Experiments
In the simulation experiment, we used UUV-Simulator to create
a Rexrov2 model, which is a full-propeller-driven ROV, and it
is equipped with four cameras, four lights, and a wide range of
sensors, including sonar, DVL, IMU, etc.

Figure 6 shows the Rexrov2 model and simulation
environment, an underwater maze. First, build a 3-D model of
the environment and load it into the 3-D simulator Gazebo.
To facilitate interaction with Gazebo, we used Robot Operating
System (ROS) in our simulation. The drivers of IMU, DVL,
and MFLS are loaded as Gazebo plug-ins and used to publish
ROS-compatible data, which are subscribed by the proposed
SLAM algorithm. Our ROV is controlled to navigate the maze
for one round during the simulation. The algorithm’s outputs
include an occupancy grid map and an estimated ROV trajectory.

Figure 7 shows the occupancy grid map generated by
the proposed SLAM algorithm. Based on this map, AUV
can make path planning to avoid obstacles and reach the
designated position.

The comparison between the ROV position calculated by
the proposed algorithm and the ground truth is shown in
Figure 8. Their trajectory error is very small, and the simulation
experiment proves the effectiveness of our proposed method.

FIGURE 6 | Experimental environment and Rexrov2 model.

FIGURE 7 | Two-dimensional grid map.

4.2. Experimental Pool Experiment
In the practical experimental, the open-source underwater robot
platform BlueROV2 was used to complete the SLAM experiment
of the underwater vehicle. In this paper, we only focus on the
positioning and surveying indicators of the underwater vehicle,
without considering the control. Therefore, the effect is the
same regardless of whether the AUV or ROV is used as the
experimental carrier to carry out the verification experiment.
To make BlueROV2 meet our experimental requirements, we
installed a multi-beam forward looking sonar and a DVL
based on the original BlueROV2. Also, we installed a pair
of power cat modules to achieve underwater BlueROV2 and
the shore PC Long-distance data transmission. The modified
BlueROV2 (as shown in Figure 9) can well meet the SLAM
experimental requirements.

We first tested in the multi-purpose pool indoor. The size
of the pool is 70 x 44 m. In the experiment, we controlled the
BlueROV2 to face the wall for scanning and mapping.

The experimental pool environment is shown in Figure 10A,
and the positioning and mapping effect of the proposed
algorithm is shown in Figure 10B.

In Figure 10B, the red part represents the trajectory of the
odometer, the white part represents the detectable travelable area,
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FIGURE 8 | Panel (A) is the x-axis error between the calculated value of slam and the true value. Panel (B) is the y-axis error.

FIGURE 9 | Panel (A) is modified BlueROV2, and Panel (B) is the sensor layout.

FIGURE 10 | Panel (A) is the experimental pool environment. Panel (B) is the positioning and mapping effect of SLAM.

the black part represents the obstacle, and the gray part represents
the undetected area.

In this experiment, we used threshold segmentation and
distance-constrained filtering to process the multi-beam sonar

data and then used it to build the map. It can be seen from the
mapping results that good results have been achieved. At the
same time, it can be seen that the odometer error is continuously
accumulating. When the scan is completed, the odometer has
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not completed closing, but the map established by the SLAM
algorithm based on the multi-beam sonar has been closed, the
odometer’s position deviation is amended. Furthermore, the
superiority of the SLAM algorithm based on multi-beam sonar
used in this paper is proved.

4.3. Wild Lake Experiment
The field lake experiment was carried out in Liquan Lake,
Xi’an, Shaanxi. During the experiment, we take a dinghy to
approach the target environment, launch BlueROV2, and control
it to scan the target environment for positioning and mapping

experiments. Also, there is a GPS positioning antenna on the
dinghy. When the BlueROV2 scanning environment, the boat
closely followed BlueROV2 to obtain GPS coordinates near
it, providing actual data for the quantitative analysis of the
positioning surveying experiment.

Figure 11 is a satellite image of the two experimental locations
we choose.

Figures 12, 13 are the positioning and mapping results of the
two experimental scenes with our proposed algorithm.

It can be seen from the experimental results (Figures 12A,
13A) that the mapping effect is mostly consistent with satellite

FIGURE 11 | Satellite picture of the place where the experiment was conducted.

FIGURE 12 | Panel (A) is the result of the two-dimensional grid map created in scene 1. Panel (B) is the trajectory calculated by the proposed algorithm and

dead-reckoning, respectively.
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FIGURE 13 | Panel (A) is the result of the two-dimensional grid map created in scene 2. Panel (B) is the trajectory calculated by the proposed algorithm and

dead-reckoning, respectively.

FIGURE 14 | Panel (A) is the relative localization errors among the dead-reckoning trajectories, the proposed SLAM algorithm and the ground truth using data from

scene1. Panel (B) is the scene2.

images. There are several reasons for the deviation between the
satellite image and the map created by SLAM:

• Due to changes in water level, satellite maps may deviate from
actual maps.

• When BlueRov2 dives into the water, it scans the underwater
extension of the lake bank, including objects such as branches
and rocks. Unfortunately, the satellite image of this part of the
underwater terrain is invisible, so the constructed map will be
different from the satellite image.

• BlueRov2 cannot reach some waters, so the factual
environmental information has not been thoroughly scanned,
which will cause differences between the constructed map and
the actual environment.

To quantitatively analyze the map’s location accuracy, we
compare and analyze the ground truth (GPS measurement
values), the estimated value of the proposed algorithm, and the
dead reckoning value.

Since the GPS measured value is the latitude and longitude
information, we used the geodesy package provided by ROS
in the experiment and completed the conversion of latitude
and longitude coordinates to two-dimensional coordinates. In
this way, we unified the above three coordinate values under
the same reference system to evaluate the SLAM algorithm’s
positioning accuracy.

The trajectory result graph is shown in Figures 12B, 13B, 14
shows the relative localization errors. From Figure 14 we can
find that with the accumulation of time, the deviation of the
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odometer will gradually increase. Using SLAM for simultaneous
positioning and mapping will correct the odometer’s deviation,
correct the pose, and build a better map.

The maps based on the multi-beam sonar SLAM algorithm
proposed in this paper can better represent the environment’s
characteristics. And positioning accuracy is also better than pure
dead reckoning.

5. CONCLUSIONS

This paper proposed a SLAM algorithm using MFLS. Two
problems are solved: Aiming at the slow processing speed
caused by a large amount of MFLS image data, and a method
is proposed to convert the collected sonar image into sparse
point cloud format data through threshold segmentation and
distance-constrained filtering; Based on the proposed method,
the DVL, IMU, and MFLS data are fused, and then the RBPF-
based SLAM method is used to suppress the accumulation of
errors of the inertial unit and generate an accurate occupancy
grid map. Finally, we used BlueROV2 as the experimental
carrier, conducted field tests in the experimental pool and
Liquan Lake, Xi’an, Shaanxi, and achieved good positioning and
mapping results.

6. FUTURE WORK

This article mainly uses MFLS image data to be converted into
sparse point cloud data format for SLAM experiments, which
involves the problem of sonar filtering and data matching after
filtering. There are still some problems currently, such as the
inability to fully extract environmental features due to clutter

interference and the map drifting due to data matching failure.

For these problems, future work will continue to study better
filtering methods and data matching methods to improve the
accuracy of positioning and mapping.
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