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The graph neural network (GNN) has been widely used for graph data representation.

However, the existing researches only consider the ideal balanced dataset, and the

imbalanced dataset is rarely considered. Traditional methods such as resampling,

reweighting, and synthetic samples that deal with imbalanced datasets are no longer

applicable in GNN. This study proposes an ensemble model called Boosting-GNN, which

uses GNNs as the base classifiers during boosting. In Boosting-GNN, higher weights are

set for the training samples that are not correctly classified by the previous classifiers,

thus achieving higher classification accuracy and better reliability. Besides, transfer

learning is used to reduce computational cost and increase fitting ability. Experimental

results indicate that the proposed Boosting-GNN model achieves better performance

than graph convolutional network (GCN), GraphSAGE, graph attention network (GAT),

simplifying graph convolutional networks (SGC), multi-scale graph convolution networks

(N-GCN), and most advanced reweighting and resampling methods on synthetic

imbalanced datasets, with an average performance improvement of 4.5%.

Keywords: graph neural network, imbalanced datasets, ensemble learning, adaboost, node classification

1. INTRODUCTION

Convolutional neural networks (CNNs) have been widely used in image recognition (Russakovsky
et al., 2015; He et al., 2016), object detection (Lin et al., 2014), speech recognition (Yu et al., 2016),
visual coding and decoding (Huang et al., 2021a,b). However, traditional CNNs can only handle
data in the Euclidean space. It cannot effectively address graphs that are prevalent in real life. Graph
neural networks (GNNs) can effectively construct deep learning models on graphs. In addition to
homogeneous graphs, heterogeneous GNN (Wang et al., 2019; Li et al., 2021; Peng et al., 2021) can
effectively handle more comprehensive information and semantically richer heterogeneous graphs.

The graph convolutional network (GCN) (Kipf and Welling, 2016) has achieved remarkable
success in multiple graph data-related tasks, including recommendation systems (Chen et al.,
2020; Yu and Qin, 2020), molecular recognition (Zitnik and Leskovec, 2017), traffic forecast
(Bai et al., 2020), and point cloud segmentation (Li et al., 2019). GCN is based on the
neighborhood aggregation scheme, which generates node embedding by combining information
from neighborhoods. GCN achieves superior performance in solving node classification problems
compared with conventional methods, but it is adversely affected by datasets imbalance. However,
existing studies on GCNs all aim at balanced datasets, and the problem of imbalanced datasets have
not been considered.
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In the field of machine learning, the processing of imbalanced
data sets is always challenging (Carlson et al., 2010; Taherkhani
et al., 2020). The data distribution of an imbalanced dataset
makes the fitting ability of the model insufficient because it is
difficult for the model to learn useful information from unevenly
distributed datasets (Japkowicz and Stephen, 2002). A balanced
dataset consists of almost the same number of training samples
in each class. In reality, it is impractical to obtain the same
number of training samples for different classes because the
data in different classes are generally not uniformly distributed
(Japkowicz and Stephen, 2002; Han et al., 2005). The imbalance
of the training dataset is caused by many possible factors, such
as deviation sampling and measurement errors. Samples may be
collected from narrow geographical areas in a specific time period
and in different areas at different times, exhibiting a completely
different sample distribution. The datasets widely used in deep
learning research, e.g., IMAGENET large scale visual recognition
challenge (ImageNet ILSVRC 2012) (Russakovsky et al., 2015),
microsoft common objects in context (MS COCO) (Lin et al.,
2014), and Places Database (Zhou et al., 2018), balanced datasets,
where the amount of data in different classes is basically the
same. Recently, more and more imbalanced datasets reflecting
real-world data characteristics have been built and released, e.g.,
iNaturalist (Cui et al., 2018), a dataset for large vocabulary
instance segmentation (LVIS) (Gupta et al., 2019), and a large-
scale retail product checkout dataset (RPC) (Wei et al., 2019). It
is difficult for traditional pattern recognition methods to achieve
excellent results on imbalanced datasets, somethods that can deal
with imbalanced datasets efficiently are urgently needed.

For imbalanced datasets, additional processing is needed
to reduce the adverse effects (Japkowicz and Stephen, 2002).
The existing machine learning methods mainly rely on
resampling, data synthesis, and reweighting. 1) Resampling
samples the original data by undersampling and oversampling.
Undersampling removes part of data in the majority class so
that the majority class can match with the minority class in
terms of the amount of data. Oversampling copies the data in
the minority class. 2) Data synthesis, i.e., synthetic minority
oversampling technique (SMOTE) (Chawla et al., 2002) and its
improved version (Han et al., 2005; Ramentol et al., 2011; Douzas
and Bação, 2019) as well as other synthesis methods (He et al.,
2008), synthesize the new sample artificially by analyzing the
samples in the minority class. 3) Reweighting assigns different
weights to different samples in the loss function to improve the
model’s performance of the model on imbalanced datasets.

In the GNN, the existing processing methods for imbalanced
datasets in machine learning are not applicable. 1) The data
distribution problem of imbalanced datasets cannot be overcome
by resampling. The use of oversampling may introduce many
repeated samples to the model, which reduces the training speed
and leads to overfitting easily. In the case of undersampling,
valuable samples that are important to feature learning may
be discarded, making it difficult for the model to learn the
actual data distribution. 2) The use of the data synthesis
method or oversampling method loses the relationship between
the newly generated samples and the original samples in

the GNN, which affects the aggregation process of nodes.
3) Reweighting, e.g., Focal Loss (Lin et al., 2017), and CB
Focal Loss (Cui et al., 2019), can solve the problem of the
imbalanced dataset in GCN to some extent, but it does not
consider the relationship between training samples, and fails
to achieve satisfactory performance in dealing with imbalanced
datasets.

Ensemble learning methods are more effective in improving
the classification performance of imbalanced data than data
sampling techniques (Khoshgoftaar et al., 2015). It is challenging
for a single model to classify rare and few samples on an
imbalanced dataset accurately, thus, the overall performance is
limited. Ensemble learning is a process of aggregating multiple
base classifiers to improve the generalization ability of classifiers.
Briefly, ensemble learning uses multiple weak classifiers to make
classification on the dataset. In traditional machine learning,
ensemble learning is used to improve the classification accuracy
of multi-class imbalanced data (Chawla et al., 2003; Seiffert et al.,
2010; Galar et al., 2013; Blaszczynski and Stefanowski, 2015;
Nanni et al., 2015; Hai-xiang et al., 2016). In CNNs, some models
adopt ensemble learning to deal with imbalanced datasets.
Enhanced-random-feature-subspace-based ensemble CNN (Lv
et al., 2021) adaptively resamples the training set in iterations
to get multiple classifiers and forms a cascade ensemble model.
AdaBoost-CNN (Taherkhani et al., 2020) integrates AdaBoost
with a CNN to improve accuracy on imbalanced data.

Inspired by ensemble learning, an ensemble GNN classifier
that can deal with the imbalanced dataset is proposed in this
study. The adaptive boosting (AdaBoost) algorithm is combined
with GNN to train the GNN classifier by serialization, and
the samples are reweighted according to the calculation results.
Based on this, the proposed classifier improved the classification
performance on the imbalanced dataset. The main contributions
of this study are as follows:

• This article uses the ensemble learning to study the imbalanced
dataset problem in GNN for the first time. An Boosting-GNN
model is proposed to deal with imbalanced datasets in semi-
supervised nodes classification. A transfer learning strategy is
also applied to speed up the training of the Boosting-GNN
model.

• Four imbalanced datasets are constructed to evaluate the
performance of the Boosting-GNN. Boosting-GNN uses GCN,
GAT, and GraphSAGE as base classifiers, improving the
classification accuracy on imbalanced datasets.

• The robustness of Boosting-GNN under feature noise
perturbations is discussed, and it is discovered that ensemble
learning can significantly improve the robustness of GNNs.

The rest of this article is organized as follows. Section 2
introduces the related work of dealing with imbalanced data
sets and the application of ensemble learning in deep learning.
In section 3, the principle of the proposed Boosting-GNN is
discussed. Then, four datasets and a proposed method for
performance evaluation are described, and the experimental
results are discussed in section 4. Finally, section 5 concludes the
article.
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2. RELATED WORKS

Due to the prevalence of imbalanced data in practical
applications, the problem of imbalanced data sets has attracted
more and more attention. Recent researches are mainly
conducted in the following four directions:

2.1. Resampling
Resampling can be specifically divided into two types: 1)
Oversampling by copying data in minority classes (Buda et al.,
2018; Byrd and Lipton, 2019). After oversampling, some samples
are repeated in the dataset, leading to a less robust model
and worse generalization performance on imbalanced data. 2)
Undersampling by selecting data in the majority classes (Buda
et al., 2018; Byrd and Lipton, 2019). Undersampling may cause
information loss in majority classes. The model only learns a
part of the overall pattern, leading to underfitting (Shen and Lin,
2016). K-means and stratified random sampling (KSS) (Zhou
et al., 2020) performs undersampling after K-means clustering
for majority classes, and achieves good results.

2.2. Synthetic Samples
The data synthesis methods generate samples similar to samples
of minority classes in the original set. The representative method
is SMOTE (Chawla et al., 2002), and the operations of this
method are as follows. For each sample in a small sample set, an
arbitrary sample is selected from its K-nearest neighbors. Then, a
random point on the line between the sample and the selected
sample is taken as a new sample. However, the overlapping
degree will be increased by synthesizing the same number of
new samples for each minority class. The Borderline-SMOTE
(Han et al., 2005) synthesizes new samples similar to the samples
on the classification boundary. Preprocessing method combining
SMOTE and RST (SMOTE-RSB*) (Ramentol et al., 2011) exploits
the synthetic minority oversampling technique and the editing
technique based on the rough set theory. Geometric SMOTE
(G-SMOTE) (Douzas and Bação, 2019) generates a synthesized
sample for each of the selected instances in a geometric region
of the input space. Adaptive synthetic sampling (ADASYN)
(He et al., 2008) algorithm synthesizes different number of new
samples for different minority classes samples.

2.3. Reweighting
Reweighting typically assigns different weights to different
samples in the loss function. In general, reweighting assigns large
weights to training samples in minority classes (Wang et al.,
2017). Besides, finer control of loss can be achieved at the sample
level. For example, Focal Loss (Lin et al., 2017) designed a weight
adjustment scheme to improve the classification performance of
imbalanced dataset. CB Focal Loss (Cui et al., 2019) introduced
a weight factor inversely proportional to the number of effective
samples to rebalance the loss, reaching the most advanced level
in the imbalanced dataset.

2.4. Ensemble Classifiers
Ensemble classifiers are more effective than sampling methods to
deal with the imbalance problem (Khoshgoftaar et al., 2015). In
GNN models, AdaGCN (Sun et al., 2021) integrates Adaboost
and GCN layers to get deeper network models. Different

from AdaGCN, Boosting-GNN uses GNN as a sub-classifier of
Boosting algorithm to improve the performance on imbalanced
datasets. To our knowledge, we are the first to use ensemble
learning to solve the classification on graph imbalanced datasets.

In addition, there are transfer learning, domain adaptation,
and other methods to deal with imbalance problems. Themethod
based on transfer learning solves the problem by transferring the
characteristics learned from majority classes to minority classes
(Yin et al., 2019). Domain adaptive method processes different
types of data and learns how to reweight adaptively (Zou et al.,
2018). These methods are beyond the scope of this article.

3. THE PROPOSED METHOD

3.1. GCN Model
Given an input undirected graph G = {V , E}, where V and E ,
respectively, denote the set of N nodes and the set of e edges. The
corresponding adjacency matrix A ∈ R

N×N is an N × N sparse
matrix. The entry (i, j) in the adjacencymatrix is equal to 1 if there
is an edge between i and j, and 0, otherwise. The degree matrix D
is a diagonal matrix where each entry on the diagonal indicates
the degree of a vertex, which can be computed as di =

∑

j aij.
Each node is associated with an F-dimensional feature vector,
and X ∈ R

N×F denotes the feature matrix for all nodes. GCN
model of semi-supervised classification has two layers (Kipf and
Welling, 2016), and every layer computes the transformation:

H(l+1) = σ (Z(l+1)),Z(l+1) = ÃH(l)W(l) (1)

where Ã is normalized adjacency obtained by Ã = D− 1
2AD− 1

2 .
W(l) is the trainable weights of the layer. σ (·) denotes an
activation function (usually ReLU), andH(l) ∈ R

N×dl is the input
activation matrix of the łth hidden layer, where each row is a
dl-dimensional vector for node representation. The initial node
representations are the original input features:

H(0) = X (2)

A two-layer GCNmodel can be defined in terms of vertex features
X and Â as:

GCN2−layer(Â,X; θ) = softmax(Â · σ (ÂXW(0))W(1)) (3)

The GCN is trained by the back propagation learning algorithm.
The last layer uses the softmax function for classification, the
cross-entropy loss over all labeled examples are evaluated:

L = −
∑

|YL|

∑

i∈YL

loss(yi, z
L
i ) (4)

Formally, given a dataset with n entities (X,Y) =
{(

xi, yi
)}N

i=1,
where xi represents the word embedding for entity i, and
yi ∈ {1, · · · · ··,C} represents the label for xi. Multiple weak
classifiers are combined with AdaBoost algorithm to make a
single strong classifier.
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3.2. Proposed Algorithm
Since ensemble learning is an effective method to deal
with imbalanced datasets, Boosting-GNN adopts the Adaboost
algorithm proposed by Hastie et al. (2009) to design an ensemble
strategy for GCNs, which can train the GCNs sequentially. In
Boosting-GNN, the weight of each training sample is assigned
according to the degree to which the sample was not correctly
trained in the previous classifier.

3.2.1. Aggregation
Boosting-GNN aggregates GNN through the Adaboost algorithm
to improve the performance on imbalanced datasets. First, the
overall formula of Boosting-GNN can be expressed as:

FM(x) =
M
∑

m=1

αm ∗ Gm(x; θm) (5)

where FM(x) is the ensemble classifier obtained afterM rounds of
training, and x denotes samples. A new GNN classifierGm(x; θm)
is trained in each round, and θm is the optimal parameter learned
by the base classifier. The weight of the classifier αm denotes the
importance of classifier, and it could be obtained according to the
error of the classifier. Based on (5), Formula (6) can be obtained:

Fm(x) = Fm−1(x)+ αm ∗ Gm(x; θm) (6)

Fm−1(x) is the weighted aggregation of the previously trained
base classifier. In each iteration, a new base classifier Gm(x; θm)
and its weights αm are solved. Boosting-GNN uses an exponential
loss function:

L(y, F(x)) = e−y∗F(x) (7)

According to the meaning of the loss function, if the classification
is correct, the exponent part is a negative number, otherwise, it is
a positive number. As for training the base classifier, the training
dataset is T =

{

(xi, yi)Ni=1

}

, xi is the feature vector of the ith node;
yi is the category label of the ith node, and yi ∈ {1, . . . ,C}, where
C is the total number of classes.

3.2.2. Reweight Samples
Assume that during the first training, the samples are evenly
distributed and all weights are the same. The data weights are
initialized by D1 =

{

w1
1,w

1
2, . . . ,w

1
N

}

, where w1
i = 1/N, i =

1, . . . ,N, and N is the number of samples. Training M networks
in sequence on the training set, the expected loss εm at the mth
iteration is:

εm =
∑

yi 6=Gm(xi;θm)

wm
i =

N
∑

i=1

wm
i I(yi 6= Gm(xi; θm)) (8)

where I is the indicator function. When the input is true, the
function value is 1; otherwise, the function value is 0. εm is
the sum of the weights of all misclassified samples. αm can be
treated as a hyper-parameter to be tuned manually, or as a model
parameter to be optimized automatically. In our model, to keep
it simple, αm is assigned according to εm.

αm =
1

2
ln

1− εm

εm
(9)

αm decreases as εm increases. The first GNN is trained on all
the training samples with the same weight of 1/N, indicating
the same importance for all samples. After the M estimators
are trained, the output of GNN can be obtained, which is a
C-dimensional vector. The vector contains the predicted values
of C classes, which indicate the confidence of belonging to the
corresponding class. For the mth GNN input sample xi, the
output vector is pm(xi). pmk (xi) is the kth element of pm(xi), where
k = 1, 2, · · ·,C.

wm+1
i = wm

i e
(

−a C−1
C yi log(pm(xi))

)

(10)

wm
i is the weight of the ith training sample of the mth GNN. yi

is the one-hot label vector encoded according to the ith training
sample. Formula (10) is obtained based on Adaboost’s Samme.r
algorithm (Hastie et al., 2009), which is used to update the weight
of the sample. If the output vector of the misclassified sample is
not related to the output label, a large value is obtained for the
exponential term, and the misclassified sample will be assigned
a larger weight in the next GNN classifier. Similarly, a correctly
classified sample will be assigned a smaller weight in the next
GNN classifier. In summary, the weight vector D is updated so
that the weight of the correctly classified samples is reduced and
the weight of the misclassified samples is increased.

After the weights of all training samples for the current GNN
are updated, they are normalized by the sum of weights of
all samples. When the classifier Fm(x) is trained, the weight
distribution of the training dataset is updated for the next
iteration. When the subsequent GNN-based classifier is trained,
the GNN training does not start from a random initial condition.
Instead, the parameters learned from the previous GNN are
transferred to the (m + 1)th GNN, so GNN is fine-tuned based
on the previous GNN parameters. The use of transfer learning
can reduced the number of training epochs and make the model
fit faster.

Moreover, due to the change of weight, the subsequent GNN
focuses on untrained samples. The subsequent GNN performs
training from scratch on a small number of training samples,
which easily causes overfit. For a large number of training
samples, the expected label output pm(xi) by the GNN after
training has a strong correlation with the real label yi. For the
subsequent GNN classifier, the trained samples have a smaller
weight than the sample without previous GNN training.

3.2.3. Testing With Boosting-GNN
After training the M base classifiers, Equation (11) can be used
to predict the category of the input sample. The outputs of M
base classifiers are summed. In the summed probability vector,
the category with the highest confidence is regarded as the
predicted category.

Q(x) = argmax
k

M
∑

m=1

hmk (x) (11)

hm
k
is the classification result of the kth sample made by the mth

basis classifier, k = 1, 2, · · ·,C, which can be calculated from the
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FIGURE 1 | Schematic of the proposed Boosting-GNN.

Equation (12).

hmk = (C − 1) ·

(

log
(

pmk (x)
)

−
1

C

C
∑

i=1

log
(

pmi (x)
)

)

(12)

Where pmi (x) is the kth element of the output vector of the mth
GCN classifier for the input x. Figure 1 shows the schematic
of the proposed Boosting-GNN. The first GNN is first trained
with the initial weight D1. Then, based on the output of the first
GNN, the data weight D2 used to update the second GNN are
obtained. In addition, the parameters learned from the first GNN
are transferred to the second GNN. After the mth base classifier
is trained in order, all base classifiers are aggregated to obtain the
final Boosting-GNN classifier.

The pseudo-code for an Boosting-GNN is exhibited in
Algorithm 1. In each iteration of sequential learning, the
classifiers are first trained with corresponding training data and
weights. Then, according to the training results of the classifiers,
the data weights are updated for the next iteration. Both
operations are performed untilM base classifiers are trained.

4. EXPERIMENTS AND ANALYSIS

4.1. Experimental Settings
The proposed ensemble model is evaluated on three well-known
citation network datasets prepared by Kipf and Welling (2016):
Cora, Citeseer, and Pubmed (Sen et al., 2008). These datasets are
chosen because they are available online and are used by our
baselines. In addition, experiments are also conducted on the
Never-Ending Language Learning (NELL) dataset (Carlson et al.,
2010). As a bipartite graph dataset extracted from a knowledge
graph, NELL has a larger scale than the citation datasets, and it
has 210 node classes.

4.1.1. Citation Networks
The nodes in the citation datasets represent articles in different
fields, and the labels of nodes represent the corresponding journal
where the articles were published. The edges between two nodes
represent the reference relationship between articles. If an edge

Algorithm 1 Framework of the Boosting-GNN algorithm.

Input: Training set T =
{

(x1, y1), . . . , (xN , yN)
}

;
Output: Ensemble of classifiers FM(x);
1: Initialization: w1

i = 1/N for all 1 ≤ i ≤ N
2: form = 1, 2, · · · ,N do;
3: ifm = 1 then
4: Train GNN classifier with weighted sample set

{T,D1};
5: else

6: Transfer the learning parameters of the (m − 1)th
GNN to themth GNN classifier;

7: Train the mth GNN classifier with weighted sample
set;

8: end if

9: Calculate the output category estimated for the C classes
of themth GNN classifier pm

k
(x), where k = 1, 2, · · · ,C;

10: Calculate the training error εm of the mth classifier
according to (8);

11: Assign the weight αm to the classifier based on εm using
(9);

12: Update the sample weight Dm+1 according to pmk (x), and
normalize the sample weight Dm+1;

13: end for

TABLE 1 | Datasets used for experiments.

Dataset Cora Citeseer Pubmed NELL

Vertices 2,708 3,327 19,717 65,755

Edges 5,429 4,732 44,338 266,144

Classes 7 6 3 210

Features 1,433 3,703 500 5,414

exists between the nodes, there is a reference relationship between
the articles. Each node has a one-hot vector corresponding to the
keywords of the article. The task of categorization is to classify the
domain of unlabeled articles based on a subset of tagged nodes
and references to all articles.

4.1.2. Never-Ending Language Learning
The pre-processing schemes described in Yang et al. (2016) are
adopted in this study. Each relationship is represented as a triplet
(e1, r, e2), where e1, r, and e2, respectively, represent the head
entity, the relationship, and the tail entity. Each entity E is
regraded as a node in the graph, and each relationship r consists
of two nodes r1 and r2 in the graph. For each (e1, r, e2), two edges
(e1, r1) and (e2, r2) are added to the graph. A binary, symmetric
adjacency matrix from this graph is constructed by setting entries
Aij = 1, if one or more edges are present between nodes i and j
(Kipf andWelling, 2016). All entity nodes are described by sparse
feature vectors with the dimension of 5,414. Table 1 summarizes
the statistics of these datasets.
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FIGURE 2 | Visualization of synthetic imbalanced datasets. (A) shows the classical Cora training set. (B) shows the training set when s is fetched 15. (C) shows the

training set when s is fetched 5. The mean degrees of the nodes in (A–C) are 0.30, 0.30, 0.37 respectively.

4.1.3. Synthetic Imbalanced Datasets
Different synthetic imbalanced datasets are constructed based on
the datasets mentioned above. According to the Pareto Principle
that 80% of the consequences come from 20% of the causes,
one of the classes is randomly selected as the majority category
for simplicity. The remaining classes are regraded as minority
classes. In Kipf and Welling (2016), 20 samples of each class
were selected as the training set, and to keep the number of
training samples broadly consistent, the datasets are described in
Equation (13).

ni =

{

30 i = c
s i 6= c

(13)

ni is the number of samples in category i, c is the randomly
selected category, C is the number of classes in the dataset,
and s is the number of samples in the minority category. By
changing s, the number of minority category samples is altered,
thus changing the degree of imbalance in the training set. For
example, in the Cora dataset, there are seven classes of samples.
So, the number of samples in one class is fixed to 30, and the
number of samples in the other six classes is changed. Each
time the training is conducted, a certain number of samples are
randomly selected to form the training set. The test set is divided
following the method in Kipf and Welling (2016) to evaluate the
performance of different models.

Synthetic imbalanced datasets are constructed by node
dropping. Given the graph G, node dropping will randomly
discard vertices along with their connections until the number
of different classes of nodes matches the setting. In node
dropping, the dropping probability of each node follows a
uniform distribution. We visualize the synthetic datasets in
Figure 2 and use different colors to represent different categories
of nodes. Due to the sparsity of the adjacency matrix of the graph
data set, imbalanced sampling of the graph data does not reduce
the average degree of the nodes. Although disconnect parts of
the graph, missing part of vertices does not affect the semantic
meaning of G.

4.1.4. Parameter Settings
In Boosting-GNN, five GNN base classifiers are used. Boosting-
GNN, respectively, uses GCN, GraphSAGE, and GAT as the
base classifiers. All networks are composed of two layers, and

all models are trained for a maximum of 100 epochs (training
iterations) using Adam optimizer. For Cora, Citeseer, and
Pubmed datasets, the number of hidden units is 16, and L2
regularization is 5e-4. For NELL, the number of hidden units is
128, and L2 regularization is 1e-5.

The following sets of hyperparameters are used for Boosting-
GNN: For Boosting-GCN, the activation function is ReLU. The
learning rates on Cora, Citeseer, Pubmed, and NELL are 1e-
2, 1e-2, 1e-2, 5e-3, respectively. For Boosting-GraphSAGE, the
activation function is ReLU. The sampled sizes (S1 = 25, S2 =
10) is used for each layer. The learning rates on Cora, Citeseer,
Pubmed, and NELL are 1e-3, 1e-3, 5e-4, 1e-4, respectively. For
Boosting-GAT, the first-layer activation function is ELU and
the second-layer activation function is softmax. The number of
attention heads K is 8. The learning rates on Cora, Citeseer,
Pubmed and NELL are 1e-3, 1e-3, 1e-3, 5e-4, respectively.

For GCN, GraphSAGE, GAT, SGC, N-GCN, and other
algorithms, the models are trained for a total of 500 epochs. The
highest accuracy is taken as the result of a single experiment,
and the mean accuracy of 10 runs with random sample split
initializations is taken as the final result. A different random seed
is used for every run (i.e., removing different nodes), but the 10
random seeds are the same acrossmodels. All the experiments are
conducted on a machine equipped with two NVIDIA Tesla V100
GPU (32 GB memory), 20-core Intel Xeon CPU (2.20 GHz), and
192 GB of RAM.

4.2. Baseline Methods
The performance of the proposed method is evaluated and
compared to that of three groups of methods:

4.2.1. GCN Methods
In experiments, our Boosting-GNN model is compared with the
following representative baselines:

• Graph convolutional network (Kipf and Welling, 2016)
produces node embedding vectors by truncating the
Chebyshev polynomial to the first-order neighborhoods.

• GAT (Velickovic et al., 2018) generates node embedding
vectors for each node by introducing an attention mechanism
when computing node and its neighboring nodes.
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TABLE 2 | Summary of results in terms of classification accuracy (in percentage).

Model Cora Citeseer Pubmed NELL

GCN 65.6 ± 0.8 62.2 ± 0.5 71.8 ± 0.6 68.5 ± 1.4

GraphSAGE 66.3 ± 0.8 59.7 ± 0.6 69.7 ± 0.6 69.6 ± 1.3

GAT 67.4 ± 0.7 60.3 ± 0.6 66.2 ± 0.7 70.3 ± 1.6

N-GCN 67.3 ± 0.6 65.4 ± 0.3 72.3 ± 0.3 73.3 ± 1.2

SGC 69.7 ± 0.8 59.4 ± 0.5 66.9 ± 0.5 67.1 ± 1.4

GCN-FL 67.8 ± 1.2 65.1 ± 0.8 72.4 ± 0.8 71.2 ± 1.2

GraphSAGE-FL 66.5 ± 1.2 59.5 ± 0.8 69.7 ± 1.3 72.1 ± 1.1

GAT-FL 67.4 ± 1.3 61.3 ± 0.7 69.2 ± 1.2 72.6 ± 1.0

GCN-CB 70.6 ± 0.9 65.1 ± 0.6 72.3 ± 0.8 72.9 ± 1.4

GraphSAGE-CB 66.3 ± 0.9 59.7 ± 0.9 70.1 ± 0.9 69.8 ± 1.4

GAT-CB 67.6 ± 1.0 60.3 ± 1.0 69.3 ± 0.9 73.4 ± 1.5

GCN-RS 70.4 ± 1.0 61.8 ± 1.1 70.4 ± 1.1 68.9 ± 2.1

Boosting-GCN 73.2 ± 0.7 65.7 ± 0.7 73.1 ± 0.7 74.9 ± 1.0

Boosting-GraphSAGE 72.4 ± 1.0 63.2 ± 1.0 70.4 ± 1.1 75.3 ± 1.2

Boosting-GAT 73.5 ± 0.5 64.3 ± 0.8 69.7 ± 0.7 75.5 ± 1.0

The highest performance of models is highlighted in boldface.

• GraphSAGE (Hamilton et al., 2017) generates the embedding
vector of the target vertex by learning a function that
aggregates neighboring vertices. The default settings of
sampled sizes (S1 = 25, S2 = 10) is used for each layer in
GraphSAGE.

• SGC (Wu et al., 2019) reduces model complexity by
eliminating the non-linearity between GCN layers,
transforming a non-linear GCN into a simple linear model
that is more efficient than GCNs and other GNN models for
many tasks.

• N-GCN (Abu-El-Haija et al., 2019) obtains the feature
representation of nodes by convolving in the neighborhood of
nodes at different scales and then fusing all the convolution
results. These methods can be regarded as ensemble models.

4.2.2. Resampling Method
The KSS (Zhou et al., 2020) method is used for performance
comparison. KSS is a kind of K-means clustering method based
on undersampling and achieves state-of-the-art performance on
an imbalanced medical dataset.

4.2.3. Reweighting Method
Boosting-GNN is compared with GCN, GraphSAGE, and GAT.
These classic models use Focal Loss (Lin et al., 2017) and CB-
Focal (Cui et al., 2019), and achieve good classification accuracy
on imbalanced datasets.

4.3. Node Classification Accuracy
Our method is implemented in Keras. For the other methods, the
code from the Github pages introduced in the original articles
is used. For synthetic imbalanced datasets, s is set to 10. The
classification accuracy of GCN, GraphSAGE, GAT, SGC, N-GCN,
and Boosting-GNN method is listed in Table 2.

Results in Table 2 show that Boosting-GNN outperforms
the classic GNN models and state-of-the-art methods for
processing imbalanced datasets. The N-GCN obtains a feature
representation of the nodes by convolving around the nodes at
different scales and then fusing all the convolution results, which
can slightly improve the classification compared to the GCN.
Resampling method and Reweighting method can improve the
accuracy of GNN on imbalanced datasets, but the improvement
is very limited. Since RS is not suitable for graph data, RE
is slightly better than RS. Boosting-GNN can significantly
improve the classification accuracy of GNN, with an average
increase of 6.6, 3.7, 1.8, and 5.8% compared with the original
GNN model in Cora, Citeseer, Pubmed, and NELL datasets,
respectively.

Implementation details are as follows: Following the method
in Kipf and Welling (2016), 500 nodes are used as the
validation set and 1,000 nodes as the test set. Besides, for a fair
performance comparison, the same training procedure is used for
all the models.

4.4. Effect of Different Levels of Imbalance
in the Training Data
The level of imbalance in the training data is changed by
gradually increasing s from 1 to 10. The evaluation results of
Boosting-GNN, GCN, GraphSAGE, and GAT are compared,
which are shown in Figure 3.

Results in Figure 3 show that classification accuracy of
different models varies with s. The shadows indicate the range
of fluctuations in the experimental results. When s is relatively
small, the degree of imbalance in the training data is large. In
this case, the classification accuracy of Boosting-GNN is higher
than that of GCN, GraphSAGE, and GAT. As s decreases, the
performance advantage of Boosting-GNN increases gradually.
Experimental results show that when the sample imbalance is
large, aggregation can significantly reduce the adverse effects
caused by sample imbalance and improve the classification
accuracy. On the Cora dataset, the accuracy of Boosting-GCN,
Boosting-GraphSAGE, Boosting-GAT exceeds that of GCN,
GraphSAGE, and GAT by 10.3, 8.0, and 6.1% respectively at
most.

4.5. Impact of Numbers of Base Classifiers
The number of base classifiers is changed to evaluate the
classification accuracy on imbalanced datasets with different base
classifiers. We compare the classification results of Boosting-
GCN and GCN, and the experimental results are listed in
Table 3.

The experimental results show that aggregation can
contribute to performance improvements. As the number
of base classifiers increases, the performance improvement is
more and more significant. As the number of base classifiers
increases from 3 to 11, the number of base classifiers is
odd. The data of Cora, Pubmed, and Citeseer are verified,
and the division of train set and test set is the same as
that of Section 4.3. Ten experiments are conducted, and
each base classifier are trained with 100 epochs and 200
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FIGURE 3 | The classification accuracy of Boosting-GNN, graph convolutional network (GCN), GraphSAGE, and GAT on imbalanced datasets.

TABLE 3 | Results of Boosting-GCN with varying numbers of base classifiers in terms of accuracy (in percentage).

Numbers of base classifiers
epoch:100 epoch:200

Cora Citeseer Pubmed Cora Citeseer Pubmed

3 75.7 ± 2.4 65.5 ± 2.5 63.9 ± 2.4 75.4 ± 2.1 65.6 ± 1.1 72.0 ± 0.8

5 73.2 ± 0.7 65.7 ± 0.7 73.1±0.7 75.6 ± 2.3 65.9 ± 0.5 73.1 ± 1.1

7 73.5 ± 1.4 64.5 ± 0.5 73.5 ± 1.4 74.1 ± 2.7 64.7 ± 0.4 73.5 ± 0.8

9 72.0 ± 0.5 63.6 ± 0.5 72.0 ± 0.5 73.9 ± 2.0 64.2 ± 0.3 72.6 ± 1.1

11 73.0 ± 0.7 64.5 ± 0.6 73.0 ± 0.7 74.1 ± 2.3 65.1 ± 0.3 71.5 ± 0.7

The highest performance of models is highlighted in boldface.

epochs. The training samples are randomly selected for each
experiment.

To sum up, when the number of base classifiers is
small, the classification accuracy increases with the number
of base classifiers. When the number of base classifiers
reaches a certain degree, the accuracy decreases due to
overfitting.

4.6. Tolerance to Feature Noise
The proposed method is tested under feature noise perturbations
by removing node features randomly (Abu-El-Haija et al.,
2019). This test is practical, because, in the Citation
networks datasets, features could be missing as the authors

article might forget to include relevant terms in the article
abstract. By removing different features from a node, the
performance of Boosting-GNN, GCN, GraghSAGE, and GAT is
compared.

Figure 4 shows the performance of different methods when
features are removed. As the number of removed features
is increased, Boosting-GNN achieves better performance than
GCN, GraghSAGE, and GAT. The greater the proportion
of features removed, the greater the performance advantage
of Boosting-GNN over other models. This suggests that
our approach can restore the deleted features to some
extent by pulling in the features directly from nearby and
distant neighbors.
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FIGURE 4 | Classification accuracy for the Cora dataset. The features are removed randomly, and the result of 10 runs is averaged. A different random seed is used

for every run (i.e., removing different features from each node), but the same 10 random seeds are used across models.

FIGURE 5 | Classification results of Boosting-GCN and M-GCN with different base classifiers. (A) Cora, (B) Citeseer, and (C) Pubmed.

4.7. Why Ensemble Method Useful?
This section analyzes why the ensemble learning approach works
on imbalanced datasets and the advantages of Boosting-GNN
over traditional GNN. The process of ensemble learning can be
divided into two steps:

1) Generatingmultiple base classifiers for integration. Ourmodel
could adjust the weight of samples, adopt specific strategies
to reconstruct the dataset, and assign smaller weights to
the determined samples and larger weights to the uncertain
samples. It makes subsequent base classifiers focus more
on samples that are difficult to be classified. In general,
the samples of minority classes in imbalanced datasets are
more likely to be misclassified. By changing the weights of
these samples, subsequent base classifiers can focus more on
these samples.

2) Combining the results of the base classifiers. The weight of the
classifier is obtained according to the error of the classifier.
The base classifier with high classification accuracy has greater
weight and a greater influence on the final combined classifier.
In contrast, the base classifier with low classification accuracy
has less weight and impact on the final combined classifier.

We independently trained M GCNs using the same strategy
described in Equation (11) and named this method M-GCN.
We compare Boosting-GNN with M-GCN, which is trained

according to the hard voting frameworks. Using the synthetic
imbalanced datasets in Section 4.3, we changedM and conducted
several experiments. Ten runs with different random seeds were
conducted to calculate the mean and SD. The experimental
results are shown in Figure 5, and the classification results of
GCN are represented by dotted lines. By effectively setting the
number of base classifiers, Boosting-GCN significantly improves
classification accuracy compared with M-GCN and GCN.

Next, in order to study the misclassification of samples, we
observed the confusion matrix. To increase the imbalance, s
is set to 5. The last class is selected as the majority class,
and the other classes are selected as the minority classes
for convenience. Ten experiments are conducted, and the
confusion matrix of the average experimental results is shown
in Figure 6. Compared with the confusion matrix of the
classification performed by GCN, Boosting-GCN achieves a
better classification performance.

Due to the sample imbalance, the classifier tends to divide the
samples into the majority class, which is reflected by the fact that
the last column of the confusionmatrix usually has themaximum
value (with the brightest color). Compared with GNN, Boosting-
GNN improves the performance to a certain extent, especially on
the Cora dataset. Based on the aggregation of base estimators, the
values on the diagonal of the confusion matrix increase, and the
values in the last column of the confusion matrix decrease.

Frontiers in Neurorobotics | www.frontiersin.org 9 November 2021 | Volume 15 | Article 775688

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Shi et al. Boosting-GNN

FIGURE 6 | Confusion matrix for the Cora, Pubmed, and Citeseer datasets with 30 labeled nodes for majority class and five labeled nodes for the minority class. (A)

Boosting-GCN on Cora. (B) Boosting-GCN on Citeseer. (C) Boosting-GCN on Pubmed. (D) GCN on Cora. (E) GCN on Citeseer. (F) GCN on Pubmed.

TABLE 4 | Comparison of running time when using different number of GCN base

classifiers.

Method 5-classifier 7-classifier 9-classifier

M-GCN 28.76 s 39.52 s 51.04 s

Boosting-GCN-t 10.44 s 13.43 s 18.03 s

Boosting-GCN-w/o 18.36 s 27.64 s 34.83 s

We use Cora and train each base classifier for 100 epochs.

In summary, Boosting-GNN integrates multiple GNN
classifiers to reduce the effect of overfitting to a certain degree.
Moreover, Boosting-GNN reduces the deviation caused by
a single classifier and achieves better robustness. Boosting-
GNN is an improvement of traditional GNN and makes
AdaBoost compatible with GNN. Boosting-GNN achieves higher
classification accuracy than a single GNN on imbalanced datasets
with the same number of learning epochs.

4.8. Analysis of Training Time
In this section, we conduct a time-consuming analysis of the
experiment. We measure the training time on an NVIDIA Tesla
V100 GPU. The time required to train the original GCN model
for 100 epochs is 6.11s. The time consumed by M-GCN and
Boosting-GCN is shown in the Table 4. Boosting-GCN-t and

Boosting-GCN-w/o denote Boosting-GCNwith transfer learning
and Boosting-GCN without migration learning, respectively.

Compared to GCN, Boosting-GCN consumes exponentially
more time. However, Boosting-GCN reduces the training time
by about 50% compared to M-GCN. The application of transfer
learning can significantly reduce the time consumed, and models
can achieve similar accuracy.

5. CONCLUSION

A multi-class AdaBoost for GNN, called Boosting-GNN, is
proposed in this article. In Boosting-GNN, several GNNs are
used as base estimators, which are trained sequentially. Also,
the errors of a previous GNN are used to update the weights
of samples for the next GNN to improve performance. The
weights of training samples are incorporated in to the cross-
entropy error function in the GNN back propagation learning
algorithm. The appliance of transfer learning can significantly
reduce the time consumed for computation. The performance
of the proposed Boosting-GNN for processing imbalanced data
is tested. The experimental results show that Boosting-GNN
achieves better performance than state-of-the-arts on synthetic
imbalanced datasets, with an average performance improvement
of 4.5%.
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