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This paper is concerned with the problem of short circuit detection in infrared image

for metal electrorefining with an improved Faster Region-based Convolutional Neural

Network (Faster R-CNN). To address the problem of insufficient label data, a framework

for automatically generating labeled infrared images is proposed. After discussing factors

that affect sample diversity, background, object shape, and gray scale distribution are

established as three key variables for synthesis. Raw infrared images without fault are

used as backgrounds. By simulating the other two key variables on the background,

different classes of objects are synthesized. To improve the detection rate of small

scale targets, an attention module is introduced in the network to fuse the semantic

segment results of U-Net and the synthetic dataset. In this way, the Faster R-CNN

can obtain rich representation ability about small scale object on the infrared images.

Strategies of parameter tuning and transfer learning are also applied to improve the

detection precision. The detection system trains on only synthetic dataset and tests

on actual images. Extensive experiments on different infrared datasets demonstrate the

effectiveness of the synthetic methods. The synthetically trained network obtains a mAP

of 0.826, and the recall rate of small latent short circuit is superior to that of Faster R-CNN

and U-Net, effectively avoiding short-circuit missed detection.

Keywords: sample synthesis, short circuit detection, infrared image, metal electrorefining, attention-based Faster

R-CNN

1. INTRODUCTION

In the metal electrorefining process, short circuits between electrodes cause the temperature of
the electrodes to rise, the electrochemical reaction to stop, and the further reduction of the
electrolytic efficiency (Aqueveque et al., 2009). Infrared thermography technology has been become
a promising method to detect short-circuit electrodes due to its visualization of heat distribution,
non-invasive nature, and large-scale monitoring (Maekipaeae et al., 1997; Hong and Wang, 2017).
But recognizing short-circuit electrodes from infrared images is still a challenge because of the
occlusion above the electrolytic cell group and the complex heat conduction. Temperature of the
fault electrode increases, but the canvas on the cell surface may hide the abnormal heat, leading
to missed detection. The complex heat conduction between the canvas and the electrodes will
interrupt and spread the short-circuit temperature distribution, which will deform the shape of
the electrode in infrared image, resulting in inaccurate detection results. In addition, the inherent
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low resolution of infrared image degrades the detailed features of
objects, making it difficult for the electrodes to distinguish and
recognize (Xiao et al., 2017; Xing et al., 2019).

With the rise of deep learning, the Convolutional Neural
Networks (CNN) have efficiently solved a number of object
detection problems by learning more discriminative features
(Peng and Chen, 2015; Hiary et al., 2018). CNN based object
detection methods are classified into two classes: one-stage
detectors like OverFeat (Sermanet et al., 2013), SSD (Liu
et al., 2016), and U-Net (Ronneberger, 2017), perform specific
classification immediately after feature extract. On the other
hand, two-stage detectors such as R-CNN (Girshick et al., 2014),
Faster R-CNN (Ren et al., 2017) generate region proposals
with low-level cues first and then use the proposals to target
existing judgments prior to the classification (Ce et al., 2018).
Among recent deep learning methods, Faster R-CNN shows
excellent detection performance as Faster R-CNN can capture
more pixel-wise annotation information about objects. Also,
infrared images usually present poor resolution, low contrast,
and fuzzy visual effect, objects in infrared images tend to appear
as a series of rough, indistinct areas which closely related to
the surrounding complex background. A specific feature and
the surrounding area in infrared image both affect the accuracy
of target detection. Therefore, in this paper, we use Faster R-
CNN model to perform infrared target recognition. However,
two challenges are proposed for the task. First, the training of
a detection network requires a large number of labeled images,
which are labeled with the category and location information of
objects in detail (Samadi et al., 2019). Usually such a dataset is
collected and annotated manually. It requires the annotator to
have expert knowledge of the task and capture the distribution
of variables contributing to the varied representation of real
world conditions. The laborious work is the first difficulty in
deploying CNNs on practical applications. Second, Scale variance
enforced by resampling operation in Faster R-CNN may result
in information loss, which is even worse for small-scale infrared
targets, leading to missed detection, such as the latent short
circuit in our problem. Compared to visible images, the features
of infrared images degrade, and the convolution layer needs
to learn more meaningful features. A complete dataset and a
well-designed network are a worthy pursuit.

In order to overcome the difficulty of manually annotating
a sufficient number of images and meeting the accuracy
requirements of short circuit recognition tasks, we first propose
a framework for automatically generating labeled images, and
then design an attention-based Faster R-CNN for short circuit
detection. In the image synthesis process, we classify short-
circuit objects into two categories: obvious short circuit and
latent short circuit. Background, target gray scale distribution,
and shape are proposed as three key variables after a series
of reasonable assumptions and analyses. We simulate the three
key variables with different methods to satisfy the diversity
of the intra-class of samples. Single cells infrared images that
without short circuits are collected as backgrounds; rectangles
of random sizes and aspect ratios are exploited to simulate
electrode targets; external illumination template and local signal-
to-clutter ration (SCR) constraint method are introduced to

simulate the multiple manifestations of objects; object locations
and class labels are automatically annotated. Then, to increase the
detection accurancy, our detection scheme improves the Faster
R-CNN by introducing an attention module. This module fuses
the semantic segment information of small-scale latent short
circuits and the synthetic dataset, making the network focus on
small objects during the extraction of features. Combined with
anchor parameters fine-tuning and transfer learning strategy
the attention-based Faster R-CNN can better avoid latent short
circuit missed detection. Summarizing the above discussion,
we aim at addressing the problem of automatic synthesis of
labeled infrared images and apply it to the training of the short
circuit recognition system. The contributions of the paper can be
summarized as the following two aspects:

1) Propose an automatic sample synthesis method that can
generate a sufficient number of labeled infrared images.

2) Improve the Faster R-CNN by introducing an attention
module and design the short circuit recognition system for
metal electrolysis, the system is trained only on synthetic
samples and generalizes well to real images especially for the
latent short circuit class.

The remainder of the paper is organized as follows. Section 2
provides related works about sample number increase method-
data augmentation and background knowledge about metal
electrorefining. Synthesis difficulties are also discussed in this
section. Section 3 presents the details of our synthesis method
and the short circuit recognition system based on attention-based
Faster R-CNN. Section 4 provides three experiments to evaluate
the synthesis method and demonstrate the effectiveness of the
system. Finally, the conclusion of our research is presented in
Section 5.

2. RELATED WORK

2.1. Methods About Data Augmentation
Various data augmentation methods have been studied to create
additional training data. Generative adversarial networks (GANs)
and its variations (Goodfellow et al., 2014; Odena et al., 2016;
Zhang et al., 2016) show promising results for highly realistic
image generation. The GANs-based method generates images
by simultaneously training two models: generative model and
discriminative model. But balancing the two models is a difficult
task (Ngxande et al., 2019). Another method achieves data
augmentation by combining multiple image transformation
operations on an existing data set while preserving class labels
(Ratner et al., 2017; Gao et al., 2020). For example, flipping,
cropping, and color casting are applied to increase the number
of marine organism images (Huang et al., 2019). The method
mainly imitates the variable elements of the scene that contribute
to the samples diversity, such as ambient illumination, target
perspective and scale, etc. However, the above augmentations rely
on a certain amount of images that have already been labeled.
For some specific application scenarios in which the images are
difficult to obtain, a third-part public dataset can be exploited,
because the content of the dataset has similar features with the
application scenario. The optical remote sensing images slices
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FIGURE 1 | Infrared camera above electrolytic cell groups and the structure of a cell.

of Google Earth are employed to train a deep model, and then
the model is applied for ship detection (Jiang et al., 2019). The
handwritten images of MNIST are used to simulate long-rang
infrared images, in which dim targets are against background
clutters (Fan et al., 2018). Nevertheless, a common dataset whose
content is similar to the problem scenario is infrequent.

Actually, realistic-looking is not strictly necessary to train a
discriminant algorithm. Key variables of the scene are drive,
the diversity of sample, and effectiveness in training a neural
network (Mayer et al., 2018). In an image, these key variables
are usually related to the visual complexity of the scene and
multiple manifestations of objects. Different geometric shapes are
adopted to generate targets for machine learning (Silva et al.,
2019). Irrelevant pictures are taken as complex backgrounds,
and on the backgrounds vehicle license plates are synthesized,
then the synthesis images are used for identification training
(Björklund et al., 2019). Traditional data augmentation methods
may be heavyweight and more expensive in metal electrolysis
due to the complexity and uniqueness of infrared scenario.
The above research provides valuable references and meaningful
inspirations for our problem. The complexity comes from the
heat conduction, and the uniqueness is because all cells have
a similar structure. Identifying variables about the background
and the targets of metal electrolysis infrared image makes sample
synthesis possible.

2.2. Background of Metal Electrorefining
In our problem, take copper electrotrfining as example, the
infrared imager is installed on the crane above the electrolytic
cell groups to monitor the temperature distribution of electrodes
in cells (Figure 1). In each cell, hundreds of electrode plates
are parallel immersed into high temperature electrolytes. To
prevent electrolyte evaporation, the cell surface is covered with
a canvas. In the electrolytic process, the anode is dissolved
into metal ions, and then the ions are crystallized out at the
cathode plate. Due to the impurities, additive dosing problems,
particulates in electrolyte, temperature control, etc. dendrites
or nodules growing out from cathode surfaces until they reach
anode plates, short circuits occur. The temperature of the short-
circuit electrode is obviously higher than that of other electrodes,
but the high-temperature electrodes manifest in various forms
due to the shielding of the cover. Figure 2 shows an actual
infrared image with different types of short circuit and other
components of a cell. Other metal electrolysis processes (lead,
nickel, etc.) have similar infrared images.

Complexity and randomness of gray scale distribution and
the diversity of short-circuit targets pose challenges for infrared
image synthesis. Different from realistic visible image synthesis
for which the threshold changes of visibility, color appearance,
etc. are themost important (Ferwerda et al., 1996), infrared image
is the visual result of the thermal distribution of a scene, and
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FIGURE 2 | Infrared image containing multiple copper electrolytic cells and

different classes of short circuit.

it lacks color information. So the gray scale used to reflect the
temperature is significant for synthesis.

With canvas, the heat environment in each electrolytic cell is
independent, and heat transfer among components of a cell is
complex. Thus, the gray distributions of every cell surface are
different, although the structure and size of these cells are the
same. Also the airflow above cell surfaces adds random attributes
to the already complicated background.

Different kinds of short-circuit targets have various
manifestations on images, like the short circuits marked in
Figure 2. Some short circuits present obvious high gray intensity
distribution on the canvas region, and the gray scale distributions
are usually not uniform, but they show some common features:
the silhouette of the electrode is hazy, the outline appears as
a rectangle, and the gray intensity of the positive terminal is
obviously higher than other parts. While for some other short
circuits, there is no obvious gray scale change on the canvas area,
only the end of the electrode which is located on the intercell
busbar exhibits high gray intensity. This type of short circuit
appears as a small area with uniform gray scale distribution
on busbar.

Based on the above analysis, the background, shape, and gray
scale distribution patterns are established as three key variables,
that are responsible for the large inter-class variability of infrared
images. Short-circuits targets are classified into two classes:
obvious short circuit and latent short circuit. To determine the
positive and negative terminals, we also take the electrolyte inlet
and the outlet as another two classes of detection targets that will
be annotated on the image (Table 1).

3. METHOD

The research route of this work is shown as the flow chart
in Figure 3. The collected infrared images are firstly corrected
for barrel distortion and segmented into individual cells. Then

TABLE 1 | Target class labeled in the synthesis images.

Class number Target class

1 obvious short circuit

2 latent short circuit

3 inlet

4 outlet

cell images without short circuit are used as background, and
we synthesize and label short-circuit targets on it. At last the
synthetic image dataset is used for training an improved faster
R-CNN detection network to recognize different classes of short
circuits, and the network is tested on real world infrared images.
Our work mainly focuses on modules of preprocessing, sample
images synthesis, and detection network improvement.

3.1. Preprocessing of the Infrared Images
Infrared electrolytic cells images suffer from barrel distortion due
to the use of the wide-angle lens. So barrel distortion correction
is first carried out to facilitate the acquisition of the image patch
of a single electrolytic cell.

Distortion occurs because of the inconsistent transmittance of
the lens. The refractive index at the edge of the lens is greater than
that at the center of the lens. Thus, the same object looks smaller
in the outer region of the image than in the central region because
the outer region is more compressed than the region near the
distorted center. Assume that the distortion rate is radial about
the distortion center (Asari et al., 1999), through mapping pixels
of the distorted image onto a corrected image, we can obtain the
corrected pixel coordinates.

(xc, yc) represents the center of the distorted image, and (x, y)
are coordinates of any pixel. Radius r and the angle θ of a vector
from the distortion center to (x, y) are given by:

r =

√

(x− xc)2 + (y− yc)2 (1a)

θ = arctan(
y− yc

x− xc
) (1b)

The pixel location (x, y) in the distorted image can be
transformed to a new location (xnew, ynew) in the corrected image.
The corresponding radius rnew and angle θnew of the vector from
the corrected center (xnc, ync) to (xnew, ynew) can be computed as:

rnew =

√

(xnew − xnc)2 + (ynew − ync)2 (2a)

θnew = θ (2b)

The mapping relation between radius rnew and r is defined with
a polynomial as:

rnew =

n
∑

i=0

kir
i (3)
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FIGURE 3 | Research route of the work.

TABLE 2 | Distortion coefficients estimated by fitting pixels on cells border.

Distortion coefficient k0 k1 k2

Value 1 2.355× 10−4 2.285× 10−6

Where n is the number of polynomial terms. ki denotes the
distortion coefficient. The effect of higher order terms can be
ignored, because the distortion rate is very small, so the quadratic
mapping relationship is adopted. The distortion coefficients can
be estimated by fitting the pixel coordinates of the cell boundary
in the distorted image In our work, the estimated distortion
coefficients are as shown in Table 2.

Then, coordinates of the new location (xnew, ynew) can be
obtained by:

xnew = xnc + rnewcosθ (4a)

ynew = ync + rnewsinθ (4b)

The method corrects the distortion by shifting the pixels. Moving
pixels causes vacancy in the original pixel position and thus
form a grid of blank pixels on the corrected image. For ease of
viewing, we use a black grid in Figure 4B. A bilinear interpolation
method is employed to fill these vacant pixels. The final result
of distortion correction is as shown in Figure 4C. With the
corrected image, we can easily obtain image patches of single cells
like in Figure 5.

3.2. Sample Images Synthesis
3.2.1. Simulate Background
The background is difficult to simulate because of its complex
and random gray scale distribution. That is due to the complex
electrochemical reactions in the cell and the heat conduction
between the canvas, electrode, and electrolyte. It is unique for
the metal electrorefining scene, the alternative of using other
backgrounds fails here (Björklund et al., 2019).

The diversity of the background has a serious influence on
target recognition. The complexity and randomness of the gray
scale distribution of cells without short circuits gives the image

diversity, and such cells can be used as backgrounds. After
barrel distortion correction, we can easily obtain any number
of single cell images with the same structure. Therefore, we
collect enough images of single cells without short circuits as
backgrounds (Figure 6) to satisfy the diversity of backgrounds.
On these backgrounds, we further synthesize targets.

3.2.2. Simulate Shape
We chose a rectangle to simulate the shape of the electrode. For
the obvious short circuit class, although the rod is invisible, the
corresponding area on canvas is a strip of high gray intensity.
The strip starts from the busbar area and has a larger aspect ratio.
For the latent short circuit class, the high intensity area is small
and with a small aspect ratio that is approximately 1:1. The latent
short circuit is contained within the intercell busbar area. Hence,
rectangles with different aspect ratios are used to simulate the
shape variable of short-circuit targets.

Electrodes width is calculated by geometric method, and the
width range on the image is [4, 13] pixels. Similarly, the length
range is [4, 65] pixels. The length and width of the rectangle are
randomly selected in the two intervals to construct a rectangle
to simulate a short circuit. We set that when the aspect ratio is
greater than 1.5, the rectangle is an image patch for obvious short
circuit; when the aspect ratio is less than 1.5, the rectangle is an
image patch for latent short circuit.

The location constraint for each target is that the coordinates
of the upper-left corner are located within the scope of busbar
region. So the intercell busbar needs to be located on the
background image first. This can be implemented with a gray
scale threshold. The busbar region of Figure 7B is as shown in
Figure 7A. In the busbar region, a pixel position is randomly
selected, and then the image patch of the target is determined by
using the randomly selected size values. It means that the label
information (class, location) of a synthetic target is deterministic.

The location information of a target label is expressed as
Patch = [xp, yp,w, l]. (xp, yp), that is the upper-left coordinate.
(w, l) are the width and length of the image patch. The pixel values
of the patches in the raw background image are temporarily
reserved for the next gray scale distribution simulation. Two
example patches are as shown in Figure 7B.
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FIGURE 4 | Process of barrel distortion correction: (A) A barrel distorted IR image. (B) Vacant pixel grid produced by pixel radius mapping. (C) The final corrected

image after bilinear interpolation.

FIGURE 5 | Four single electrolytic cells cropped form the barrel distortion corrected image.

FIGURE 6 | Single cell images without short circuit used as background.

FIGURE 7 | (A) Intercell busbar region identified by gray threshold on background image. (B) Two example patches for latent short circuit class and obvious short

circuit class, the upper-left coordinates of the patches are located in the intercell busbar region.

3.2.3. Simulate Gray Scale Distribution
After, the target patches are determined through assigning gray
scale intensity for these patches to simulate the gray scale
distribution. Short circuit gray scale intensity is usually higher
than the surrounding area, but its distribution is characterized
by complexity and diversity. Moreover, the two classes of targets
are against different backgrounds. The gray scale continuity of

the synthesized target and background should be considered.
Therefore, we adopt two different gray scale assignment methods
to simulate gray distribution for the two target classes.

For the latent short circuit class, the target should be located
in the busbar background with high gray scale intensity and small
scale area. The gray scale distribution is smooth. These features
make it difficult to distinguish between a latent short circuit and
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FIGURE 8 | Examples of synthetic latent short circuit instance.

a background. This difficulty can be quantitatively analyzed with
SCR (Wang et al., 2017). SCR is a measure of target detectability,
and the calculation formula is:

SCR =
|µT − µB|

σc
(5)

Where, µT and µB represent the average intensity of the target
and the background, respectively. σc is the standard deviation of
the background. |µT −µB| is used to evaluate the gray difference
between target and background.

The gray level of the target is affected by the surrounding area,
and the influence decreases with the increase of distance. So local
background (Chen et al., 2013) is more suitable for infrared target
simulation. We set the local background area to three times the
target area. With a definite SCR value, we can calculate the µT of
the target. Define a gray scale enhancement factor k as:

k = µT/Aveo (6)

Where, Aveo is the average intensity of the image patch for
latent short circuit that originated from the background image.
K is multiplied by the pixels in the image patch, the gray value
of the image patch increases, and a latent short circuit with a
certain SCR value can be obtained. To increase the diversity of
samples, the local SCR is randomly selected from an interval
[1.5, 8] according the research of Kim et al. (2012). This method
generates image patch from the infrared background image and
preserves the randomness of its gray distribution. Two generated
latent short circuit instances are shown in Figure 8.

For the obvious short circuit class, the gray scale distribution is
uneven. Affected by random factors, the gray scale distributions
are varied. But all the obvious short circuits have one thing in
common, that is, there is at least one high gray scale spot in the
gray scale distribution. An analogy between the spot and external
light source is introduced (Huang et al., 2019). Therefore, a high-
intensity spot in the obvious short-circuit area can be regarded as
an external light source, affecting adjacent areas. Through adding
an additional light source to the image patch for obvious short
circuit, we can simulate the diversity of gray scale distribution.

The templates of light source are collected from real infrared
images. Some of them are shown in Figure 9. A light source
template O is randomly selected, then smooth the template with
a mean filter as Eq. (7), a gray scale distribution template E can
be obtained.

FIGURE 9 | Templates of external light source for obvious short circuit class.

E = O ∗ X =
1

MN

∑

i

∑

j

O(x− i, y− j)X(i, j) (7)

Where, X is a mean filter, the heightM and the width N of X are
set 3, and ∗means the convolution operation.

The size of the synthetic patch for obvious short circuit P has
been known. Resizing the template E to the same size of P, we
obtained E1. We calculated the average gray value AveE1 of E1.
Then by Eq. (8), the gray difference template D was obtained.
Through adding pixels (Eq. (9)), the image patch P and gray
difference template D were fused to generate a unique gray
distribution for obvious short circuit.

D = E1 − AveE1 (8)

P1 = P + D (9)

The above operations strengthened the edge information of the
synthetic target. Continuity between the synthesized target and
its surrounding area should be maintained in image. Therefore,
before adding an external light source, we first reduced the pixel
value of P. In contrast to the simulation method of latent short
circuit gray scale distribution, a smaller SCR value was used to
reduce the gray scale. [0.1, 0.3] is an appropriate range obtained
by experience. Figure 10 shows the synthesis process of obvious
short circuit. The referenced light template is Figure 10A. The
synthetic obvious short circuit is generated on the background
in Figure 10D. Figure 10E shows some other synthetic images
that contain both obvious short circuit and latent short circuit in
pseudo color image.

The class of inlet and outlet can be annotated automatically
through threshold segmentation or edge detection of the
background image, that is not the focus of the work and we will
not describe it in this work.

3.3. Short Circuit Recognition for Mental
Electrorefining With Attention-Based
Faster R-CNN
In this section, we first explain the core components of the
Faster R-CNN in brief. Then the details of the proposed short
circuit detection system with attention-based Faster R-CNN is
described. Finally, the strategies of anchor parameters fine-tuning
and transfer learning in the system is explained.
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FIGURE 10 | Synthesis process of obvious short circuit class: (A) An external light source template. (B) Gray scale distribution template after average filtering. (C)

Difference in template after being resized. (D) Synthetic obvious short circuit instance based on the external light source template. (E) Examples of synthetic infrared

image with obvious short circuit instance and latent short circuit instance.

FIGURE 11 | The flowchart of our proposed short-circuit electrode recognition system with attention-based Faster R-CNN.

3.3.1. Architecture of Faster R-CNN
The Faster R-CNN firstly traverses the feature map of infrared
image to distinguish objects from the background irrespective
of class, accompanied by bounding box regression to generate
region proposals of variable sizes. Then, region proposals
are resampled to a fixed-sized box to ensure scale-invariance
for categorization. Faster R-CNN consists of three functional
components (Figure 11): feature map extraction, region proposal

network (RPN) and Fast R-CNN. Convolutional network VGG-
16 model (Simonyan and Zisserman, 2014) is used as a backbone
to extract feature maps. The extracted feature maps are shared
by the RPN and Fast R-CNN. RPN utilize multiscale anchors
boxes strategy to generate region proposals from the feature
maps. Firstly, the feature maps convolued with a 3 × 3 slide
window. Then, on the resulting feature map, nine anchors
boxes with 3 basic scale (1282, 2562, 5122) and 3 aspect rations
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(0.5, 1, 2) are simultaneously generated at each pixel. Feature
maps of these anchor boxes are mapped to feature vectors by two
1 ∗ 1 convolutional kernels, and these feature vectors are used
to perform preliminary regression and classification through a
fully connected layer. The full connection layers preliminary
judge whether there is a target in the anchor box and compute
the coordinates of these bounding box. Positive anchor boxes
are as recommended region proposals from the input feature
maps. Region proposals and the feature maps obtained from
convolution layers are fed into Fast R-CNN to perform object
classification and bounding box regression.

Although the Faster R-CNN significantly improves detection
performance and reduces calculation time through region
proposals, it is difficult to detect the small scale targets, like latent
short circuits in the infrared images. Because the infrared images
lack detailed information, features of small scale latent short
circuit are often lost in the sampling process of convolutional
networks, which leads to missed detection of the latent short
circuit. Compared with false detection, missed detection of the
short circuit fault brings greater economic loss and security threat
to the electrolytic process.

3.3.2. Attention-Based Faster R-CNN for Small Latent

Short Circuit
We introduced attention mechanisms for small scale infrared
object detection by combining U-Net and Faster R-CNN.
Precisely, the attention module integrate the semantic
information of U-Net and the synthetic infrared images to
focus on small targets. The architecture is shown in Figure 11.
U-Net has a good performance on pixel-wise predictions of small
scale objects, so the net is adopted to handle the synthetic images
first. U-Net’s encoding features and decoding results are skip
connected at different scales, realizing pyramid feature fusion
and enriching the learned semantic features of small objects.
And up sampling restores the edge information of feature image.
Thus, the segmentation result of U-Net and the corresponding
synthetic images are used as the two inputs of the attention
mechanism. The attention module is also given in Figure 11,
result of U-Net and synthetic image perform pixel added after
1 × 1 convolution. The result is activated by ReLu and then
goes through sigmoid module, the attention coefficient α is
obtained. The range of α is [0, 1], if the coefficient is close to 1,
the pixel is related to the target characteristics. By concatenating
the attention coefficient and the synthetic images, we fuse the
semantic information of small objects to the infrared synthetic
images. These fused label infrared images then are fed into the
Faster R-CNN as the second step of our training procedure.

3.3.3. Anchor Parameters Fine-Tuning for Small

Latent Short Circuit
Note that the purpose of using a set of artificially anchored boxes
in RPN is to deal with different scales and aspect ratios of objects
(Ren et al., 2017). In the original Faster R-CNN, 9 anchor boxes
with 3 scales and 3 ratios were used by default. The default
basic scales are (1282, 2562, 5122) and the default aspect rations
are (0.5, 1, 2). A region proposal is identified by comparing the
intersection-over-Union (IoU) overlap of each anchor box with a

ground-truth target. The anchor boxes with a high IoU or which
satisfy a criterion are assigned as positive.

Such parameter settings may be more applicable to an image
datasets, in which targets come in relative large sizes and similar
aspect ratios. However, in our application, the sizes of the four
kinds of targets are relatively small and the aspect ratios vary
greatly. The aspect ratios of latent short circuits are approximate
to 1.5, while the aspect ratios of obvious short circuits are usually
larger than 2. If the size of the anchor boxes is far larger than
that of the ground-truth target, it may lead to any anchor box
which can not meet the IoU requirements. Thus, there will be
no regional proposal. Furthermore, it causes small-sized targets
to fail detection. If the aspect ratio parameter of the anchor
boxes are not set properly, the anchor boxes cannot reflect the
target shape better, which will also affect the detection accuracy
(Sun et al., 2018).

We tuned anchor parameters according to the actual target
size. We increase the number of anchors from 9 to 15 by
expanding the aspect ratio and reducing the basic size of
anchors. The anchors sizes are (82, 162, 322), and five aspect
ratios (0.5, 1, 2, 4, 5) are setted. In our problem, this improvement
is mainly used to avoid missed detection of the latent short
circuit class.

3.3.4. Transfer Learning for Infrared Dataset
Infrared images contain less information compared to visible
images, like information about color and texture. Convolutional
layers are the most important part to extract feature information
by multiple convolutional kernels. Concretely speaking, the
shallower convolutional layers can extract lower-level features
like edges and hot spots, but deeper layers can extract semantics
information that are more important for object recognition.
So a transfer learning strategy is adopted. The shallow layers
weights of the pre-training model VGG-16 were frozen, and
the deep layers weights were retrained. The number of frozen
layers was obtained by comparing the results of multiple
training. Architecture and the parameter settings of the shared
convolutional layers of the VGG-16 are illustrated in Table 3,
and the architecture of the RPN and Fast R-CNN are shown in
Tables 4, 5, respectively, the content in brackets is the input of
the network.

4. EXPERIMENT

In this section, evaluation metrics are introduced first. Then we
conduct three experiments. In the first experiment of section
4.2, with a variable-controlling approach we study how each
variable of synthesis affects the detection performance of the
neural network and verify the effectiveness of the proposed
sample synthesis method. In the second experiment of section
4.3, different synthesis methods are compared. Finally, the
comparison of original Faster R-CNN (Ori-Faster R-CNN) v.s.
Faster R-CNN with anchor parameter fine-tuning (Fin-Faster R-
CNN) v.s. Attention-based Faster R-CNN (Att-Faster R-CNN)
v.s. U-Net is in section 4.4, also, the short circuit detection
result are showed. All the experiments were trained on synthetic
samples and texted on actual images.
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TABLE 3 | Transfer learning settings in the feature extractor in Figure 11.

Layer type Filters Size of kernel Parameter setting

Input image

1-1st Conv 64 3× 3× 3 Frozen

1-2nd Conv 64 3× 3× 64 Frozen

Max pooling layer

2-1st Conv 128 3× 3× 64 Frozen

2-2nd Conv 128 3× 3× 128 Frozen

Max pooling layer

3-1st Conv 256 3× 3× 128 Frozen

3-2nd Conv 256 3× 3× 256 Trainable

3-3rd Conv 256 3× 3× 256 Trainable

Max pooling layer

4-1st Conv 512 3× 3× 256 Trainable

4-2nd Conv 512 3× 3× 512 Trainable

4-3rd Conv 512 3× 3× 512 Trainable

5-1st Conv 512 3× 3× 512 Trainable

5-2nd Conv 512 3× 3× 512 Trainable

5-3rd Conv 512 3× 3× 512 Trainable

TABLE 4 | Architecture of the RPN in Figure 11.

Layer type Filters Size of kernel

[5-3rd Conv]Input layer

RPN Conv 512 3× 3× 512

Classification convolutional layer(softmax) 30 1× 1× 512

[RPN Conv]Regression convolutional layer 60 1× 1× 512

TABLE 5 | Architecture of the classifier in Fast R-CNN in Figure 11.

Layer type Size of output

[5-3rd Conv] [RPN proposal region]Input layer

RoI Pooling 7× 7× 512× 32

1st fully connected layer 4, 096× 32

2nd fully connected layer 4, 096× 32

Classification fully connected layer(softmax) 32× 5

[2nd fully connected layer]Regression convolutional layer 32× 16

4.1. Quantitative Metrics
Precision-recall (PR) curves of four classes of objects are used for
result evaluation. The curve plots the precision against the recall
rate of a detector, and it is a visual representation of an algorithm’s
performance. A detector with a higher precision and a higher
recall rate indicates a better discrimination ability. Precision and
recall rate are defined as follows:

Precision = tp/(tp+ fp) (10a)

Recallrate = tp/(tp+ fn) (10b)

Where tp represents the number of true positives, and fp
represents the number of false positives. fn denotes the number

of false negatives. Positive data and negative data mean the four
types of detection objects and background region, respectively. A
false positive case refers to the case where background ismistaken
as a target or one kind of target is mistaken as another kind. A
false negative case refers to the case where true positive data is
error detected.

Mean Average Precision (mAP) of different classes of objects
is used for result comparison. A mAP score is the mean of the
average precision (Ap) for each class. The definition of AP is
defined as:

AP =

∫ 1

0
p(r)dr (11)

Where, p is the precision rate, and r is the recall rate. In our
work, mAP score is reported using an intersection-over-union
(IoU) threshold at 0.65. The bigger the mAP score, the better the
detection result.

4.2. Key Variables Assessment for
Synthesis
The significance of the background for target recognition has
been studied in visual images, while the other two key variables
(variable 1:shape and variable 2:gray scale distribution) effects
on synthetic data are less understood. We designed a similar
ablation experiment to study how each key variable influenced
the synthesis process. The activation ratio of key variables in
the dataset was controlled, and then the dataset was used to
train the Faster R-CNN. The concept of activation here means
that in a training set, the key variable of a specific proportion
of samples satisfy diversity, and the variable of the remaining
samples are kept constant. Through comparing the effects of
different datasets on detection and recognition performance of
Faster R-CNN, we analyze the robustness of the key variables.

We first generated an infrared cell image dataset (ICID) as a
reference dataset using the procedure we described in section 3.2.
ICID contains 1,4257 synthetic images (resolution≈ 70 × 280)
and 4 categories of targets: inlet, outlet, obvious short circuit,
latent short circuit. We also generated extra 8 annotated datasets
where each key variable was active for 30, 50, 70, and 90% of the
images, respectively, the numbers of samples are in parentheses
in Table 6. To prove the effectiveness of the synthetic sample,
we added 200 hand-annotated real images into the ICID to
form a new dataset. The 10 datasets were fed to Faster R-CNN,
respectively, and then the network tested on realistic electrolytic
cells images to recognize the targets.

Table 6 shows the mAP scores of the Faster R-CNN trained
on the 10 datasets. Reducing the activation ratio of the two
key variables in dataset yields dramatic performance drop, which
illustrates the significant impact of the two key variables toward
the networks feature learning ability. But when more than 50% of
the samples meet the diversity of each key variable, the growth
value of mAP increases slowly. When 50% of the images are
considered about the shape diversity (variable 1), the score is
reduced by 8% compared to the reference dataset ICID; while
for gray scale distribution (variable 2), the score is reduced only
by 2%. It suggests that the networks learning is obviously more
sensitive to target shape change, But the gray scale distributions
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TABLE 6 | mAP score of the Faster R-CNN trained on synthetic datasets with different key variable activation ratio.

Datasets with key variable activated Activation ratio

30% activated 50% activated 70% activated 90% activated

Variable 1 0.556 (15,649) 0.582 (15,640) 0.585 (14,578) 0.592(14,624)

Variable 2 0.578 (14,520) 0.617 (14,481) 0.619 (14,500) 0.621 (14,510)

ICID (14,257) 0.632

ICID+Real images (14,457) 0.878

FIGURE 12 | (A) Distribution of the two types short circuits with respect to aspect ratio. (B) Distribution of the two types short circuits with respect to SCR value.

have a greater effect on learning than target shape, as the absolute
value of the increase is larger. Especially whenmore samplesmeet
the diversity of gray scale distribution, the mAP is close to that
of ICID. It means that the key variables of the goal we defined
are accurate, After training on ICID, a mAP score of 0.632 is
obtained. The score increases to 0.878 when real images are added
in. It suggests that the proposed synthetic method is effective and
available at the beginning for deploying CNNs on practice metal
scenario. The synthetic method helps avoid the laborious work of
manually annotating large numbers of images.

Figure 12 shows the distribution of the two types of short
circuits with respect to aspect ratio and SCR values in ICID.
As aspect ratio determines the diversity of key variable 1, and
similarly, SCR value determines the diversity of key variable 2
in our proposed synthetic method. Obvious short circuit class
accounts for 60% of synthetic target number; the range of
aspect ratio and SCR of obvious short circuit class are both
obvious wider than latent short circuit, and the distribution
is uniform.This indicates that the diversity of samples is
guaranteed by a wide range of key variable values and uniform
distribution of sample numbers. This is in accord with the actual
engineering case.

4.3. Comparison of Data Synthesis Method
In this section, in order to compare the performance of different
synthesis methods, Faster R-CNN trained on 8 training sets that
generated with different methods listed below and tested on real
cell images. We manually annotated 200 real images and used
the four commonly methods M1, M2, M3, and M4 to augment
the labeled images respectively. In M1, random visible light
images were used to replace the electrolytic cell background while
preserving targets. The set ICID was generated automatically
without the aid of any labeled images by using our proposed
method (OM).

• M1:Random background (Björklund et al., 2019)
• M2:Flipping
• M3:Color casting
• M4:Noise
• Fusion1: Fusing M2, M3 and M4.
• OM: ICID generated by the propsed synthetic method
• Fusion2: Fusing ICID and M2, M3 and M4.
• Baseline: 200 real image.

Table 7 shows the short circuit detection and recognition results
with different data augmentation methods. Compared with the
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TABLE 7 | Test results of different data sugmentation methods.

Methods mAP Obvious short circuit Latent short circuit Inlet Outlet

M1 0.295 0.313 0.002 0.428 0.437

M2 0.493 0.606 0.006 0.679 0.680

M3 0.423 0.427 0.005 0.623 0.635

M4 0.473 0.613 0.006 0.628 0.646

Fusion1 0.552 0.620 0.007 0.791 0.790

OM 0.669 0.871 0.007 0.891 0.905

Fusion2 0.672 0.883 0.007 0.890 0.907

Baseline 0.421 0.425 0.006 0.621 0.633

FIGURE 13 | The influence of transfer learning on the training of the Faster R-CNN: (A) Loss of the original Faster R-CNN with number of iterations. (B) Loss of the

transfer learned Faster R-CNN with number of iterations.

Baseline, all methods improve the performance of short circuit
detection except M1. That is because the backgrounds of short
circuits are cell surfaces with complex thermal distribution. There
is spatial continuity and gray correlation between targets and
backgrounds, which can not be learned from other backgrounds.
M2, M3, M4, and Fusion1 improve the mAP by 17.1%,4.75%
12.3%, and 31.1%, while the number improved by OM is 58.9%.
Fusing the method OM with M2, M3, and M4 does not make
a significant difference in detection performance, like the values
with the gray shade in Table 7. Compared with other methods,
our proposed synthesis method does not rely on any pre-
annotated images at all, which is our original intention, that is,
to solve the problem of lack of engineering samples effectively
and labor-saving. At the same time, we note that in the table,
the network’s detection performance for latent short circuit has
been kept at a low level. That is the subject to be discussed in our
next experiment.

4.4. Accuracy of the Short Circuit
Detection System
In this part, we verify our proposed short circuit detection
system with attention-based Faster R-CNN(Att-Faster R-CNN).

The method proposed in this paper can effectively improve
the recall rate of latent short circuit while still maintaining
a relative high detection accuracy about obvious short circuit
class. To prove the advantage of our algorithm, we compared
it with original Faster R-CNN (Ori-Faster R-CNN), Faster
R-CNN with anchor parameter fine-tuning (Fin-Faster R-
CNN), and U-Net. All experiments were performed under the
same environment.

We evaluated the performance by training all models on
ICID and tested on real cell infrared images. In the fine-tuning
strategy, instead of 9 anchors with a basic size of 128 × 128,
256 × 256 and 512 × 512 and 3 aspect rations (0.5, 1, 2) used
for the PRN (Ren et al., 2017), we increased the number of
anchors to 15 referring to the settings of Kim et al. (2018).
The anchors sizes are 8 × 8, 16 × 16 and 32 × 32 and
the five aspect ratios include 5 : 1, 4 : 1, 2 : 1, 1 : 1, and 1 : 1.5.
In the Fast R-CNN classification part, an RoI is treated as
foreground with the threshold of IoU = 0.65. This choice
respects the need for precise fault location in the engineering
field. Transfer learning strategy is illustrated in Table 3, the
weights of the first five layers from VGG-16 were frozen, and
the rest of the layers were retrained. PR curves and RoC curves
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FIGURE 14 | (A) PR curves of the Ori-Faster R-CNN. (B) PR curves of the Fin-Faster R-CNN. (C) PR curves of the Att-Faster R-CNN. (D) RoC curves of Att-Faster

R-CNN and U-Net for latent short circuit detection, on the x-coordinate, we replaced FPR with total false positive number.

TABLE 8 | The four class of targets average precision of Faster R-CNN with different anchor parameter setting.

Method Obvious short circuit Latent short circuit Inlet Outlet mAP

Ori-Faster R-CNN 0.872 0.006 0.898 0.907 0.671

Fin-Faster R-CNN 0.815 0.460 0.907 0.908 0.772

Att-Faster R-CNN 0.715 0.773 0.887 0.931 0.826

U-Net – 0.752 – – –

are adopted to illustrate the detection performance. Sum losses
of the four class objects are used to indicate the efficiency of
transfer learning.

Figure 13 shows the learning loss of the Faster R-CNN with
and without transfer learning. The loss curve of the original
Faster R-CNN converges around 1000 iterations, while the
loss curve of the transfer learned Faster R-CNN converges
at around 1500 iterations. At the beginning of the training,
the gradient descent of our network is slow but stable,
whereas the gradient of the original network soon drops to
a stable value. It reveals that the transfer learned network
can learn more general characteristic information from the
dataset.

Figures 14A–C presents the detailed comparisons of three
sets of PR curve for the four classes of objects, respectively

with Ori-Faster R-CNN, Fin-Faster R-CNN, and Att-Faster
R-CNN. Furthermore, comparision of small latent short circuit
detection results with Att-Faster R-CNN and U-Net is also
provided in Figure 14D. In conjunction with Figure 14 and
Table 8 it can be observed that all models show the best detection
performance on classes of inlet and outlet. Fin-Faster R-CNN
can alleviate the difficult detection problems of latent short
circuit, but keep a high recall rate need to sacrifice the precision.
It is a dilemma for engineering management. Att-Faster R-CNN
shows the best detection performance for latent short circuit.
Because the attention mechanism integrates more semantic
information about latent short circuits into the synthetic sample,
aided by the variable anchor scale, the Att-Faster R-CNN
can show a stable high precision at a high recall rate. Fin-
Faster R-CNN and Att-Faster R-CNN both exhibit precision
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FIGURE 15 | (A) Short circuit detection result with original Faster R-CNN. (B)

Short circuit detection result with Faster R-CNN with anchor parameter

fine-tuning. (C) Short circuit detection result with attention-based Faster

R-CNN.

decline for obvious short circuit class. It is an acceptable
decrease of accuracy under the premise that miss detection

of short circuits has a more serious impact on production.
In Figure 14D, reliability of Att-Faster R-CNN is superior
to U-Net, The promising results validate the effectiveness

of the proposed attention mechanism for latent short
circuit detection.

Figure 15 illustrates the detection results with the three Faster
R-CNN network in three same scene, respectively. Attention-
based Faster R-CNN able to accurately detect more latent short
circuit. Whereas, the result with Ori-Faster R-CNN and Fin-
Faster R-CNN lists more false negatives in the red box.

5. CONCLUSIONS

This work focused on short circuit detection in infrared image of
metal electrolysis scene with CNNs. An infrared image synthetic
method is proposed to automatically generate labeled infrared
dataset ICID by simulating key variables of the scenario that
affect the diversity of samples. Additionally, attention-based
Faster R-CNN is proposed and used to design the short circuit
detection system. In the system, an attention module integrates
the semantic segment results of U-Net with the synthetic ICID
to obtain rich representation ability on the infrared images.
Combined with strategies of anchor parameters fine-tuning and
transfer learning, the detection system can efficiently avoid the
missed detection of a latent short circuit, and the performance is
superior to the original Faster R-CNN and U-Net. The proposed
method is specifically dedicated to metal electrolysis scenes, but
the methodology of mining targets’ key variables to automatically
synthesize samples will be further extended to other application
areas and training algorithms.
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