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The human hand plays a role in a variety of daily activities. This intricate instrument

is vulnerable to trauma or neuromuscular disorders. Wearable robotic exoskeletons

are an advanced technology with the potential to remarkably promote the recovery of

hand function. However, the still face persistent challenges in mechanical and functional

integration, with real-time control of the multiactuators in accordance with the motion

intentions of the user being a particular sticking point. In this study, we demonstrated

a newly-designed wearable robotic hand exoskeleton with multijoints, more degrees of

freedom (DOFs), and a larger range of motion (ROM). The exoskeleton hand comprises

six linear actuators (two for the thumb and the other four for the fingers) and can

realize both independent movements of each digit and coordinative movement involving

multiple fingers for grasp and pinch. The kinematic parameters of the hand exoskeleton

were analyzed by a motion capture system. The exoskeleton showed higher ROM of

the proximal interphalangeal and distal interphalangeal joints compared with the other

exoskeletons. Five classifiers including support vector machine (SVM), K-near neighbor

(KNN), decision tree (DT), multilayer perceptron (MLP), and multichannel convolutional

neural networks (multichannel CNN) were compared for the offline classification. The

SVM and KNN had a higher accuracy than the others, reaching up to 99%. For the online

classification, three out of the five subjects showed an accuracy of about 80%, and one

subject showed an accuracy over 90%. These results suggest that the new wearable

exoskeleton could facilitate hand rehabilitation for a larger ROM and higher dexterity and

could be controlled according to the motion intention of the subjects.

Keywords: exoskeleton, surface electromyography, gesture recognition, wearable robots, hand rehabilitation

INTRODUCTION

The human hand plays a role in a variety of daily tasks. This delicate instrument is vulnerable
to trauma or neurological or musculoskeletal disorders. Stroke, for example, could heavily affect
hand function (Hu et al., 2018; Burns et al., 2019; Chowdhury et al., 2019). Over 85% of the
post-stroke individuals reported that they could not control their hand freely for dexterous
manipulation over 8 months after the onset of stroke. Hand rehabilitation, typically by intensive
motor training for restoring hand function, would be one of the most urgent demands in
post-stroke survivors, particularly for those who desire to maintain a high quality of life.
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Effective rehabilitation requires repetitive passive and active
training, which could not be fully conducted face-to-face or
hand-by-hand by therapists. A robotic hand exoskeleton can
provide high training intensity, stable working performance, and
adaptive movement assistance for functional training; thus it has
been proven to be an effective technology for hand rehabilitation
(Leonardis et al., 2015; Li et al., 2019). However, due to the
compact dimensions, structural complexity, and high flexibility,
developing a satisfactory hand exoskeleton and to freely control
it in real-life scenarios is still a challenging task (Palm and Iliev,
2007).

From structure design, the hand exoskeleton could be divided
into pneumatic, glove-based, and linkage-based exoskeletons.
The pneumatic exoskeleton is easy to control, but is difficult to
perform flexible finger movement (Gerez et al., 2020; Takahashi
et al., 2020). Glove-based exoskeletons are usually more supple
and comfortable to wear; but due to the coverage of the glove, it
blocks the direct contact of the object and, thus, disturbs tactile
feedback (Sarac et al., 2019). The linkage-based exoskeletons use
mechanical links to connect the finger components, either by
fingertip contact or by full contact with the hand. With fingertip
contact, the advantage is that the position of the fingertip can be
precisely controlled and, thus, suitable for all hand sizes; but the
disadvantage is that the contact areas between the exoskeleton
and the fingertip are quite limited and it is, thereby difficult
to generate high force output. By full contact there are larger
contact surfaces and closer interactions between the human
hand and the exoskeleton, enabling more powerful assistance,
enhanced working stability, and comfortable feeling during hand
rehabilitation. Most existing hand exoskeletons have drawbacks
in the clumsy control of the thumb. The human hand has a
flexible thumb but most of the hand exoskeletons use only one
actuator to control thumb movement (Li et al., 2016; Burns
et al., 2019; Gasser et al., 2020). The flexion/extension of the
fingers and the abduction/adduction of the thumb are two of
the most important exercises to improve hand function (Gerez
et al., 2020). An intriguing issue is how to design an exoskeleton
with more than one actuator for the thumb to realize both
flexion/extension and abduction/adduction.

Another issue is how to control the hand exoskeleton
according to the movement intention of the patients. Surface
electromyography (sEMG) is a non-invasive technology, which
has been widely used in human-robot interaction and clinical
examinations (Cote-Allard et al., 2019). The sEMG reflects
muscle activations under the modulation of the central nervous
system. Recording and processing of sEMG signals may help
identify motion intention and provide key information for
real-time control of hand exoskeleton (Li et al., 2018). Most
exoskeleton hands controlled by sEMG adopt the strategy
of mirror therapy principle, which suggests decoding the
motor intention of the stroke patients from the non-paretic
muscles because of their relatively normal function (Emerson
et al., 2016). Several algorithms have been developed for
sEMG processing, motion intention decoding, and exoskeleton
control. But it is still challenging to realize online sEMG
processing, time-varied motion intention, and real-time control
for multiactuator exoskeletons.

This study presents a newly-designed wearable robotic hand
exoskeleton with more active degrees of freedom (DOFs),
larger range of motions (ROMs) for most joints, and the
capability of being freely controlled by motion intention. The
human finger is in full contact with the mechanical shells,
and totally six linear actuators are adopted, generating high
output forces for each digit. The thumb is controlled by two
actuators to perform circumduction and adduction/abduction.
The proximal interphalangeal (PIP) and distal interphalangeal
(DIP) joints are driven by coupled links. Motion intentions for
controlling the exoskeleton were decoded by the sEMG from
the muscles of the non-paretic arm and hand. Patients could
use this hand exoskeleton for repetitive training of grasping,
pinching, individual finger control, thumb adduction/abduction,
and thumb circumduction.

METHOD

Hand Exoskeleton Design
The structure of the hand exoskeleton is shown in Figure 1.
Thumb and fingers were connected to the palm back platform
through a linkage. The finger was designed ergonomically
following finger motion trajectories. The design allowed
independent movement of the thumb and the four fingers,
and circumduction, abduction, and the palm opposite for the
thumb. Each finger was driven by a linear actuator, and the
thumb was driven by two linear actuators. The mechanical
structure was designed and simulated using Solidworks
(Dassault Systems, USA), and was made from resin by
3D printing.

The palm back shell covering the wrist and the back
of the hand was made of thermoplastic materials. The
blank was first shaped and was then soaked in hot water
to be softened up, fitting it to the hand of the users.
The exoskeleton weighs 500 g, was fixed upon the palm
back shell, and is convenient to wear. Six linear actuators
(Actuonix, L12-50-210-12-p) with matching control boards were
applied to drive the exoskeleton. The operating distance of
the linear actuators was controlled by voltages. The linear
actuator with a length of 102mm and weight of 40 g can be
bidirectionally driven.

Each finger has three shells, connected by a linkage rod.
As shown in Figure 1B, when the linear actuator reciprocates,
the linkage rod transmits force to the finger shells, driving
a motion for abduction/adduction. The exoskeleton fingers
were designed following the anatomic characteristics of human
fingers. Considering the thumb has higher DOFs than the
fingers, the newly-designed exoskeleton adopted a more flexible
structure for the thumb that can facilitate the thumb for inward
rotation, grasping, and abduction. The force of the actuator
can directly act on the carpometacarpal joint (CMC) or the
metacarpophalangeal joint (MCP). When the force acts on the
CMC joint, the wrist and palm joints move first, and as the
CMC joint contacts the object, the movement of the CMC joint
can be blocked so that the control of the tip of the thumb is
not flexible enough. When the force acts on the MCP joint, the
flexibility of the thumb could be increased, but this design is
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FIGURE 1 | The mechanical design and realization of hand exoskeleton. (A) The mechanical design of the exoskeleton; (B) mechanical structure of exoskeleton index

finger; (C) prototype of the hand exoskeleton.

not suitable for grasping relatively bigger objects. The newly-
designed exoskeleton did not follow any of these designs. Instead,
the force of the new exoskeleton acts on the MCP and PIP
joints of the thumb. The joint movement of CMC was driven
by the friction of the sliding structure. The ROMs of the MCP
and PIP joints were confined to avoid bending the grasped
object. When the sliding structure moves, the CMC joint can
be pushed forward until blocked by the grasping object. Then
the force of the linear actuator accumulates on the MCP and
PIP joints. The sliding part of the linkage structure helps extend
the ROM of the thumb. Two linear actuators were used to
control the movement of the thumb in the vertical planes so
that the thumb can complete a circumduction. The schema of
the control system for the exoskeleton is shown in Figure 2.
This exoskeleton can be controlled by sEMG of the non-paretic
forearm and hand following the mirror therapy principle. To
examine the performance of the hand exoskeleton, the classifiers,
and the real-time control, we set a sequence of experiments
(specified in Experiment for hand exoskeleton performance
to Experiment for real-time control of an exoskeleton). All
these experiments were approved by the Institutional Review
Board of Shandong University and were in accordance with the
Declaration of Helsinki.

Experiment for Hand Exoskeleton
Performance
The experiment was performed to examine the performance
of the hand exoskeleton. A 3D motion capture system (Opti
Track Motive, USA) with six cameras and clusters of reflective
markers was used to collect the movement trajectories of the
robotic finger joints. There were five reflective markers attached
to the exoskeleton fingertips, six markers on the joints of
the exoskeleton fingers, and three marks for coordinates of
linear actuators (Figures 3A,B). Initially, all the digits of the
exoskeleton were fully extended. Once a start command was
received, the exoskeleton ran for a full movement cycle, that is,
the thumb and the four fingers flexed to their extreme positions
and then extended back to the initial positions. The test process
consists of five cycles (Figures 3A,B). A representative subject
participated in the experiment. The subject was instructed to
perform flexion and extension of the thumb and fingers for
five tries. The marker sets were demonstrated in Figure 3C.
Specifically, five markers were attached to the fingertips, and
six markers were attached to the joints of the index finger
and little finger (Figure 3C). The movement trajectories of the
fingertips and the index finger joint angles of the exoskeleton
were calculated to evaluate the ROM of the exoskeleton. To
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FIGURE 2 | Schema of the control system for the hand exoskeleton based on non-paretic sEMG processing and offline-to-online classifications.

calculate the joint angle, two adjacent markers formed a vector,
and the joint angle was the angle between the two adjacent
vectors. The ROMs were computed as the changes of joint
angles frommaximal flexion to full extension and compared with
existing exoskeletons.

Experiment for Classifier Selection
Twenty-five healthy right-handed subjects (age = 23.2 ± 1.7
y, 12 women and 13 men) participated in the experiment. The
subjects were informed of the purpose of the experiment and
were given an informed consent form before the experiment.
In total 16 muscles of the left and right hands were selected
for the sEMG analysis. The muscles included the following:
brachioradialis (BRA), flexor carpi ulnaris (FCU), flexor carpi
radialis (FCR), extensor digitorum communis (EDC), flexor
digitorum superficialis (FDS), abductor pollicis brevis (APB),
first dorsal interosseous (FDI), and abductor digiti minimi
(ADM), for both the left and right hands (Figure 4A). The
sensors were attached to the muscle bellies, and the skin was
cleaned with scrub and medical alcohol before attachment.
The sEMG signals of the 16 muscles were recorded using the
TrignoTM wireless EMG system (Delsys, USA) at a sampling
frequency of 1,000 Hz.

Four hand gestures, clenched fist (CF), thumb opposition
(TO), key pinch (KP), and three fingers flexion (TFF)
were selected as representative gestures in this experiment
(Figure 4B). These gestures have been commonly used in
hand gesture recognition in human-robot interaction and
rehabilitation (He et al., 2017; Yu et al., 2018). The initial
position for the four gestures was that the thumb should keep
full extension whereas the fingers should be flexed. After hearing
a command, subjects were instructed to perform a gesture with
both hands and maintain this gesture for 8 s without much effort.

The performances of the four gestures were randomized. Each
gesture was repeated for 10 trials, with a rest period of 7–10 s
between trials and 1–2min between gestures.

To better understand the muscle activations of different
gestures and provide a reference for muscle selection, a
co-contraction index (CI) was calculated as follows:

CI =
1

T

∫
T
Aij(t)dt (1)

where, Aij is the overlapping of sEMG envelopes of muscle i and
muscle j, and T is the length of the sEMG envelope (Frost et al.,
1997). The CI represents the level of the common contraction
phase of the two muscles, ranging from 0 (no overlap) to 1 (full
overlap) (Hu et al., 2009). The length of the sEMG segment
was 500ms, taken from the initial part of the datasets for each
gesture. The sEMG signals subtracted the SDs of the envelopes
of the averaged sEMG signals at the relaxed state and were then
low-pass filtered using a fourth-order Butterworth filter with a
cutoff frequency of 10Hz. The data were standardized according
to the maximum and minimum values of the data segments.
The averaged CIs of the muscle pairs were calculated for each
gesture, and then an 8×8 CI matrix was formed for the total
eight muscles.

Five classifiers were used for hand gesture recognition.
The sEMG signals were recorded from the BRA, FCU,
FCR, EDC, FDS, APB, FDI, and ADM of the left forearm
and hand. Five classifiers including support vector machine
(SVM), K-near neighbor (KNN), decision tree (DT), multilayer
perceptron (MLP), multichannel convolutional neural networks
(multichannel CNN) were applied for classifying the CF, TO, KP,
and TFF. A sliding window was used to extract features from the
original signals. The window width was 128ms and the sliding
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FIGURE 3 | The reflective marker sets for kinematic analysis of the hand exoskeleton. (A) The top view of the marker sets; (B) the profile view of the marker sets; (C)

the marker sets for the human hand.

FIGURE 4 | The muscles selection and hand gesture recognition. (A) The eight muscles of the bilateral forearms and hands; (B) the gestures for classifier selection;

(C) the gestures for real-time control of exoskeleton.

distance was 78ms. We selected 13 specific features including
zero-crossings (ZC), root mean square (RMS), mean absolute
value (MAV), waveform length (WL), variance (VAR), slope
sign change (SSC), Willison amplitude (WAMP), mean value
(MEAN), the standard value (STD), mean frequency (MNF),
median frequency (MF), mean power frequency (MPF), and
Lempel-Ziv complexity (LZC). The ZC, RMS, MAV, WL, VAR,
SSC, and WAMP have commonly used time-domain features
(Hua et al., 2020; Qu et al., 2020; Wu et al., 2020; Duan et al.,
2021). In addition to these parameters, we further calculated the
MEAN and STD, so that the time-domain features reached nine.
Considering the limitation that the time-domain parameters
are vulnerable to the noise or interference to amplitudes, the
frequency-domain features were selected, including MNF, MF,
and MPF. Furthermore, LZC was selected to examine the non-
linear characteristics of the signals. All these parameters could
provide abundant information with low computing costs and
good real-time performance. Among all the sEMG data, we
used 80% of the data as the training set and the other 20%
for verification. The classifiers were trained based on the sEMG
signals for each subject individually.

The SVM with a linear kernel that could easily deal with high
dimensional representation was used (De Smedt et al., 2019).
The details of SVM are as follows: a one-vs-rest strategy was
used and a G-binary-classifier was obtained, where G was the
number of different gestures in the experiment. The KNN is a
machine learning classification algorithm, which calculates the
distance to all the training samples, and selects the k-closest
samples (Amin et al., 2019). The DT builds classification or
regression models in the form of a tree structure. It breaks down
a dataset into smaller and smaller subsets while at the same time
an associated DT is incrementally developed. According to the
DT algorithm, the final result is a tree with a great many decision
nodes (Shengchang et al., 2017). In this study, the split criterion
was the Gini index and the maximum number of splits was 100.

The network of MLP included an input layer with 104 nodes,
two hidden layers constructed by 40 nodes for each layer, and
an output layer with six nodes. The MLP followed a back
propagation (BP) algorithm. The infrastructure of CNN included
a convolution layer and a fully connected layer. The sEMG
signals were first transformed into a series of images for the
CNN network. For the eight muscles, each sEMG was segmented
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FIGURE 5 | The multi-channel CNN algorithm. Conv1, convolution layer 1; Conv2, convolution Layer 2; FC1, fully connected layer 1; FC2, fully connected layer 2.

with 200-ms windows with a sliding distance of 150ms, thereby
generating 200 × 8 images. The images were input into the
convolutional layer to extract features and, thus, reduce the
dimension followed by a classification from the fully connected
layer. The CNN network could be expanded tomultiple channels,
which could extract more patterns out of the sEMG signals. The
structure of multichannel CNN was shown in Figure 5. Each
channel has two convolutional layers and two pooling layers, with
different convolution kernels. A max-pooling was used for the
CNN to reduce the dimension of the convolutional features. A
rectified linear unit (ReLU) was used as an activation function
for the fully connected layer. The parameter of the dropout layer
was 0.5 to avoid over-fitting by randomly deleting the redundant
parts of the hidden layer.

Experiment for Real-Time Control of the
Exoskeleton
Five healthy subjects (age: 23.4 ± 1.9 year, one woman and four
men) participated in the experiment. Six wireless sEMG sensors
were attached to six muscles of their left hand, including the
EDC, FCU, FCR, BRA, FDS, and FDI. Subjects sat in front of a
testing table with their left hand laid on the table in a relaxed
state. In total seven hand gestures (as shown in Figure 4C)
were tested, including CF, TO, KP, and TFF. Four gestures were
performed in the prior offline tests, and three new gestures
which support grasping and manipulation and are commonly
used in hand rehabilitation training were added: ring finger
flexion (RFF), cylindrical grip (CG) and fingertips closed together
(FFCT) (Zheng et al., 2011; Chen et al., 2017; He et al., 2017;
Yu et al., 2018). The performance of each gesture included three
phases: a 3-s relax, a 77-s action phase, and a 3-s relax phase.
When performing the hand gestures, the subject was not allowed
to produce high-level force to maintain the gesture. Subjects
were given enough time for rest between trials and sessions.
Each gesture was repeated for three trials. After the classifier was

trained through offline classification, subjects were instructed to
perform two trials for the real-time classification.

The raw sEMG signals were recorded simultaneously at a
sampling frequency of 1,000Hz. The sEMG signals were analyzed
using the siding window technique that the window size was
128ms without overlap at the adjacent windows. About 54
classification results were achieved in each trial. The same
13 features as the abovementioned offline classification were
selected. The SVM was used for classification. To distinguish
the relaxation state from the gesture execution state, a threshold
was set for the relaxation state using the absolute value of
Teager Kaiser energy (TKE) (Solnik et al., 2010). The formula for
calculating the absolute values after TKE treatment is as follows:

xn = |x2n − xn−1xn+1| (2)

where xn is the sample point of sEMG signals, xn−1 and xn+1,
are the former and the latter sampling points, respectively. To
increase the classification performance, the classification results
were verified three consecutive times. If the results were the same
all three times, then the classification results could be accepted.
Otherwise, the classification analysis was performed again. The
programs for sEMG processing, classifiers, and real-time control
were realized using MATLAB (MathWorks, USA).

RESULTS

Figures 6A,B demonstrate the joint angles of the MCP, PIP, and
DIP of the exoskeleton and the index finger of a human subject
during flexion and extension, respectively. Results showed
that the MCP, PIP, and DIP joints of the exoskeleton index
finger at maximal flexion were 171.26◦, 119.57◦, and 157.56◦,
respectively. The ROMs of the MCP, PIP, and DIP joints of
the exoskeleton index finger were 8.74◦, 60.43◦, and 22.44◦,
respectively. Variations of the joint angles were small, showing
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FIGURE 6 | The joint angles and trajectories of the exoskeleton and human digits during flexion and extension. (A) The joint angles of the metacarpophalangeal joint

(MCP), PIP, and DIP of the exoskeleton index finger; (B) the joint angles of the MCP, PIP, and DIP of the index finger of a representative subject; (C) the trajectories of

the exoskeleton fingertips.

good repeatability. The ROMs of the exoskeleton of the current
study were compared with those of previous studies (Table 1)
(Iqbal et al., 2014; Kim et al., 2017; Refour et al., 2019). The PIP
and DIP joints of the new exoskeleton showed larger ROMs, but
its MCP joint showed smaller ROM than those of the previously
designed exoskeletons. The new exoskeleton set two activate
DOFs for the thumb, with one more DOF for the thumb than the
previously designed exoskeleton. This new design enables thumb
circumduction, in addition to the adduction/abduction for the
thumb, compared with the previous exoskeleton. Figure 6C

shows the movement trajectory of fingertips during digit flexion
and extension of the hand exoskeleton. The trajectories of the
five testing cycles overlapped, demonstrating a relatively stable
motion performance and good repeatability from trial to trial.
The trajectory of the thumb presents that the exoskeleton could
assist the thumb for circumduction (Figure 6C).

Results of sEMG analyses in Figure 7 showed the following:
(a) the averaged coordination matrices of the same hand gesture
were similar; (b) the coordination matrices among the forearm
muscles showed constant values across the different target
gestures than those among the handmuscles; and (c) thematrices
among the BRA, FCU, EDC, and FDS were different from those

among the muscles of the APB, FDI, and ADM. The CI values of
the forearm muscles were higher while performing the CF and
TFF gestures compared with the other gestures. The CI values
between the APB and the other muscles were lower for the TFF,
suggesting that lower intermuscular coordination than the other
muscle pairs for this gesture. The FDS had similar results as
performing the TO gesture. The BRA and EDC showed greater
values for CF, TO, KP, and TFF. There were high correlation
coefficients (which were 0.935, 0.903, 0.928, and 0.978 for CF,
TO, KP, and TFF) between the coordination matrices of the
left and right hands for the same hand gestures, indicating
that the muscles of both hands were activated following
similar patterns.

Results of offline classification accuracies for the 25 subjects
are shown in Figure 8A. The SVM and KNN showed
classification accuracies up to 99%; the MLP and DT showed
classification accuracy over 95%; whereas the CNN showed
accuracy just over 80%. Results of real-time control are
demonstrated in Figure 8B. The offline classification achieved
much higher accuracies than the online classification among
the five subjects. The online classification accuracy of a subject
(H4 subject in Figure 8B) was higher than 90%. The online

Frontiers in Neurorobotics | www.frontiersin.org 7 September 2021 | Volume 15 | Article 711047

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Li et al. Hand Exoskeleton Control by sEMG

TABLE 1 | Comparison between the new exoskeleton and some previous results.

Exoskeletons Finger Number Total Activate DOFs Activate DOFs of Thumb ROM of Index Finger

MCP PIP DIP

This study 5 6 2 8.74◦ 60.43◦ 22.44◦

Iqbal et al. (2014) 2 2 1 <30◦ NA NA

Refour et al. (2019) 5 6 1 35◦ 21◦ 13◦

Kim et al. (2017) 5 5 1 ≈13◦ ≈21◦ <5◦

FIGURE 7 | The co-contraction index (CI) matrices for the four gestures of the left and right hands.

classification accuracies for the H2, H3, and H5 subjects were
about 80%, but the accuracy for the H1 subject was lower than
50%. Figure 9 shows the classification accuracies of the seven
hand gestures for the five subjects. In general, the classification
accuracies for H3, H4, andH5were better than the other subjects,
and the TO and CG gestures achieved better classification
performance. Recognitions for FFCT, RFF, and KP gestures of
the four subjects were higher than the other gestures except
for H1. Figure 10 demonstrates the original sEMG signals and
the TKE signals of the BRA from a representative subject
(H4). The final classification based on TKE signals and the
three consecutive judgment algorithms had better performance
than the classification based on the raw sEMG signals. The
threshold was 0.005mv. By removing the peaks out of the original
classification results, although the calculation time for gesture
classification increased about 300ms, the final classification
results showed better reliability than the raw classification. The
real-time control of the exoskeleton used motion intention

extracted from sEMG is shown in a video; URL: https://figshare.
com/s/b3a2a1f3ac43172aba76.

DISCUSSION

In this study, we developed a novel wearable robotic hand
exoskeleton with multijoints, more active DOFs, larger ROMs
for most joints, and the capability of being freely controlled
by the motion intention. This hand exoskeleton is capable of
driving the thumb and four fingers independently and meets the
needs of hand function rehabilitation. Two linear actuators drive
the exoskeleton thumb, facilitating a more natural movement
of the thumb of the patients for abduction/adduction and
circumduction. In addition, the mechanical structure of the
exoskeleton could realize the hand functions such as grip and
pinch. Finger circumduction is the most difficult movement in
exoskeleton design because it requires the coordination of two
actuators in different directions. The changes of the exoskeleton
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FIGURE 8 | The online and offline classification accuracies. (A) The accuracies of the offline classification for classifier selection; (B) the accuracies of the online and

offline classifications for real-time control of exoskeleton using the support vector machine (SVM).

index finger angles in five cycles were similar to those of a human
hand. The similarity of the movement of the five cycles was very
high, indicating that the exoskeleton movement could be reliable
for motion training.

The exoskeleton in this study showed higher ROMs of the
PIP and DIP joints compared with the other exoskeletons,
except for the MCP joint that showed a lower ROM than
the previously designed exoskeletons. This design was inspired
by the human hand anatomic and functional characteristics.
Traditionally, exoskeletons mainly exert force on the MCP joint,
resulting in relatively larger ROM for the MCP but smaller ROM
for the PIP andDIP. During human grasping, the ROMof the PIP
and DIP joints are relatively higher than those of the MCP. We,
thus, increased the ROMs of the PIP and DIP joints but restricted
that of the MCP joint. Although the ROM of the MCP joint of
the new exoskeleton was smaller than the other exoskeletons,
changes of joint angles during flexion and extension were similar
to the human hand.

Results of hand exoskeleton control based on the sEMG
signals showed that the classification accuracies were high.
Specifically, the H2 subject showed high classification accuracies
for the FFCT, CG, RFF, KP, and TO; the H3 subject had high
accuracies for the CF,FFCT,TFF,RFF, and TO; the H4 subject
had high accuracy for the FFCT, TFF, RFF, KP, and TO; and
the H5 subject showed high accuracies for the CFF, FFCT,
CG, RFF, and KP. However, for each subject, there were one
or two actions that could not reach a high accuracy, such
as the CF and TFF for H2, KP for H3, TO for H5, which
decreased the overall classification accuracies. The accuracy
of online classification for H1 was not ideal, but consistent
with the previous studies where there were still three actions
(TO, CG, KP) that had high accuracies (Furui et al., 2019). The
classification accuracies for each subject were not the same,
and thus, different classifiers should be selected and applied
individually (Xiloyannis et al., 2017; Dwivedi et al., 2019). For

FIGURE 9 | The subject-specific online classification accuracies for

recognizing the hand gestures.

the same subject, the accuracies for classifying different
actions could also be quite different. There were between-
subject differences in muscle contractions, suggesting that
each individual may perform the same action by activating
the muscles in quite a different way. The accuracy of
predicting the same hand gesture could be different for
different individuals (Cote-Allard et al., 2019; Parajuli et al.,
2019).

According to the results of real-time control, the online
accuracy was not as high as the offline classification, which is
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FIGURE 10 | Real-time hand gesture recognition from a representative subject (H4). (A) The raw surface electromyography (sEMG) signals recorded from the left

brachioradialis (BRA); (B) the Teager Kaiser energy (TKE) signals extracted from (A) with a threshold 0.001mv; (C) the raw classification based on the SVM; (D) final

classification based on the TKE and the three consecutive judgment algorithms.

consistent with the previous studies showing that the online
accuracy was a more challenging issue of the sEMG controlled
hand exoskeleton (Chen et al., 2019; Parajuli et al., 2019).
Previous studies showed that in the process of stable grasping,
compared with the muscles innervated by different nerves, the
muscles innervated by the same nerve showed lower sEMG signal
coherence (Pasluosta et al., 2013). For the muscles selected in
this study, the BRA and EDC were innervated by the radial
nerve, and the FCU and FDI were innervated by the ulnar
nerve. Thus, the FCR, FDS, APB, and ADM were innervated
by the median nerve. Different from the previous studies,
the current study computed the first 500ms datasets in the
execution process instead of the stable grasping data. For all
gestures, muscles innervated by the same nerve showed lower CI
values compared with the muscles innervated by different nerves
(Figure 7).

Considering most hand usage in daily activities was under
visual supervision, visual feedback was not removed from the
experiment. Also, because all the subjects equally received
visual feedback during hand performance, the potential effects
of visual feedback on results could be further limited.
The objective of the current study was to demonstrate
a newly-designed wearable robotic hand exoskeleton with
more active DOFs, larger ROMs for most joints, and the
capability of being freely controlled by motion intention.
However, because this is a preliminary study showing a
novel design of an exoskeleton, more work is needed prior
to any clinical tests. We aim to perform a clinical study
in the near future to show the performance of this new

exoskeleton for patients with neuromuscular disorders, such as
in stroke patients.

CONCLUSION

In this study, we developed a new wearable robotic hand
exoskeleton with multiple joints, more DOFs for the thumb,
and larger ROM. We also investigated the control of the hand
exoskeleton based on the sEMG signals. The former provides a
platform and the later builds up its control system. Considering
that the post-stroke patients have difficulty in controlling their
paretic hands, we adopted the strategy of mirror therapy
principle, by which the motion intention was decoded based
on the sEMG signals of the non-paretic upper limb and hand.
We applied machine learning and deep learning methods to
verify the sEMG offline classification. The exoskeleton engaged
six linear actuators, in which two were for the thumb and
four for the fingers, and can realize independent movement by
each digit and the coordinative movement by multiple fingers
for grasp and pinch. The joint angles of the exoskeleton index
finger were comparable to those of the human index finger,
and the circumduction of the thumb was maintained stably. For
the real-time control, three out of the five subjects showed an
accuracy of about 80%, and one subject showed an accuracy
over 90%. The control strategy based on sEMG classification
has been integrated with the newly-designed exoskeleton system.
This new wearable exoskeleton may play a role in hand
rehabilitation in post-stroke patients and may advance the
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dexterous exoskeleton control according to the motion intention
of the patients.
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