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Bad weather conditions (such as fog, haze) seriously affect the visual quality of images.

According to the scene depth information, physical model-based methods are used to

improve image visibility for further image restoration. However, the unstable acquisition

of the scene depth information seriously affects the defogging performance of physical

model-based methods. Additionally, most of image enhancement-based methods focus

on the global adjustment of image contrast and saturation, and lack the local details

for image restoration. So, this paper proposes a single image defogging method based

on image patch decomposition and multi-exposure fusion. First, a single foggy image

is processed by gamma correction to obtain a set of underexposed images. Then the

saturation of the obtained underexposed and original images is enhanced. Next, each

image in the multi-exposure image set (including the set of underexposed images and the

original image) is decomposed into the base and detail layers by a guided filter. The base

layers are first decomposed into image patches, and then the fusion weight maps of the

image patches are constructed. For detail layers, the exposure features are first extracted

from the luminance components of images, and then the extracted exposure features

are evaluated by constructing gaussian functions. Finally, both base and detail layers are

combined to obtain the defogged image. The proposed method is compared with the

state-of-the-art methods. The comparative experimental results confirm the effectiveness

of the proposed method and its superiority over the state-of-the-art methods.

Keywords: image defogging, gamma correction, multi-exposure image fusion, image patch, base and detail layers

1. INTRODUCTION

In bad weather, small floating particles (such as dust, smoke, etc.) in the air seriously degrade
image quality. The color and details of scene are blurred in degraded images (Li Y. et al., 2017),
affecting the performance of the applications closely related to image quality, such as outdoor
videomonitoring, remote sensing, and so on. Therefore, image defogging has become an important
application of computer vision.

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.700483
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.700483&domain=pdf&date_stamp=2021-07-07
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:like1@cmhk.com
https://doi.org/10.3389/fnbot.2021.700483
https://www.frontiersin.org/articles/10.3389/fnbot.2021.700483/full


Liu et al. Image Fusion Based Defogging

As a branch of image processing techniques, image defogging
techniques can effectively reduce the adverse effects of fog/haze to
enhance image contrast and visibility. As shown in Figures 1A,E

represent two foggy images, and Figures 1B,F represent the
corresponding fog-free images of Figures 1A,E. The heat maps
of both foggy and fog-free images are shown in Figures 1C–H,
respectively. The overall brightness of foggy images Figures 1C,G
is higher than the corresponding brightness of fog-free images
Figures 1D,H. Compared with fog-free images, the feature
information of foggy images is obviously blurrier, so it is
necessary to remove fog/haze for the effective restoration of
the captured feature information (Mehrubeoglu et al., 2016).
There are many existing image defogging methods, which can be
categorized into image enhancement-based, image restoration-
based, and image defogging based on deep learning methods.

Most of image restoration-based defogging methods rely
on the responses of atmospheric degradation models. These
methods need to extract the a priori information of foggy
images. Based on the dark channel prior (DCP) method, the a
priori law of dark primary color is first obtained by analyzing
a large number of haze-free outdoor images, and then the
corresponding fog density is estimated (He et al., 2009). Based
on single image defogging methods, variable surface shading is
added to an atmospheric scattering model. This method assumes
that the surface shading and transfer function are statistically
independent. According to this assumption, an atmospheric
scattering model is analyzed. So, the transfer function is obtained
and haze/fog is removed from foggy images (Fattal, 2008). The
contrast of input images is enhanced to improve the image
visibility (Tan, 2008). In addition, fast image restoration method
(Tarel and Hautiere, 2009) and Bayesian defogging method
(Nishino et al., 2012; Ju et al., 2019) were proposed. Fog
density changes with the depth of scene, so the degradation of
image quality also changes in space. Physical degradation models
need the corresponding a priori knowledge to obtain the scene

FIGURE 1 | Foggy and fog-free images and their heat maps. (C,G) Represent the heat maps of foggy images (A,E), respectively. (D,H) Represent the heat maps of

fog-free images (B,F), respectively.

depth information. Scene depth information is not only used to
estimate the fog/haze distribution, but also affects the defogging
performance. The a priori knowledge of physical degradation
models can not be directly applied to any scene, so the acquisition
of scene depth information is unstable. Without relying on the
scene depth information, image enhancement-based defogging
methods can effectively achieve image defogging.

With the development of deep learning, deep learning has
been applied to image defogging. Image defogging methods
based on deep learning are divided into non end-to-end and
end-to-end. Non end-to-end methods used convolutional neural
network (CNN) to estimate parameters in an atmospheric
scattering model and taken parameters as the output. Parameters
are introduced into the atmospheric scattering model for image
restoration (Cai et al., 2016). End-to-end defogging methods
input a foggy image into CNN and the defogged image directly
output (Li B. et al., 2017).

Image enhancement-based defogging methods regard image
degradation as the lack of contrast and saturation. The detailed
information in foggy scenes can be improved by image
enhancement. These methods do not need to consider the
physical causes (such as fog/haze) of image degradation, and
can effectively avoid the a priori estimation of the scene
depth and depth mapping process. Representative defogging
methods include: histogram equalization (Reza, 2004; Thomas
et al., 2011), retinex-based methods (Rahman et al., 2004),
homomorphic filter (Yu et al., 2015), wavelet transform (Rong
and Jun, 2014; Jin et al., 2018a), and image fusion-based
defogging methods (Li Y. et al., 2017; Galdran, 2018). These
methods enhance both image contrast and saturation, so as to
improve image visual quality. The detailed image information
is first extracted from a single foggy image, and then fused to
restore the details of the blurred areas. However, the defogging
result obtained by the simply fusion of the two images cannot
preserve all the detailed information of the scene in the original
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foggy image. To improve the detail preservation ability of
image fusion techniques in the defogging process. Galdran
(2018) introduced multi-exposure fusion techniques into image
defogging. Multiple images with different exposure levels were
extracted from one image by gamma correction, and saturation
and contrast were considered as the weights of fusion. Multi-
exposure fusion method was used to improve image visual
quality from the global enhancement. However, some local
information may be ignored in the global enhancement process,
which affects the definition of the final output images. Therefore,
it is necessary to optimize both global and local exposure,
respectively (Qi et al., 2020).

To solve the above issues, this paper proposes a single image
defogging method based on image patch decomposition and
multi-exposure fusion. Since fog density is sensitive to contrast,
gamma function is used to restore the details of local information
by adjusting image contrast. A single input foggy image is
corrected by gamma correction, so a set of underexposed images
with different contrast are obtained. Spatial linear saturation
enhancement is applied to the underexposed and original images,
and then a set of foggy images with contrast and saturation
enhancement are obtained. To retain more detailed information,
images decomposition and fusion are used to enhance the
detailed information of foggy images. With the help of a guided
filter, each of multi-exposure images obtained after saturation
adjustment is decomposed into the base and detail layers in
the spatial domain. The guided filter does not damage any
structure and detailed information of the processed images. In
the base layer, a fixed-size moving window is used to extract
image patches, and the best-quality areas are selected from each
image patch for the fusion of image patches. According to the
exposure features of each input image, the value of each pixel in
the detail layer is estimated in the optimal exposure mode. The
weight maps of both base and detail layers are constructed for
image fusion. So, the fog-free image is obtained after fusing the
base and detail layers. This paper has two main contributions
as follows.

1. The proposed method can effectively avoid the complex
process of both scene depth a priori estimation and depth
mapping. A set of underexposed images are obtained by
adjusting the contrast of foggy images. Spatial linear saturation
adjustment is used to improve image saturation. Local
features of foggy images are optimized by image patch
structure decomposition to enhance the visual quality of fog-
free images.

2. The proposed method can further improve the visual quality
of the obtained fog-free images. Each exposure image is
decomposed into based and detail layers. In the base
layer, the local exposure quality is optimized by image
patch structure decomposition. In the detail layer, the
global exposure quality is optimized by the exposure degree
evaluation model.

The rest of this paper is organized as follows. Section 2 discusses
the related work; Section 3 elaborates the proposed solution in
detail; Section 4 analyzes the comparative experimental results;
and Section 5 concludes this paper.

2. RELATED WORK

Some researchers regard image defogging as a type of image
restoration, so fog-free images can be obtained by an atmospheric
light scattering model (Gonzalez et al., 2014). As a representative
solution, dark channel prior (DCP) method proposed by He
et al. (2009) makes at least one low-intensity pixel in a color
channel of the local neighborhood around each pixel. This
method learns the mapping relationship between a foggy image
and the corresponding scene depth, and uses the value of the
learned image transmission map to retrieve a physical model, so
as to obtain the fog-free image by physical model calculation.
Zhu et al. (2015) established a linear model based on the a
priori information of a foggy image. According to the a priori
scene depth information, an atmospheric scattering model is
used to estimate transmittance and restore scene radiance, so as
to effectively eliminate fog from a single image. He et al. (2016)
proposed a convex optimization formula for image defogging.
In the proposed foggy image model, bilinear coupled foggy
images and light transmission distribution term are established
to directly reconstruct the fog-free image. Fan et al. (2016)
constructed a two-layer Gaussian process regression model,
which established the relationship between an input image and
its depth information transmission. In this method, the a priori
knowledge of the local image structure is learned, and the multi-
scale feature vectors of the input image are mapped to the
corresponding transmitted light. The training model is used to
restore the fog-free image. Wang et al. (2019) found that fuzzy
regions were mainly concentrated on the luminance channel
of YCrCb color space. So, the texture information lacking in
the luminance channel can be recovered to enhance the visual
contrast of foggy scenes. Yuan et al. (2017) introduced the
gaussian mixture model (GMM). Based on haze density feature
maps, an input foggy image is segmented into multiple scenes.
The segmentation results can effectively identify sky areas that
DCP cannot handle well. In the improved DCP model (Singh
and Kumar, 2017), the atmospheric veil enhancement estimation
is obtained by using the joint trilateral filter, and transmission
maps are redefined to reduce the color distortion. Liu et al. (2017)
proposed a ground radiation suppressed haze thickness map
(GRS-HTM) based on haze thicknessmap (HTM) to calculate the
fog distribution in the foggy image. The visible bands are affected
by fog density. Fog components of each band are calculated by
GRS-HTM to restore the fog-free image. Fog density changes
with the depth of scene, so the degradation of image quality is
also spatially variable. Atmospheric degradation model depends
on the depth information of the corresponding scene, but
the acquisition of scene depth information is unstable. This
affects the accurate estimation of fog distribution and defogging
performance. Without relying on the scene depth information,
image enhancement-based defogging methods were proposed.

Image enhancement-based defogging methods mainly
focus on enhancing both image contrast and saturation and
highlighting image details. Yu et al. (2015) converted foggy
images from RGB to HSV space. The overlapped sub-patch
homomorphic filter is applied to the luminance components,
and the processed image is converted back to RGB space to
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obtain the fog-free image. Kim et al. (2017) combined DCP,
contrast constrained adaptive histogram equalization and
discrete wavelet transform (CLAHE-DWT). First, the estimation
of transfer function is improved in DCP. Then, image contrast
and definition are improved by CLAHE-DWT, respectively.
Finally, images processed by CLAHE-DWT are fused to generate
the enhanced image. Galdran et al. (2015) proposed an enhanced
variable image dehazing (EVID) method. This method enhances
the local low pixels by adjusting the gray world hypothesis.
Image colors are restored by controlling saturation, and image
contrast between different channels is also improved. Image
fusion is an important method used in image defogging, which
can effectively improve the image contrast, detail information
and so on (Jin et al., 2020; Liu et al., 2020). In the same scene,
since the imaging equipment cannot focus different depth
objects at the same time, so multi-focus image fusion technology
is used to extract different focus areas from multiple images to
synthesize a clear image (Jin et al., 2018b; Liu et al., 2019b). A
fusion framework decomposes the source image into high- and
low-pass subbands. The high-pass subbands are processed by a
phase congruency-based fusion rule, and the low-pass subbands
are processed by a local Laplacian energy-based fusion rule. The
fused image is obtain by inversely transforming the processed
high-pass and low-pass subbands. The fused image not only
contains the enhanced detailed features, but also retains the
structural information of the source image (Zhu et al., 2019). Li
Y. et al. (2017) first used an adaptive color normalization method
to correct color distortion images, and then enhanced the local
details of both original and color corrected images. Dark channel,
sharpness, and saliency features were taken as the weight maps
for image fusion, and the pyramid fusion strategy was used
to reconstruct images. Liu et al. (2019a) first transformed the
speckle noise into additive noise by logarithmic transformation.
Then, the local image blocks are matched by Gray theory, the
approximate low-rank matrices grouped by the similar blocks
of the reference patches is obtained. Wavelet transform is
used to estimate the noise variance of the noisy image. Finally,
weighted nuclear norm minimization is used to the denoised
image. Gao et al. (2020) obtained a set of self-constructed images
with different exposure levels by segmenting atmospheric light
range. Therefore, an adaptive multi-exposure image fusion
method based on scale invariant feature transform (SIFT) flow
was proposed. On the basis of fusion, self-constructed images
with different exposure levels are adaptively selected by using
two-layer visual sense selectors. Galdran (2018) applied the
multi-exposure image fusion method to image defogging. The
global image exposure quality is enhanced to improve the image
visual quality. This method enhances the global image features,
but the enhancement of local features is uncertain, which affects
the image quality. On the same basis, Zhu et al. (2021) also
used gamma correction to obtain a set of images with different
exposure. By analyzing the global and local exposure, the weight
maps are constructed to guide the fusion process. The defogged
image is obtained after saturation adjustment. Zheng et al.
(2020) directly adjusted the saturation of underexposed images
after gamma correction, and proposed a fusion method based
on adaptive decomposition of image patches. The adaptive

selection of image patch size is realized by fitting both texture
entropy and image patch size. High weights are assigned to
image patches with good visual quality for image fusion. Similar
to this method, this paper also proposes an image patch based
multi-exposure fusion method for image defogging. Image
restoration is achieved through the optimization of both local
and global exposure quality.

Now, deep learning is widely used in image defogging. Cai
et al. (2016) first applied deep learning to image defogging and
proposed DehazeNet. This paper used DehazeNet to estimate a
medium transmission map in an atmospheric scattering model.
A hazy image as input, and outputs its medium transmission
map. Then, a haze-free image is recovered by atmospheric
scattering model. And a novel nonlinear activation function is
proposed, the quality of recovered haze-free image is improved
by this function. Zhang and Patel (2018) proposed a new
single image dehazingmethod, called densely connected pyramid
dehazing network (DCPDN). DCPDN includes two generators,
which are used to generate the transmission map and the
atmospheric light, respectively. A new edge-preserving densely
connected encoder-decoder structure with multi-level pyramid
pooling module is designed to estimate the transmission map.
Then the U-net structure is used to estimate the atmospheric
light.Both the transmission map and the atmospheric light are
introduced into an atmospheric scattering model to restore
the fog-free image. A joint-discriminator based on generative
adversarial network (GAN) framework is proposed to further
incorporate the mutual structural information between the
estimated transmission map and the dehazed result. This kind
of defogging method using network estimation parameters still
needs the help of atmospheric scattering model. Li B. et al.
(2017) proposed an image dehazing model built with a CNN,
called All-in-One Dehazing Network (AOD-Net). This paper
dosed not estimate the transmission map and the atmospheric
light separately, but directly generated clear images through
light-weight CNN. Qin et al. (2020) proposed an end-to-end
feature fusion attention network (FFA-Net) for single image
dehazing. This paper combined channel attention and pixel
attention mechanism to form a novel feature attention (FA)
module. FA focused more attention on the thick haze pixels and
more important channel information. And local residual learning
allows the less important information to be bypassed through
multiple skip connections. To giving more weight to important
features, an attention-based different levels feature fusion (FFA)
structure is proposed, the feature weights are adaptively learned
from FA.

3. THE PROPOSED IMAGE DEFOGGING
METHOD

As shown in Figure 2, the proposed single image defogging
method performs gamma correction on an input foggy image
to obtain a set of underexposed images. Both the underexposed
images and the original image are enhanced by spatial linear
saturation. All the images are decomposed into base and detail
layers by a guided filter. A fixed-size moving window is used to
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FIGURE 2 | The proposed image defogging framework based on image patch and multi-exposure fusion.

extract image patches from the base layer. Low-level features such
as signal strength, signal structure, and mean intensity are used
to improve fusion quality. Image patches are decomposed into
signal strength, signal structure, andmean intensity by a structure
decomposition method. The best-quality areas of the above three
low-level features are selected for fusion. The whole luminance
components of each input image are used to extract exposure
features, and the extracted features are applied to optimize the
global exposure quality of detail layer.

3.1. Image Preprocessing by Gamma
Function
Gamma correction is used to adjust an input foggy image I (x)
nonlinearly by increasing or decreasing the exposure of the input
image to change the local contrast of blurry areas.

I (x) 7→ α · I(x)γ (1)

where α and γ are positive numbers. When γ < 1, the gray
level of bright areas is compressed. The gray level of dark areas
is stretched to be brighter, and the whole image becomes bright,
which causes the color tone of high-luminance contents to be too
bright. So, the detailed contents are not obvious in human visual
perception (Galdran, 2018). On the contrary, when γ > 1, the
whole image darkens and a series of underexposed images are
obtained, and the image details are highlighted. For the input
foggy image I (x), the contrast Y of the given area � is shown
as follows.

Y (�) = yI�max
− yI�min

(2)

where yI�max
= max

{

yI(x) |x ∈ �
}

and yI�min
=

min
{

yI(x) |x ∈ �
}

. When γ > 1, a set of underexposed
images are obtained by Equation (2). Gamma correction is a
kind of global correction, and the contrast of some areas with
moderate exposure is reduced. As shown in Figure 3, the value
of γ is 2, 3, 4, or 5, respectively, four foggy images with different
exposure are obtained by gamma correction. Different exposure
images highlight the details of different areas.

3.2. Saturation Enhancement
The input foggy image I (x) is corrected by gamma ray
to obtain a set of multi-exposure image sequences Q =

{I1 (x) , I2 (x) , ..., IN (x) |N = 5 }. Each image has In (x) =
[

IRn (x) , IGn (x) , IBn (x)
]

. For each image, the maximum and
minimum values of each pixel are calculated.

{

rgbmax = max (R, max (G,B))

rgbmin = min (R, min (G,B))
(3)

When 1 =
(

rgbmax − rgbmin

)

/255 > 0, the saturation P of each
pixel in an image is calculated as follows.

P =

{

1/value, L < 0.5

1/
(

2− value
)

, L ≥ 0.5
(4)

where value =
(

rgbmax + rgbmin

)

/255 and L = value/2. The
saturation of each pixel is normalized. The same adjustment
operation is performed on the three channels of RGB, and the
adjustment of saturation increment for each image is within
[−100, 100].

When Increment ≥ 0, the three channels of RGB are adjusted
by Equation (5).

I′n (x) = In (x) + [In (x) − L× 255]× α (5)

where α= 1/β−1 and I′n (x) =
[

IR
′

n (x) , IG
′

n (x) , IB
′

n (x)
]

represents the saturation of an image after saturation adjustment.

β =

{

P, Increment + P ≥ 1
1− Increment, else

(6)

When Increment < 0, the three channels of RGB are adjusted by
Equation (7).

I′n (x) = In (x) + [In (x) − L× 255]× (1+ α) (7)

where α = Increment.
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FIGURE 3 | Original image is corrected by gamma function. (A) A foggy image, (B) γ = 2, (C) γ = 3, (D) γ = 4, (E) γ = 5.

FIGURE 4 | The fusion process of the base layer. b
j
n represents image patches. y

j
n, p

j
n, and g

j
n represent signal strength, signal structure, and mean intensity,

respectively. yj , pj , and gj represent the desired signal strength, signal structure, and mean intensity, respectively. b̂j represents the fusion of image patches, B′ is the

fused base-layer image.

3.3. Multi-Exposure Image Fusion
Defogging
3.3.1. Image Decomposition by a Guided Filter
The input images

{

I′n (x) |1 ≤ n ≤ N,N = 5
}

is decomposed
into the base and detail layers. Luminance component Gn of
the input image is calculated by the weighted sum of the three
channels of RGB. Since a guided filter can keep edge-preservation
smooth (Li et al., 2012), the base layer is obtained by a guided
filter as follows.

Bn = Tr,δ (Gn,Gn) (8)

where Tr,δ (Z,H) is a guided filter operator, r is the filter radius,
and δ is used to control fuzzy degree. Z and H represent both
input image and guide image, respectively. Gn represents both
input image and guide image (Nejati et al., 2017). The detail layer
Dn is obtained as follows.

Dn = I′n (x) − Bn (9)

3.3.2. Fusion Defogging Based on Global and Local

Optimization
As shown in Figure 4, the optimization of both global and
local exposure is realized by structure decomposition. A fixed-

size moving window is used to extract image patches b
j
n =

{

b
j
n

∣

∣1 ≤ n ≤ N, 1 ≤ j ≤ J
}

from the base layer, b
j
n represents

the j-th image patch of the n-th image. Structure decomposition
proposed in Ma et al. (2017) is used to decompose image patches.

Image patches are decomposed into three parts by Equation (10):

signal strength y
j
n, signal structure p

j
n, and mean intensity g

j
n.

b
j
n =

∥

∥

∥
b
j
n − µ

b
j
n

∥

∥

∥
·

b
j
n−µ

b
j
n

∥

∥

∥

∥

b
j
n−µ

b
j
n

∥

∥

∥

∥

+ µ
b
j
n

=

∥

∥

∥
b̃
j
n

∥

∥

∥
· b̃

j
n

∥

∥

∥
b̃
j
n

∥

∥

∥

+ µ
b
j
n

=y
j
n · p

j
n + g

j
n

(10)

where µ
b
j
n
is the mean value of each image patch, and ‖·‖ is the

l2-norm of the vector.
The highest signal strength of all image patches at the same

spatial position in the image set is taken as the expected signal
strength ŷj of the fused image patch.

ŷj = max
1≤n≤N

y
j
n = max

1≤n≤N

∥

∥

∥
b̃
j
n

∥

∥

∥
(11)

To obtain the expected image patch signal structure, the weighted
average of the signal strength of input image patch set is
calculated as follows.

p̂j =

∑N
n=1 P

(

b̃
j
n

)

p
j
n

/

∑N
n=1 P

(

b̃
j
n

)

∥

∥

∥

∑N
n=1 P

(

b̃
j
n

)

p
j
n

/

∑N
n=1 P

(

b̃
j
n

)∥

∥

∥

(12)

where the weight function P
(

b̃
j
n

)

=

∥

∥

∥
b̃
j
n

∥

∥

∥

t
determines the

contribution of each image patch to the fused image patch, and
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t ≥ 0 is an exponential parameter.When the value of t gets larger,
the image patch with higher intensity is highlighted.

The exposure quality of each image patch in the input image
is measured by a two-dimensional gaussian function.

G
(

µn, g
j
n

)

= exp






−

(µn − 0.5)2

2δ2µ
−

(

g
j
n − 0.5

)2

2δ2g






(13)

where δµ and δg are the gaussian standard deviations of
the constructed two-dimensional gaussian function. δµ and

δg control the expansion of contour along µn and size g
j
n,

respectively. The expected mean intensity ĝj of the image patch
is shown as follows.

ĝj =

∑N
n=1 G

(

µn, g
j
n

)

g
j
n

∑N
n=1 G

(

µn, g
j
n

) (14)

ŷj, p̂j, and ĝj form a new vector. The fused image patch b̂j is
represented as follows.

b̂j = ŷj · p̂j + ĝj (15)

To optimize the local-exposure quality, a fixed-size moving
window is used to extract image patches at the same spatial
position from the base layer of the input image. The pixels in
the overlapped image patches are averaged. The above steps of
the decomposition and fusion of image patches are repeated, and

then
J
∑

j=1
b̂j is used to obtain the fused image B′ of the base layer.

Two dimensional gaussian function is used to evaluate the
exposure quality of B′ and optimize the global exposure quality of
B′. The mixed weight En,B of each pixel

(

x, y
)

in B′n is calculated
as follows.

En,B
(

x, y
)

= exp

(

−

(

B′
(

x, y
)

− 0.5
)2

2δ2µ
−

(

Ḡ− 0.5
)2

2δ2g

)

(16)

B̂ represents the weighted sum of each base-layer image in the
input image set and its corresponding weight En,B in the fused
image.

B̂ =

N
∑

n=1

En,BB
′ (17)

3.3.3. Exposure Fusion Image Based on Gaussian

Weight Method
Each luminance component is convoluted with a 7 × 7 average
filter to simply calculate the exposure features ϕn

(

x, y
)

of each
pixel in multi-exposure image set, and ϕn

(

x, y
)

is the mean
intensity of a small area around the pixel (x, y). The value of
each pixel in the detail layer in the optimal exposure mode is
estimated by analyzing the shading changes of different pixels.
The weight En,D

(

x, y
)

of each pixel (x, y) in the detail layer of

the n-th input image is calculated by using the exposure degree
evaluation model.

En,D
(

x, y
)

= exp

(

−

(

ϕn

(

x, y
)

− ϕ0

)2

2δ2
d

)

(18)

where ϕn (·) is the exposure feature, δd is the gaussian standard
deviation, and ϕ0 as the best exposure constant equals the middle
value of the intensity range.

The defogged image is defined as follows.

J (x) = B̂+ ω

N
∑

n=1

En,DDn (19)

where ω ≥ 1 controls the detail intensity and local contrast of
the defogged image J (x). According to the experimental results
of the fusion performance, the value of ω is set to 1.1.

3.3.4. Verification of Image Intensity Reduction After

Defogging
Koshmieder proposed an atmospheric scattering model to solve
the image degradation issues caused by fog (Gonzalez et al.,
2014).

I (x) = t (x) J (x) + A (1− t (x)) (20)

where I (x) represents a foggy image. J (x) represents the
corresponding fog-free image of I (x). A represents the global
atmospheric light. t (x) is the transmitted light. t (x) J (x)
describes the radiation and attenuation of the scene in the
medium. A [1− t (x)] is the atmospheric light formula.

Equation (20) that reduces image intensity is used to formalize
foggy images. In this paper, underexposure or overexposure
processing is applied to foggy images, and the corresponding
exposure results are fused to obtain the image areas with
good exposure quality. To meet the requirement of image
intensity reduction, the proposed method is only applied to the
underexposed images to reduce global exposure. When γ > 1,
it is easy to verify that the fused image obtained by using B′n =
J
∑

j=1
b̂
j
n always meets the requirement of image intensity reduction.

Proof:
In Zheng et al. (2020), it simply verifies that the fusion

of the images obtained after gamma correction, saturation
linear adjustment and image structure decomposition meets the
requirement of intensity reduction J (x) ≤ I (x). The proof is
shown as follows.

Given a set of gamma parameters Ŵ =
{

γ 1, γ 2, ..., γ K |γ k > 1
}

, a set of underexposed images

Q={I1 (x) , I2 (x) , ...., IN−1 (x)} is obtained. Since I (x) ∈ [0, 1],

I(x)γ
k

< I (x) is available for all pixels. Due to the invariance
principle of brightness in the linear adjustment of saturation, the
pixel intensity component is I (x) = 1

3 (R+ G+ B) (Gonzalez
andWoods, 1977). Therefore, for any foggy image, I (x) = Q′

n (x)
is satisfied before and after saturation adjustment. Therefore, all

the pixels after saturation adjustment satisfy
(

Qn(x)
γ k
)′

< I (x).

Frontiers in Neurorobotics | www.frontiersin.org 7 July 2021 | Volume 15 | Article 700483

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Liu et al. Image Fusion Based Defogging

Since an image patch b
j
n ∈ I (x), all b

j
n(x)

γ k
∈
(

Qn(x)
γ k
)′

satisfy b
j
n(x)

γ k
< b

j
n (x). Therefore, image patches can meet

the requirements of image intensity reduction after gamma
correction and saturation adjustment.

According to the above proof b
j
n ∈ I (x) is satisfied for any

image patch. The structure decomposition of image patches is
performed on both sides of Equation (21) (Ma et al., 2017).

(

(

y
j
n

)γ k

·
(

p
j
n

)γ k

+
(

g
j
n

)γ k)

<

(

y
j
n · p

j
n + g

j
n

)

(21)

Since y
j
n, p

j
n, and g

j
n of each image patch are unit length vectors,

and the initial foggy image I (x) is the input of image fusion.
Therefore, the expected contrast of the fused image patch satisfies

ŷj = max
1≤n≤N+1

y
j
n ≤ yj. Similarly, since the weight of the mean

luminance is
∑N

n=1

(

G
(

µn ,g
j
n

)

∑N
n=1 G

(

µn ,g
j
n

)

)

= 1, the expected average

brightness is satisfied as follows.

ĝj =

∑N
n=1 G

(

µn, g
j
n

)

g
j
n

∑N
n=1 G

(

µn, g
j
n

) < gj (22)

The mode of signal structure satisfies
∥

∥

∥
p
j
n

∥

∥

∥
=
∥

∥pj
∥

∥. So, b̂j =

ŷj · p̂j + ĝj ≤ b
j
n. Image patches meet the requirements of

image intensity reduction after structural decomposition. Since

b̂j ∈ J (x) follows b̂j ≤ b
j
n, J (x) ≤ I (x). So, the fused image

always meets the requirements of image intensity reduction.

4. EXPERIMENTAL ANALYSIS

4.1. Experiment Preparations
Eighty three real-world foggy natural images with different sizes
are used in the comparative experiments. These images can be
downloaded from http://live.ece.utexas.edu/research/fog/fade_
defade.html, http://github.com/agaldran/amef_dehazing, http://
github.com/JiamingMai/Color-Attenuation-Prior-Dehazing or
captured by ourselves. A synthetic foggy image dataset
(RESIDE) with 100 scene images (Li et al., 2019) downloaded
from http://sites.google.com/view/reside-dehaze-datasets. One
hundred remote-sensing geographic images were collected from
Google Earth by ourselves. Seventeen real-world tunnel images
were collected by ourselves. Thirteen image defogging methods
are used for comparison, which are AMEF (Galdran, 2018), CAP
(Zhu et al., 2015), CO (He et al., 2016), DCP (He et al., 2009),
DEFADE (Choi et al., 2015), GPR (Fan et al., 2016), MAMF
(Cho et al., 2018), OTE (Ling et al., 2018), WCD (Chiang and
Chen, 2012), DehazeNet (Cai et al., 2016), FFA-Net (Qin et al.,
2020), a novel fast single image dehazing algorithm based on
artificial multiexposure image fusion (MIF) (Zhu et al., 2021)
and the proposed defogging method. All the experiments were
programmed by MATLAB 2016b and run on a desktop with an
Intel I9-7900X@3.30 GHz CPU and 16.00 GB RAM.

4.2. Subjective Visual Evaluation
As shown in Figures 5–9. The results of five different scenes
are selected to confirm that the proposed method has good
defogging performance.

Figure 5 compares the defogging performance of thirteen
methods on a real-world natural image. As shown in
Figures 5C–K, the performance of CAP, CO, GPR, DehazeNet
is poor. In the magnified areas, the details of the mountain are
not visible. The hues shown in Figures 5E,I deviate. The global
brightness of DEFADE and WCD as shown in Figures 5F,J

respectively is low, and the fog shown in the magnified areas
of Figure 5J is not completely removed. The brightness and
saturation of Figure 5L are low. Although MAMF restores the
high saturation of the source image, the contrast is sacrificed
in the defogged image shown in Figure 5H, and the loss of
structural and texture details can be seen from the magnified
areas. As shown in Figures 5B–N, compared with other 10
methods, AMEF, MIF, and the proposed method achieve better
defogging performance in local details and global brightness.
The global saturation of the defogged image obtained by MIF
or the proposed method is slightly better than the one obtained
by AMEF.

Figure 6A is a real-world rural natural image. Due to the poor
defogging performance of DCP and OTE, the color of sky is
distorted, and the details shown in the magnified areas are lost, as
shown in Figures 6E,I. In Figures 6D–L, the overall brightness
of defogged images is too low, and the details shown in the
magnified areas are lost. CAP and WCD have poor defogging
performance. As shown in Figure 6C, there is no obvious change
after defogging. The image saturation of Figure 6J is too low.
As shown in Figures 6B, 7C–N, the image visibility is greatly
improved, and the details shown in the magnified areas are
clear. However, color distortion appears in the sky of Figure 6H.
AMEF, MIF, and the proposed method have the best image
defogging performance. The comparative results show that the
overall brightness of the defogged image obtained by MIF or
the proposed method is slightly better than the one obtained
by AMEF.

Figure 7 compares the defogging performance of thirteen
methods on a synthetic driving image. As shown in Figures 7E,I,
the color of some areas in images is distorted, and the details
shown in the magnified areas are lost. GPR have poor defogging
performance, the clarity of the image decreased after defogging,
as shown in Figure 7G. As shown in Figures 7C–K, the overall
brightness of defogged images is too low, and the details shown
in the magnified areas are lost. The sharpening degree of MAMF
is toomuch, as shown in Figure 7H. In Figures 7F,L, some details
information shown in the magnified areas are lost. As shown
in Figures 7B–N, compared with other 10 methods, AMEF,
MIF, and the proposed method have the best image defogging
performance. The saturation of MIF and the proposed method
is closer to the human eye observation habits than AMEF.

Figure 8 compares the defogging performance of 13
methods on a remote-sensing geographic image. As shown in
Figures 8D–F, the details of the magnified areas are missing.
The overall blurring degree of the defogged image obtained
by GPR increases. The saturation of Figures 8H,I is too high,
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FIGURE 5 | Real-world natural image. (A) Represents the original foggy image. (B–N) Represent foggy-free images processed by AMEF, CAP, CO, DCP, DEFADE,

GPR, MAMF, OTE, WCD, DehazeNet, FFA-Net, MIF, and the proposed method.

FIGURE 6 | Real-world rural natural image. (A) Represents the original foggy image. (B–N) Represent foggy-free images processed by AMEF, CAP, CO, DCP,

DEFADE, GPR, MAMF, OTE, WCD, DehazeNet, FFA-Net, MIF, and the proposed method.

which leads to color distortion. The details of the magnified areas
of Figure 8I are lost. As shown in Figure 8J, there is obvious
contrast between light and dark light in the magnified areas.
Figures 8B,K–N show good defogging performance, the overall
brightness of the defogged images is good. However, the details
shown in the magnified areas are lost, as shown in Figures 8K,L.
After removing fog from the remote-sensing geographic image,
it is helpful to recognize the objects shown in the remote-sensing
geographic images and improve the recognition accuracy.

Figure 9 shows the defogged tunnel images obtained by
13 methods. The defogged image obtained by OTE has high
saturation and color distortion, as shown in Figure 9I. In
Figures 9C–L, obvious fog residue exists. The defogged image
obtained by WCD has obvious distortion, as shown in Figure 9J.
The overall brightness of Figure 9E is low. The overall brightness
of Figures 9G,H is high, and the saturation is low. The saturation

of Figure 9M is high. DEFADE, AMEF, DehazeNet, and the
proposed method achieve good defogging performance. As
shown in the magnified areas of Figure 9F, high saturation can
reduce image contrast, and the texture details of tunnel wall are
lost. After defogging tunnel images, the cracks on the inner wall
of the tunnel and the pavement damages are well-observed.

4.3. Objective Evaluation
Structural similarity (SSIM) (Wang et al., 2004), peak-signal-to-
noise ratio (PSNR) (Hore and Ziou, 2010), fog aware density
evaluator (FADE) (Choi et al., 2015), and Entropy (Qing et al.,
2016) are used as objective evaluation indexes. SSIM is used
to measure the similarity between the defogged and reference
images. The high SSIM value means the high similarity between
the foggy and defogged images. PSNR is used to measure the
distortion of defogging image compared with reference image.
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FIGURE 7 | Synthetic driving image. (A) represents the original foggy image. (B–N) Represent foggy-free images processed by AMEF, CAP, CO, DCP, DEFADE, GPR,

MAMF, OTE, WCD, DehazeNet, FFA-Net, MIF, and the proposed method.

FIGURE 8 | Remote-sensing geographic image. (A) Represents the original foggy image. (B–N) Represent foggy-free images processed by AMEF, CAP, CO, DCP,

DEFADE, GPR, MAMF, OTE, WCD, DehazeNet, FFA-Net, MIF, and the proposed method.

FIGURE 9 | Tunnel image. (A) Represents the original foggy image. (B–N) Represent foggy-free images processed by AMEF, CAP, CO, DCP, DEFADE, GPR, MAMF,

OTE, WCD, DehazeNet, FFA-Net, MIF, and the proposed method.

The high PSNR value means less distortion of defogging image.
FADE is a no-reference evaluation index of image defogging
performance. The image blurring degree is directly proportional

to the value of FADE. Entropy reflects the average amount of
information in the image. A large Entropy value means the large
average amount of information is retained. Thirteen defogging
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TABLE 1 | Evaluation of two objective indexes in the real-world natural image (Figure 5) defogging experiment.

AMEF CAP CO DCP DEFADE GPR MAMF OTE WCD DehazeNet FFA-Net MIF Proposed

FADE 0.4177 0.7179 0.5151 0.3797 0.3121(4) 0.4086 0.2055(1) 0.2885(3) 0.5986 0.5366 0.8632 0.3414 0.2685(2)

Entropy 7.0971 6.7348 6.3071 7.0064 6.9570 6.7810 7.5853(1) 6.5808 7.0994(4) 6.9760 6.9084 7.3268(3) 7.3465(2)

TABLE 2 | Evaluation of two objective indexes in the real-world rural natural image (Figure 6) defogging experiment.

AMEF CAP CO DCP DEFADE GPR MAMF OTE WCD DehazeNet FFA-Net MIF Proposed

FADE 0.4169 0.7189 0.6898 0.4854 0.3776 0.3087(3) 0.1874(1) 0.5654 0.4919 0.3584 0.7282 0.3158(4) 0.2691(2)

Entropy 7.4687 7.2995 6.2526 6.3164 7.1563 7.3750 7.4412 7.5312(2) 7.1124 6.5062 7.5052(4) 7.5942(1) 7.5176(3)

TABLE 3 | Evaluation of two objective indexes in the synthetic driving image (Figure 7) defogging experiment.

AMEF CAP CO DCP DEFADE GPR MAMF OTE WCD DehazeNet FFA-Net MIF Proposed

SSIM 0.8037 0.8904(3) 0.6737 0.7191 0.9273(2) 0.8221 0.7415 0.6733 0.5641 0.4868 0.9897(1) 0.8603 0.8645(4)

PSNR 29.198 25.983 26.114 24.650 33.323(3) 26.223 28.103 28.718 25.790 63.748(1) 37.461(2) 28.513 29.428(4)

TABLE 4 | Evaluation of two objective indexes in the remote-sensing geographic image (Figure 8) defogging experiment.

AMEF CAP CO DCP DEFADE GPR MAMF OTE WCD DehazeNet FFA-Net MIF Proposed

FADE 0.4201 0.6580 0.4681 0.3367 0.3028(4) 0.3852 0.1915(2) 0.2479(3) 0.4045 0.5049 0.7200 0.4105 0.1907(1)

Entropy 7.3273(3) 6.4009 6.6120 6.8067 7.2608 6.5937 7.4313(2) 6.5041 7.0765 6.7150 7.0420 7.3230(4) 7.5685(1)

methods are applied to 300 foggy images. Five defogged images
are selected for illustration.

As shown in Table 1. According to the FADE and Entropy
indexes of MAMF, MAMF can effectively reduce the fog density
and retain the image information as much as possible. The
Entropy of MIF and WCD is high, but FADE index of MIF
and WCD reflects that MIF and WCD cannot effectively reduce
the fog density. The FADE score is high, and the defogging
performance is not effective enough. OTE and DEFADE can
effectively reduce the fog density, but the Entropy of OTE
and DEFADE rank low. In the defogging process, OTE and
DEFADE lose some image information. The results of FADE
and Entropy show that the proposed method can achieve good
defogging performance.

In Table 2, FADE index of GPR and MAMF reflect that GPR
and MAMF can effectively reduce the fog density, but Entropy
index is low, some image information is lost in the defogging
process. Entropy scores of FFA-Net and OTE are high, but their
FADE indexes reflect that the defogging performance of FFA-Net
and OTE are not good enough. MIF and the proposed method
achieve a good ranking in FADE and Entropy indexes. MIF and
the proposed method can effectively reduce the fog density and
retain more image information.

As shown in Table 3, CAP, DEFADE, FFA-Net, and the
proposed method have the highest four scores in SSIM index,
which means that defogged result can effectively retain the
structural information of the original image. However, PSNR
index of CAP is low which means that there is more distortion in

the defogging image. The PSNR of DehazeNet is high, but SSIM
index of DehazeNet reflects that the structural information of the
original image cannot be effectively preserved. DEFADE, FFA-
Net and the proposed method achieve a good ranking in SSIM
and PSNR indexes. DEFADE, FFA-Net, and the proposedmethod
can effectively retain the structural information of the original
image and reduce image distortion.

As shown in Table 4, the Entropy index of AMEF and MIF
reflects that AMEF and MIF can retain more image information
in the process of defogging. But the FADE index ranking
of AMEF and MIF is low, which proves that its defogging
performance is poor. FADE index of OTE and DEFADE show
that OTE and DEFADE can effectively reduce fog, but the
score of Entropy is low. In the process of defogging, OTE
and DEFADE lose some image information. MAMF and the
proposed method achieve good results in FADE and Entropy.
MAMF and the proposed method can ensure the high defogging
performance and reduce the information loss during the
defogging process.

According to FADE index in Table 5, DCP, OTE, WCD, and
the proposed method can effectively reduce the fog density.
However, the ranking of Entropy index of OTE and WCD
show that more image information is lost in the defogging
process. Entropy index of GPR and DehazeNet reflect that GPR
and DehazeNet can retain most of image information in the
defogging process, but the ranking of FADE index of GPR and
DehazeNet is low. For DCP and the proposed method, their
FADE and Entropy index rankings are high, which proves that
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TABLE 5 | Evaluation of two objective indexes in the tunnel image (Figure 9) defogging experiment.

AMEF CAP CO DCP DEFADE GPR MAMF OTE WCD DehazeNet FFA-Net MIF Proposed

FADE 0.9207 1.1100 1.8038 0.5151(2) 0.6831 1.0563 1.0287 0.5799(4) 0.4712(1) 1.1700 1.5285 0.8143 0.5566(3)

Entropy 7.2576 7.3430 6.6227 7.5081(2) 7.1100 7.6589(1) 7.3797 6.8962 7.3096 7.4397(4) 6.9371 7.0303 7.4451(3)

they achieve good defogging performance and can effectively
retain image information.

The proposed method is more in line with human eye
observation habits in color saturation, image brightness, and
sharpness. The image details are effectively restored. In general,
compared with the other 12 methods, the proposed method can
achieve good defogging performance, reduce image distortion,
and retain rich image information. For 300 foggy images, the
average running time of AMEF, CAP, CO, DCP, DEFADE,
GPR, MAMF, OTE, WCD, DehazeNet, FFA-Net, MIF, and the
proposed methods were 2.8274, 3.1197, 6.1310, 3.4911, 85.7802,
433.5796, 3.9043, 38.7347, 7.3273, 7.6966, 302.5901, 1.8056, and
20.7910 s, respectively. Although the proposed method has good
defogging performance and is widely used in various image
scenes, the average processing time is relatively long owing to the
high computational complexity.

5. CONCLUSION

The proposed method can effectively achieve fog removal
without any a priori knowledge of the scene depth information.
A single foggy image is first corrected by gamma correction, and
then a set of underexposed images is obtained. Multi-exposure
image set is composed of these underexposure images and the
original foggy image. Next, the saturation of multi-exposure
images is adjusted. The multi-exposure images are decomposed
into the base and detail layers by a guided filter. The image
details are enhanced by image patch decomposition. Low-level
features such as mean intensity, signal strength, and signal
structure are used to improve fusion quality. The best-quality
areas are collected from each base-layer image patch for the
fusion of image patches. The global exposure quality of the detail
layer is optimized by using the global luminance components of
each input image. The comparative experimental results confirm
the effectiveness of the proposed method and its superiority
over the state-of-the-art methods. The proposed method can
be applied to natural images, synthetic images, remote-sensing
geographic images, and tunnel images to improve image quality.
This method includes image scale decomposition, exposure

quality detection, base-layer image fusion, and detail-layer image
fusion. These calculation processes can achieve effective image
defogging, but also increase the computational complexity. In
future, a simpler and more effective fusion strategy will be
designed to reduce the calculation steps and the running time of
image defogging, while maintaining defogging performance.
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