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With the development of computer vision, high quality images with rich information have

great research potential in both daily life and scientific research. However, due to different

lighting conditions, surrounding noise and other reasons, the image quality is different,

which seriously affects people’s discrimination of the information in the image, thus

causing unnecessary conflicts and results. Especially in the dark, the images captured

by the camera are difficult to identify, and the smart system relies heavily on high-quality

input images. The image collected in low-light environment has the characteristic with

high noise and color distortion, whichmakes it difficult to utilize the image and can not fully

explore the rich value information of the image. In order to improve the quality of low-light

image, this paper proposes a Heterogenous low-light image enhancement method

based on DenseNet generative adversarial network. Firstly, the generative network of

generative adversarial network is realized by using DenseNet framework. Secondly,

the feature map from low light image to normal light image is learned by using the

generative adversarial network. Thirdly, the enhancement of low-light image is realized.

The experimental results show that, in terms of PSNR, SSIM, NIQE, UQI, NQE and

PIQE indexes, compared with the state-of-the-art enhancement algorithms, the values

are ideal, the proposed method can improve the image brightness more effectively and

reduce the noise of enhanced image.

Keywords: DenseNet framework, generative adversarial network, image enhancement, heterogenous low-light

image, feature map

INTRODUCTION

The imaging process of visible light images is affected by light intensity and environment. The
visible light images collected under low light environment have low signal-to-noise ratio, contrast
and resolution, which brings more severe challenges to further image processing, such as image
recognition and target detection (Shi et al., 2020; Xiaowei et al., 2020; Yin and Li, 2020). Due to the
low light environment and limited camera equipment, the image has low brightness, low contrast,
high noise, color distortion and other problems, which will not only affect the aesthetics of the
image and human visual experience, but also reduce the performance of advanced visual tasks using
normal light image. In order to effectively improve the quality of low-light images, scholars have
proposed many low-light image enhancement algorithms, which contains three stages: gray scale
transformation, retinal cortex theory, and deep neural network (Fukushima, 1980; Gu et al., 2020).
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In the early stage, gray scale stretching of the low-brightness
area through histogram equalization, gamma correction, and
other gray transformation methods (Singh and Kapoor, 2014)
can achieve the purpose of improving the brightness of the dark
area. However, because the relationship between pixels and their
neighbors is not considered, grayscale transformation often leads
to the lack of realism in enhanced images.

At present, the common low-light image enhancement
methods are mainly divided into four categories: (1) based on
the Histogram Equalization method (HE), in this method, the
image brightness and contrast can be enhanced by adjusting
the histogram distribution. This method is simple and fast,
but it often appears color distortion, detail loss and other
problems; (2) based on Retinex enhancement method; Cui
et al. (2020) proposed that the visual brightness and color
perception of human eyes were determined by the reflectivity
of the actual object itself and had nothing to do with the
intensity of ambient light. According to the Retinex theory,
several classical algorithms such as Multi-scale Retinex with
Color Restoration (MSRCR) were proposed, which were prone
to color distortion (Jiang et al., 2015). The main idea of
the MSRCR algorithm is to use Gaussian filter to obtain
the light component of low-light image, and then obtain
the reflection component through point-by-point operation
between pixels as the enhancement result. Tao and Yiquan
(2015) used bright-pass filter and logarithmic transformation
to balance the brightness and naturalness of the image, so
that the enhanced image tended to be natural. Fu et al.
(2016) designed a weighted variational model for Simultaneous
Reflectance and Illumination Estimation (SRIE), which could
effectively deal with the problem of excessive enhancement
of dark areas. Guo et al. (2017) proposed Low Light Image
Enhancement via Illumination Map Estimation (LIME), which
only estimated the illumination component. It mainly used local
consistency and structural perception constraints to calculate
the reflection component of the image and used it as the
output result. Although some scholars added color correction
modules, the color distortion problem could not be completely
overcome; (3) Based on pseudo-fog image enhancement method.
In this method, the inversion image of low illumination
image is enhanced by dehazing algorithm. For example, Hu
et al. (2020) proposed the enhancement method to achieve
better illumination enhancement effect, but block effect and
noise were likely to occur when dealing with complex scene
enhancement; (4) Based on neural network method. This
method uses neural networks to learn the mapping from
low light images to normal light images. For example, Chen
et al. (2020) proposed to use the convolutional self-encoding
network to learn image features from the training set of low-
light images. Wang et al. (2019) proposed a multi-branch low-
light Enhancement Network (MBLLEN), it learned mapping
from the low light image to normal light image. Zhang et al.
(2020) proposed a self-supervised illumination enhancement
network by combining maximum information entropy and
Retinex theory. Ha et al. (2015) designed RetinexNet based
on the idea of image decomposition, and adjusted image

brightness using decomposition-enhancement architecture. Shi
et al. (2019) designed a low light enhancement approach based
on RetinexNet. This method could effectively enhance the
illumination of low-light images, but the enhanced images were
deficient in detail and color.

Deep learning-based low-light image enhancement methods
have also been studied. Yang et al. (2016) proposed to enhance
low-light images by coupled dictionary learning. Lore et al.
(2017) used a deep auto-encoder named Low-Light Net (LLNet)
to perform contrast enhancement and denoising. In Shen
et al. (2017), deeply root in multi-scale Retinex representation,
a feed-forward convolutional neural network with different
Gaussian convolution kernels is proposed to learn an end-to-end
mapping between dark and bright images. In Wei et al. (2018),
Wang et al. proposes a deep Retinex-Net including a Decom-
Net for decomposition and an Enhance-Net for illumination
adjustment. In Yang et al. (2020) make the attempt in the semi-
supervised learning for low-light image enhancement. In this
work, a deep recursive band representation is built to connect
fully-supervised and un-supervised learning frameworks and
integrate their superiorities. The performance of these works rely
heavily on the quality of datasets. Due to the lack of a good
metric to evaluate various aspects of the overall quality of the
enhanced results, e.g., detail preservation, visual naturalness and
contrast distribution, their results are not satisfying in some
visual aspects.

Generative Adversarial Nets (GAN) was a new generation
model proposed by Goodfellow et al. (2014). By observing
real data, it learns its potential distribution principle and then
generates data that is consistent with the distribution principle.

In order to improve the image quality of low light image, this
paper proposes a Heterogenous low-light image enhancement
method based on DenseNet generative adversarial network by
using the learning ability of generative adversarial network.
The main contributions are as follows: The new method uses
modified DenseNet structure and deep convolution structure
to generate adversarial network, and realizes the use of low
light image to generate enhanced image fitting with normal
light image. Experimental results show that this new method
can effectively improve the brightness and contrast of low
light images.

The rest of the paper is organized as follows: The GAN
including 3D convolutional neural network is given in section
generative adversarial nets (GAN). Next, modified DenseNet
architecture is described in sectionmodified DenseNet. Then, the
proposed DenseNet GAN and experiment analysis are given in
section proposed DenseNet generative adversarial network and
section experiments and analysis. This paper is finally concluded
in section conclusions.

GENERATIVE ADVERSARIAL NETS (GAN)

GAN is composed of generated network (G) and discriminant
network (D). The purpose of G is to capture the potential
distribution of real data as much as possible. D is a binary
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FIGURE 1 | Dense block.

classifier, whose purpose is to correctly judge whether the input
data comes from the real data or generated data. GAN can be
regarded as a mini-max game problem:

min
G

max
D

(D,G) = Ex ∼ Pdata(x)[logD(x)]

+ Ez ∼ Pz(z)[log(1− D(G(x)))] (1)

Where, E stands for expectation. x ∼ Pdata(x) is derived from
real data. z is a random noise subject to a prior distribution Pz(z)
(generally Gaussian distribution, etc.).

Conditional generative adversarial network (CGAN) is
proposed to increase the stability of GAN by adding additional
condition variable y to random noise z as a constraint condition.
The objective function of CGAN is shown in equation (2):

min
G

max
D

V(D,G) = Ex ∼ Pdata(x)[logD(x|y)]

+ Ex ∼ Pz(x)[log(1− D(G(z|y)))] (2)

Literature (Fu et al., 2016) proved that GAN could still learn one-
to-one mapping from condition variable y to real data x when
random noise z is omitted.

MODIFIED DENSENET ARCHITECTURE

DenseNet
DenseNet is a convolutional neural network with dense
connections, which combines the advantages of ResNet and
Highway to solve the gradient vanishing problem in deep
network (Park et al., 2018). The idea of the DenseNet is to
ensure the maximum information transfer between the middle
and layers of the network, thus it can directly connect all layers.
Figure 1 shows the structure of a Dense block. Block module
is the core part of the DenseNet, the main feature is that each
layer of the network is not only connected to the next layer
(Shoulin et al., 2019), but also directly connected to each layer
after this layer. The input of each layer comes from the output
of all previous layers. The main reason for the disappearance
of gradient is the weak information caused by the transmission
of input information and gradient information in the deep
network. However, in the Dense block design, each layer is

directly connected to input and loss, which can promote the
transmission of information, thus reducing the phenomenon of
gradient disappearance, and the network can converge better.

In the traditional convolutional neural network, such as
AlexNet and VGG, if the network has L layers, then there are
L connections. However, in the DenseNet network, the feature
graph obtained at the i-th layer is the convolution result of all
the previous forward feature graphs after connection, as shown
in equation (3).

xl = Hl([x0 ⊕ x1 ⊕ · · · ⊕ xl−1]) (3)

Wherein, H represents the convolution operation of this layer,
and ⊕ represents the connection operation between feature
graphs. In this way, there will be L(L+1)/2 connections in the
L layer.

Figure 2 is a basic DenseNet structure diagram, which
contains three Dense blocks, in which the 3×3 convolution
of each Dense block will be preceded by a 1×1 convolution
operation to reduce the number of feature maps. In order to
further compress the space, 1×1 convolution layer can be added
between two adjacent Dense blocks. Such a network is also called
DenseNet-BC network. Compared with the DenseNet with the
same depth, it greatly reduces the parameters and also reduces
the risk of over-fitting. There are two key parameters in DenseNet
that need to be paid attention to. One is the number of feature
map output at each layer in the Block k, which is called the growth
rate. The second is the number of convolution layers l in the
Block. In this way, the number of output channels of each Dense
block is shown in formula (4).

Sout = S0 + k× l (4)

Where, S0 is the channel number input by a single block, and Sout
is the channel number output by the Block.

Huang et al. (2017) designed four typical DenseNet-BC
networks in the ImageNet object recognition task, they were
Densenet-121 (k = 32), Densenet-169 (k = 32), Densenet-201
(k = 32) and Densenet-161 (k = 48), respectively. The number
of parameters and calculation amount under the same precision
are less than that of the ResNet network. As shown in Table 1,
the accuracy rate of the four original models in the medical
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FIGURE 2 | DenseNet structure.

TABLE 1 | Accuracy rate with four typical DenseNet-BC networks.

Model Parameter 40X 100X 200X 400X

Densenet-121 (k = 32) 7.05M 85.45 84.05 89.81 84.91

Densenet-169 (k = 32) 12.65M 83.98 83.11 86.22 83.04

Densenet-201 (k = 32) 18.33M 83.83 84.06 88.19 85.62

Densenet-161 (k = 48) 26.69M 79.06 85.49 88.56 89.59

image data set BreakHis is the optimal result under the same
experimental environment.

With the increase of DenseNet-BC network parameters,
the detection accuracy does not improve correspondingly. The
reason is that the more complex network requires more samples
to be trained, so as to ensure appropriate parameter update.
However, due to the limited samples in BreakHis data set, the
network model cannot learn the essential features of breast
cancer pathological images well. Therefore, this paper chooses
Densenet-121 (h = 32) network as the basic network. With high
accuracy, the number of parameters of this network is far less
than that of the other three networkmodels, which can reduce the
memory space, training time and better meet the requirements of
real-time image processing.

Modified DenseNet
In this paper, based on the Densenet-121 model, the application
characteristics of low-light image dataset are improved. Themain
improvement strategies include changing the network structure,
enhancing the data set, and transfer learning.

The Densenet-121 (k = 32) model is a DenseNet network
with a depth of 121 and a growth rate of 32. It is mainly
composed of four Block modules, in which the 1 × 1 and 3 ×

3 convolution kernel combinations of blocks are 6, 12, 24, and
16 pairs, respectively. The two adjacent blocks are connected by
the Translation Layer, which consists of a 1 × 1 convolution
Layer and a 2 × 2 pooling layer, further reducing the size of the
feature map.

In this paper, four Block modules are retained on the basis of
Densenet-121 network, and the number of neurons in the fully
connection layer is changed to 64, while a Softmax classifier is
added. The improved network model is shown in Figure 3. The
network training is carried out in an end-to-end manner. The
four Block modules automatically learn the features of the image
from low level to high level, then integrate the essential features
through the fully connection layer. Finally, it enhances the image
through Softmax classifier.

Softmax classifier is an extension of Logistic regression in
multiple classification problems. Firstly, the output of multiple
neurons is mapped between (0, 1) through the Softmax activation
function to convert the numerical size into probability. Let
the input be the array x. Xi is the i-th element of the array
x. The Softmax activation function is calculated as shown in
equation (5).

f (Xi) =
eXi

∑k
j=1 e

Xi

(5)

Where, k denotes the number of elements in the array X, but
in the proposed model, it represents the number of categories
output by the output layer. f (x) function normalizes the output
value of the neural network, then the probability sum of all
elements output through f (x) function is 1. Softmax classifier
adopts cross entropy loss function, and the calculation method
is shown in equation (6).

Li = −
∑

yi log f (Xi) (6)

In the formula, yi represents the correct classification label of the
image, which is formatted as one-hot coding. In this way, only
the probability value of the correct category will be calculated as
loss value, and the other values will be zero. Finally, the stochastic
gradient descent algorithm is used to minimize the loss function.

PROPOSED DENSENET GENERATIVE
ADVERSARIAL NETWORK

In the low-light image enhancement problem, low-light image
low is taken as the condition variable in the network, and
the output is the light-enhanced image G(low). The objective
function of low-light enhanced GAN is:

min
G

max
D

V(D,G) = Ergb[logD(rgb)]

+ Elow[log(1− D(G(low))] (7)

The proposed model in this paper based on DenseNet GAN
(DNGAN) is shown in Figure 4.

The general generative network uses the proposed DensNet as
shown in Figure 3. First, the image is divided into blocks, then
all the information of the image needs to be compressed into the
vector in the full connection layer. Finally, Softmax is used to get
the classification result.

In DNGAN network, a non-linear mapping is defined as
follows. Firstly, it conducts convolution operation (∗) for the
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FIGURE 3 | Modified DensNet model.

input. Then, batch normalization (BN) (Yin et al., 2020) is
used to normalize the convolution results. Finally, the activation
function is applied to the result. In the generative network,
only the output layer uses the Sigmoid activation function,
but the rest networks use the ReLU activation function.
The discriminant network uses α = 0.2 LeakyRelu activation
function. This non-linear mapping structure can increase the
ability of the network to extract image features, and the
addition of the BN layer can reduce redundant information,
accelerate the training speed, and enhance the stability of
the network.

Supposing gF(x) is the non-linear mapping element, gF0(x) =
x, namely,

gFj(x) = max{0,BNαj ,βj [W
∗
j gFj−1(x)+ b]} (8)

αi and βi are the reconstruction parameters of BN. IfG0(x) = low
is the input of the generative network. Gi(x) is the output of
coding convolution unit. So,

skip(x) = gFi,2[gFi,1(Gi−1(x))] (9)

Gi(x) = max pooling{skip(x)}, 0 < i ≤ 3 (10)
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Where skip(x) represents the jump feature graph, and the
bottleneck convolution unit is composed of two non-linear
mappings, denoted as G4(x). Before feature extraction, the
decoding part of the generative network needs to resize the
feature graph and concat it with the jump feature graph, then:

up(x) = concat[resize(x), skip(x)] (11)

Gi(x) = gFi,2{gFi,1[up(Gi−1(x))]}, 4 < i ≤ 7 (12)

Finally, the output layer of generative network is:

G(low) = g_out(x) = G8(x) =
1

1+ e−[W∗
8G7(x)+b8]

(13)

EXPERIMENTS AND ANALYSIS

In this paper, LOL training set (Wei et al., 2018) and synthetic
data set are adopted to train the network. The testing set selects

FIGURE 4 | Proposed low-light image enhancement model based on DNGAN.

FIGURE 5 | Comparison results with different algorithms on LOL dataset. (A) Original image, (B) ground truth, (C) SEM method, (D) VBSA method, (E) APM method,

and (F) proposed method.
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FIGURE 6 | Comparison results with different algorithms on DICM and MEF datasets. (A) Input images, (B) SEM method, (C) VBSA method, (D) APM method, and

(E) proposed method.
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LOL, DICM, and MEF data set, which can be downloaded from
https://github.com/weichen582/RetinexNet/tree/master/data. In
the training process, the Batch Size is 32 and Patch Size is 48× 48.

The balance coefficient of the network is µ =0.01 and λ =10.
Adaptive Moment Estimation (ADAM) is adopted in this paper.
The network training and testing experiments are completed
on the NVIDIA GTX 2080 GPU, and the implementation code
is based on the TensorFlow framework. In order to verify the
performance and effect of the proposed algorithm in this paper,
the following algorithms are used: SEM (Xie et al., 2020), VBSA
(Kim et al., 2020), APM (Feng et al., 2020).

The following objective evaluation indicators are adopted:
PSNR, SSIM, NIQE, UQI, NQE, and PIQE (Ou et al., 2021).
Bigger SSIM, PSNR, UQI values indicate the better the Image
Quality. On the contrary, the higher PIQE, NQE denote the worse

TABLE 2 | The comparison results on three datasets.

Method SEM VBSA APM Proposed

LOL dataset SSIM 0.512 0.741 0.753 0.822

UQI 0.536 0.823 0.857 0.896

PSNR 11.855 15.489 17.963 20.378

NIQE 8.374 7.924 5.663 4.218

IoU/% 72.5 77.1 79.8 82.5

DICM dataset PIQE 16.96 14.78 12.39 10.28

NIQE 3.886 3.871 3.452 3.323

MEF dataset PIQE 10.75 8.93 7.41 6.92

NIQE 3.475 3.716 3.221 3.378

image quality. Also the IoU is utilized for evaluating the image
enhancement effect. Bigger IoU denotes the better result.

Subjective evaluation results are shown in the Figures 5, 6.
The red boxes indicate clearly differentiated areas. It shows that
the effect of low-light image enhancement is better with the
proposed method.

The objective evaluation results of each algorithm on the three
data sets are shown in Table 2, where the boldface numbers
represent the optimal results and the underlined numbers
represent the suboptimal results. For the LOL data set, SSIM
can measure the similarity of two images in terms of brightness,
contrast and structure, which is highly correlated with the
Human Vision System (HVS) and can fully reflect the image
quality. As can be seen from Table 2, in terms of SSIM and UQI
indexes, the proposed algorithm in this paper achieves the highest
value, indicating that the image quality of low-light images is
significantly improved. It can be seen from Figures 5, 6 that the
algorithm in this paper also improves the expressive force of

TABLE 3 | Comparison of objective evaluation indexes with different algorithms on

the synthetic low light images.

Method SEM VBSA APM RetinexDIP Proposed

SSIM 0.623 0.852 0.864 0.896 0.945

UQI 0.647 0.834 0.868 0.927 0.961

PSNR 11.866 15.583 17.987 21.478 21.489

NIQE 8.255 7.968 5.793 4.375 4.182

IoU/% 69.3 73.1 77.5 80.7 81.6

FIGURE 7 | Subjective visual comparison with different algorithms on synthetic low light images. From left to right: original image, ground truth, SEM method, VBSA

method, APM method, RetinexDIP (Zhao et al., 2021), Proposed.
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visual effect. As can be seen from the results of the LOL data
set in Table 2, in terms of PSNR index, the proposed algorithm
is generally superior to other advanced algorithms. According
to the studies in Xie et al. (2020), Kim et al. (2020), and Feng
et al. (2020), PSNR index is widely used in image evaluation
because it is easy to calculate. However, its calculation is based on
error sensitivity, and it often appears inconsistent with human
perception system in the evaluation. Therefore, the analysis
combined with the subjective effect of the image can better reflect
the image quality. Combined with the analysis in Figures 5, 6,
the enhanced image with SEM has low saturation and color
distortion. The VBSA algorithm makes the image overexposed.
Based on DenseNet, the new algorithm significantly reduces the
image noise and retains the rich structural information of the
image. Compared with other methods, the new algorithm has
better visual effect and conforms to the visual perception system
of human beings.

For the LOL data set, compared with other algorithms, the
NIQE value obtained in this paper is close to the reference
image, indicating that the enhancement result of this algorithm
is closer to the reference image. DICM and MEF data sets do not
have normal light image as reference. In this paper, only blind
image quality assessment index (NIQE, PIQE) is used to evaluate
each algorithm, and for the PIQE index, the proposed algorithm
obtains the optimal value. For NIQE, the algorithm in this paper
achieves better enhancement results compared with DenseNet.
In conclusion, although the algorithm in this paper does not
achieve the optimal results in all indicators, it still has high
advantages. In terms of the SSIM index, the proposed algorithm
has good correlation with human visual perception system and
the ability of noise suppression. And IoU also is the best with the
proposed method.

We also make comparison experiment on synthetic low-light
image. As shown in Figure 7, although SEM and VBSA methods
can also improve the illumination problem, the color distortion
occurs. They are unable to cope with noise and blur effect.
APM results are darker for complex scene images. RetinexDIP
method can obviously improve the brightness, but the detail and
contrast effect is poor. The proposed model can improve the
brightness and contrast better. The rendering is closer to the
normal light image. As can be seen from Table 3, the proposed
method can obtain better objective evaluation values under the
same conditions, that is, the enhanced images are closer to the
real images.

CONCLUSIONS

Aiming at the problem of low-light image enhancement, a
low light image enhancement method based on DenseNet
generative adversarial network is proposed in this paper. The
retention advantage of DenseNet block structure for image
information is utilized to improve the generative network, which
improves the performance of the light enhancement model and
makes it perform better in color and detail restoration. The
characteristics of different loss functions are used to improve
the total loss function of the network, so that the network can
obtain better light enhancement images with better visual and
objective evaluation. The experiment proves that the proposed
method is feasible, and compared with some classical light
enhancement algorithms, the proposed method in this paper
can obtain better light enhancement images. In the future, more
deep learning methods will be utilized to perfect the low light
image enhancement.
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