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Physical human-robot interaction (pHRI) enables a user to interact with a physical robotic

device to advance beyond the current capabilities of high-payload and high-precision

industrial robots. This paradigm opens up novel applications where a the cognitive

capability of a user is combined with the precision and strength of robots. Yet,

current pHRI interfaces suffer from low take-up and a high cognitive burden for the

user. We propose a novel framework that robustly and efficiently assists users by

reacting proactively to their commands. The key insight is to include context- and

user-awareness in the controller, improving decision-making on how to assist the user.

Context-awareness is achieved by inferring the candidate objects to be grasped in a

task or scene and automatically computing plans for reaching them. User-awareness is

implemented by facilitating the motion toward the most likely object that the user wants

to grasp, as well as dynamically recovering from incorrect predictions. Experimental

results in a virtual environment of two degrees of freedom control show the capability

of this approach to outperform manual control. By robustly predicting user intention,

the proposed controller allows subjects to achieve superhuman performance in terms of

accuracy and, thereby, usability.

Keywords: physical human robot interaction, motion intention estimation, motion prediction, AI assistance, reach

and grasp

1. INTRODUCTION

Automation is leading to major societal changes, with an estimated 50% of current jobs
being subjected to automation (Benedikt Frey and Osborne, 2017). However, automation often
requires intelligent semi-autonomous robots operated by human users with physical human-
robot interaction (pHRI) (De Santis et al., 2008). For example, there is a growing need for
efficient controllers for robot manipulators involved in operations such as nuclear waste disposal
or manufacturing processes (Marturi et al., 2016). For these devices, algorithms to predict user
intention are a crucial component of the control system, as the purpose of pHRI is to achieve the
planned goals of the user in a given domain (Losey et al., 2018).

If controller systems employed in pHRI settings could infer movement intention, this would
better support the achievement of planned goals (Figure 1). In the scheme of Figure 1, the user
sends an intention that is intercepted by a controller. The controller decodes that intention in a
given task and sends (corrective) feedback to the user. In this study, the intention may be decoded
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FIGURE 1 | Adapted from Losey et al. (2018). A scheme of the interplay between robot feedback and human intention in physical human-robot interaction (pHRI).

Humans receive feedback from the robot (controller) system once it decodes human task-specific intention. The robot and the human jointly exert control on the

environment where the degree of control from either is determined through arbitration for a given domain.

from myoelectric signals generated by the muscles of the user, or
from the movement kinematics of the user which encodes their
intention of moving to a particular location. To complete the
loop, the controller and the user jointly influence the interaction
with the environment when their actions are modulated
according to an arbitration process (Losey et al., 2018).

In this study, a novel way of achieving this pHRI coupling
was developed by enhancing the robot component with context-
and user-awareness. Context-awareness enables the system to
perceive the environment and to identify potential actions for
the user. User-awareness enables the system to recognize the
intention of a user and assist them in their planned movement.
The central contribution of this study is achieving high accuracy
in reaching tasks by including user- and context-awareness in a
pHRI system.

Context-awareness was enabled by a pre-defined set of
candidate grasp targets and their reach-to-grasp trajectories for
the testing scenario representing a scene with multiple graspable
objects. This set of candidate reach-to-grasp trajectories
represents the optimal trajectories to reach these target states
(i.e., graspable objects) from a starting state, and they represent
the input to the controller.

User-awareness was implemented through a time-
variant Linear-Quadratic Regulator (LQR) controller
(Kwakernaak and Sivan, 1972; Li and Todorov, 2004)
(TV-LQR) that filters the motion commands of a
user at each time step and assists the user along the
trajectories of the candidate grasps, thereby inferring
movement intention.

The controller proposed in this study extends the TV-LQR
to deal with several trajectories at the same time. For each
waypoint belonging to any of the target trajectories, the feedback
controller proposes to either follow the current trajectory or
move toward a neighboring one. The proper feedback control law
is selected online by filtering the motion input of the user. If the
user recognizes that the system is moving toward an incorrect
target, the user is expected to apply a corrective motion that
is used to compute the feedback control to guide the system
toward a new best candidate. The TV-LQR is ideally suited
for such computations as it can deal with potential changes in
system dynamics and user input by computing optimal corrective
feedback for all points on a given trajectory (Li and Todorov,
2004), without the need for predefined thresholds for the
switching conditions.
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Our proposed method can be distinguished from previous
study in several ways. First, contrarily to existing methods for
tele operation that mostly rely on crude force feedback via a
haptic device, (e.g., Boessenkool et al., 2013; Narayanan et al.,
2016), we proposed a predict-then-blend approach, in which
the most likely intention of the user is estimated first, followed
by assistance being provided in the tested task. The previous
study related to intention detection and user assistance typically
relies on myoelectric or EEG recordings which have limitations
associated with a low signal-to-noise ratio (reviewed in Lobo-
Prat et al., 2014; Losey et al., 2018). Conversely, we estimate
the motor intention directly from the user kinematics, which
has been shown to be effective in our previous study (Heiwolt
et al., 2019). Furthermore, LQR controllers have previously been
employed for solving the problem of user assistance (Borner
et al., 2015) and correcting user-given input (Medina et al.,
2012; Moualeu and Ueda, 2014). Existing approaches aiming
to predict user intention are based on computing the distance
between the current configuration of the user and the desired
one (Narayanan et al., 2016). However, such approaches cannot
scale to complex and dynamic environments or tasks because
they ignore the history information and kinematic limitations of
the tele operated robot.

In addition to predicting user intention, shared control
involves using the predictions to support the user in achieving
the expected goal. In this study, we proposed an approach
that enables the soft integration of input commands and
predictions. The user constantly provides inputs to the system
via semi-autonomous control and the TV-LQR estimates
the most likely input at each time step by simply filtering
the commands of the user. If the user is following along
the planned trajectory, the commands are filtered to follow
it. Otherwise, the feedback controller dilutes its adjustment
and enables the user to smoothly transition to the closest
planned trajectory.

In summary, a generic formulation for detecting the motion
intention of the user based on the TV-LQR to filter and
optimize human motor control in a grasping scenario is
proposed. Moreover, using a predictive extension of the TV-
LQR, the desired goal of the user is predicted and inferred in
an unsupervised manner. Finally, the controller is tested and
compared to manual control, as an important aspect of pHRI will
be superhuman performance according to at least one objective
function (e.g., accuracy, computational cost, or speed) (Van Den
Berg et al., 2010), which will facilitate the adoption of these
approaches in practice.

2. METHODS

The proposed TV-LQR implementation is part of a robot
grasping framework previously described in Kopicki et al. (2014)
and Zito et al. (2019). In this study, we present an important
innovation of this framework that enables a human user to
control the position of the robot arm using a control input device
(e.g., keyboard, joystick, or haptic device) which is filtered in such
a way as to always keep the state of the robot arm along the

trajectory of the user target goal. In this way, we translate the TV-
LQR implementation to a pHRI scenario. When presented with
a scene (e.g., a table with objects available for grasping such as
a kettle or a bottle), the grasping framework can create optimal
trajectories for potentially feasible grasps for the mentioned
objects from a given starting pose (i.e., the initial position of the
robot arm). It is then able to execute a given trajectory and grasp
a specific object. In the current extension, if the scene has several
graspable objects, the controller would support the user to follow
one optimal trajectory based on the prediction of the intention
of the user. Importantly, this extension allows the user to switch
the target goal with the controller accordingly exerting less
corrective force (Supplementary Figures 1, 2). The continuous
corrective feedback from the controller is received until the
pose of the system reaches the target goal of the trajectory. At
this position, the grasping mechanism implemented within the
grasping framework would become active and grasp the target
object. The experimental setup aims to demonstrate that our
proposed framework can be used to improve reach-to-grasp
performance in tele operated systems by robustly predicting
movement intention.

2.1. Formal Characterization of the
State-Space Model and TV-LQR
The implementation of the TV-LQR is described in terms of a
discrete, state-space model:

x(t+1) = A(t)x(t) + B(t)u(t) (1)

Where x = [x, y, z,φ,ψ , θ]⊤ ∈ R
6 represents the system state

and u = [ẋ, ẏ, ż, φ̇, ψ̇ , θ̇]⊤ ∈ R
6 represents the control input

as state and angle velocities. All subscripts (i.e., (t) and (t + 1))
represent time notation represented as discrete time steps. The
passive transition dynamics are given by A(t) ∈ R

6×6, which
in our chosen case scenario is kept constant over time with the
following structure:

A =

















1 −0.01 0 0 0 0
−0.01 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 −0.01 0
0 0 0 −0.01 1 −0.01
0 0 0 0 −0.01 1

















Such a parameterization leads to a small amount of damping
in both the x and y direction and the ψ and θ angles. A
simplifying assumption that was made was linear dynamics for
the z-direction to make the system continuously move along one
of the axes to simulate movement toward the target goals. Finally,
B(t) ∈ R

6×6 represents the control matrix and filters how strongly
the input of the user affects the updating of the overall system.
The B(t) is structured as follows:

B =

[

B11 B12
B21 B22

]

where B11 = I ∈ R
3×3 and the rest of the blocks are

zero 3 × 3 matrices, reducing the input of the user command
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to only control translations. In the testing scenario, for each

target object j, a trajectory [x
j
0, u

j
0, x

j
1, u

j
1, . . . , x

j
jn
] was generated

as a set of waypoints and optimal control inputs, such that
each xj, uj are subject to the system dynamics defined in
Equation (1).

Using the state space formulation above, at each time step the
current position of the system x(t) and input u(t) are recomputed
w.r.t. the reference frame of the best matching waypoint for each
trajectory, such that

jx̂(t) = x(t) − x
j

(t)

jû(t) = u(t) − u
j

(t)

(2)

where the notation jv̂(t) represents a vector v(t) at time t seen from
the j trajectory. The best matching waypoint for any trajectory

j at time step t, x
j

(t)
, is computed as the closest waypoint x

j

l

to x(t). Note that the subscription (t) identifies the time step
for the TV-LQR system, while l identifies the waypoint along
the trajectory.

The obtained estimates from Equation (2) are used at each
waypoint to compute the quadratic cost of the current system
state and input:

J
j

(t)
=

jx̂⊤(t)Q(t)
jx̂(t) +

jû⊤R(t)
jû(t) (3)

The Q and R cost matrices are defined as:

Q =





















e
S

1+tτ 0 0 0 0 0

0 e
S

1+tτ 0 0 0 0

0 0 e
S

1+tτ 0 0 0

0 0 0 e
S

1+tτ 0 0

0 0 0 0 e
S

1+tτ 0
0 0 0 0 0 1





















R =























e
S

1+tτ 0 0 0 0 0

0 e
S

1+tτ 0 0 0 0

0 0 e
S

1+tτ 0 0 0

0 0 0 e
S

1+tτ 0 0

0 0 0 0 e
S

1+tτ 0

0 0 0 0 0 e
S

1+tτ























Where the Q matrix represents penalization for being away
from the optimal trajectory while the R matrix represents how
strongly a divergence of the user input against the optimal input
is penalized. It is worth emphasizing is that the diagonal terms
of both matrices are parameterized over time with a hyperbolic
discounting function (Supplementary Figure 1):

f (S, t) = e
S

1+tτ (4)

where the parameter τ is a constant reflecting discounting
strength of the scaling matrix. The values for S and τ are
empirically estimated in section 3 via our characterization
run experiments.

By minimizing the cost function in Equation (3), the expected
trajectory that the user wants to follow is found as the closest
to the current system state. We denote the selected waypoint of

the chosen trajectory as x
j∗

(t)
and u

j∗

(t)
and we denote the state and

input of the system w.r.t. the trajectory

x̂(t) = x(t) − x
j∗

(t)

û(t) = u(t) − u
j∗

(t)

as already defined in Equation (2) but for simplicity, we drop the
reference to the selected trajectory j∗.

We can now predict where the system state will be at the next
time step given the current selected trajectory and the input of
the user ( ˆ̄x(t+1)):

ˆ̄x(t+1) = A(t) ˆx(t) + B(t)û(t) (5)

In addition, a conservative estimate heuristic of where the user
wants to move next together with a two-waypoint trajectory
buffer was added to the formulation. For example, if the user
was at waypoint t = 15 and the position of the trajectory
waypoint with the lowest cost was determined to be kx(16) (i.e.,
trajectory k at waypoint t = 16), but the last two trajectory
waypoints were on trajectory h, the latter was then picked.
However, the trajectory with the lowest cost (k) was put in a
temporary buffer. Once it happened that in two consecutive
observations, the lowest cost trajectory was the same and not
the one for which the user would later receive feedback, that
trajectory was picked (Supplementary Figure 3). The utilized
heuristic was more important for initial waypoints with a small
distance between neighboring trajectories. Over time it became
less important as no crossing appeared in the scenarios presented
in this study. However, to decrease feedback strength when
the user wants to switch trajectories, the scheme presented in
Supplementary Figure 2 was employed.

Once the output of the Equation (5) is obtained, the optimal
input û∗

(t)
(Equation 6) can be computed where the term is still

formulated w.r.t. to the corresponding u
j

(t)
.

û∗(t) = αû(t) − (1− α)K(t)
ˆ̄x(t+1) (6)

Equation (6) is critical to the updating process and, therefore, to
the overall system behavior (i.e., following the nominal trajectory
or moving toward a more promising one). It introduces a
constant parameter α, providing similar functionality to the
Kalman gain (Kalman, 1960). This parameter arbitrates between
weighting the pure user input (û(t)) and the state prediction

( ˆ̄x(t+1)) filtered by the feedback matrix (K(t)) (as shown in
Figure 2). This means that high α values would lead to strong
discounting of the feedback matrix filtering, thereby making
the optimal input more dependent on user input. In contrast,
low values would lead to strong discounting of the user input
and would, therefore, favor the filtered state information for the
optimal input. To compute K, the finite-horizon, discrete-case of
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FIGURE 2 | Boxplots overlaid with raw data showing the effect of (τ , α, S) on the Euclidean distance after passing 50 trajectory waypoints (A), 100 trajectory

waypoints (B), and 200 trajectory waypoints (C). The black line of the box plot denotes the median value. The upper and lower bound of the boxplot denotes the 1st

and 3rd quartile of the dataset. The boxplot whiskers denote the 1.5* Inter quartile range (IQR). The superimposed blue line on the boxplots denotes the median and

has been added for clarity purposes. In all three panels, the α parameter had the strongest effect on Euclidean distance.

LQR was used at each waypoint of each trajectory; corresponding
to each change of the scaling of the Q and Rmatrix

K(t) = (R+ B⊤P(t+1)B)
−1(B⊤P(t+1)A+ N⊤) (7)

Importantly in the equation above, by computing P(t) which is
obtained by solving the finite-horizon, discrete-case Algebraic
Riccati equation (Equation 8)

P(t−1) = A⊤P(t)A− (A⊤P(t)B+ N)
(

R+ B⊤P(t)B
)−1

(B⊤P(t)A+ N⊤)+ Q (8)

we minimize the cost function:

J = x⊤(N)Q(N)x(N) +

N−1
∑

t=0

(

x⊤(t)Q(t)x(t) + u⊤(t)R(t)u(t)

)

(9)

With x⊤N being the final goal state for the j∗ trajectory. Finally,
the obtained optimal control estimate is dereferenced to obtain
the optimal input (u∗

(t)
) that is then continuously supplied to the

system as the control input.

u∗(t) = û∗(t) + u
j

(t)
(10)

After the optimal input was computed, the prediction estimate
of the system pose was obtained using the model from Equation
(1) with a substitution in the input term (Equation 11) and the
corresponding local optimal trajectory state estimate being used
in the state term:

x̂(t+1) = A(t)x̂(t) + B(t)u
∗
(t) (11)

In the last step, the state vector was dereferenced w.r.t. to the local
optimal trajectory and put back into the world frame:

x(t+1) = x̂(t+1) + x
j

(t)
(12)

To this state prediction, mean-centered, Gaussian noise with σ =

1 was added to both the x and y coordinate to approximate noisy
updates due to faulty odometry or sensor readings:

x(t+1) = x(t+1) +N (0, σ ) (13)

2.2. Experimental Tests
2.2.1. Scenario
The presented system was tested in a scenario where
multiple trajectories were generated from an arbitrary
starting point representing the starting system pose x0. The
generated trajectories represented potential grasp targets
(Supplementary Figure 4), and were described to the subjects
as optimal trajectories from their starting system pose to the
potential grasp targets, as outlined in the Procedure. On each
trial, each subject was first tasked with providing their desired
target grasp (i.e., the name of its corresponding trajectory).
This was followed by them continuously providing input to
the system by means of a wired computer mouse, with input
sampled at 10 Hz. As they provided input, the pose of the system
was updated.

2.2.2. Procedure
The implementation was tested in two parts. The first part is
referred to as characterization runs throughout this manuscript.
The second part is referred to as controller tests. In both
cases, control was supplied using a wired computer mouse
and calibrated on a computer screen using a 1,920 × 1,080
resolution, where the coordinate (20, 1,020) would represent u =

[0, 0, 1, 0, 0, 0]⊤. By moving the mouse along the x and y axis in
physical space, one could increase or decrease the velocity of the
respective dimension, while the z-axis would slowly be increased
to mimic moving from a starting system pose toward a target
grasp pose in one dimension. The goal of the task was to go
from the starting system pose toward a target grasp pose. In the
first part, 200 trials were used for each parameter combination
to measure their effect on the Euclidean distance between the
final system pose and target grasp pose (i.e., accuracy). Themodel
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space for the employed was: τ (0.1, 0.5, 0.9), S (1, 5, 9), and α
(0.1, 0.5, 0.9). Additionally, trajectory lengths were varied as well
with 50, 100, and 200 waypoints through the characterization
runs. A given parameter or employed trajectory length was
varied individually while the rest of the test characteristics were
kept constant, for each possible parameter combination this was
repeated 200 times. Furthermore, Gaussian noise (σ ) was set to
a constant value (σ = 1). In general, in characterization runs,
constant input was provided by keeping the mouse position (i.e.,
the velocity) constant beginning with a starting pose until the
vicinity of the target grasp pose was reached. At that stage, the
Euclidean distance between the final system pose the and closest
target grasp pose was computed. In this section, the constant user
input was simulated as it would have been unfeasible for human
users to perform trials with all possible parameter combinations.

While the characterization results showed that α = 0.1 was
the optimal parameter for a trajectory length of 200 waypoints,
α = 0.5 was used to enable equal arbitration between feedback
provided by the TV-LQR and user-provided control in the TV-
LQR condition (Equation 7).

In the second part, the described setup was tested on six
subjects aged between 24 and 27 years with no history of
movement disorders and complete upper-limbmotor mobility to
avoid unwarranted issues in operating the system. Before starting,
subjects were told they would need to provide input to guide
a controller in a simulated 3D scene from a starting system
pose to a final system pose that would be as close as possible
to one of the target grasp poses. Furthermore, they were told
there were several possible target grasps in the simulated scene,
representing possible grasp candidates. Finally, they were told
there was an optimal trajectory from a given starting pose to a
target grasp pose which the TV-LQR would try to keep them as
close as possible to in one of the conditions they were about to be
tested on.

To enable navigation through this, simulated 3D scene
subjects were presented with information of their current
position in terms of x, y, and z coordinates, their velocity, the
coordinates of several final target grasp poses, the waypoints of
the optimal trajectories closest to their current position, and the
coordinates of the trajectory they were closest to, in case it was
not one of the target ones.

In contrast to characterization runs, the goal of each subject
in the second part was to pick one of three target grasp poses that
were arbitrarily defined at the start of each trial and provide input
tomove the controller such that they would achieve a final system
pose which would be as close as possible to their target grasp pose
(i.e., the final pose of a specific trajectory). In controller tests, they
were required to switch their targeted grasp half way through the
execution (switch condition) as opposed to the other half, where
this was not necessary (non-switch). In both the switch and non-
switch conditions subjects were required to focus on, arbitrarily
chosen, target grasp poses from three trajectories (F, I, J).

Therefore, an optimally accurate system would always lead
to either of these three trajectories and none of the remaining
trajectories (A–E, G, and H). This factor was orthogonal to
the assisted and manual condition. That is, to the condition
where they were assisted by the TV-LQR when providing input

(assisted) and the one where their final system pose dependent
entirely on their performance (manual). All subjects were tested
on a trajectory length of 200 waypoints and using 100 trials
per each of the described conditions, amounting to 200 trials
per subject using the optimal parameter estimates from the
characterization runs. For each subject, this experiment took
between 60 and 90 min.

2.2.3. Analysis
The analysis comprised two parts. In the first part, individual
conditions of interest from the characterization tests of the
system were compared either using Wilcoxon rank sum tests or
2-sided, independent-samples Welch t-tests to establish optimal
parameter settings. Only accuracy was tested, as the speed of
execution was not stored.

In the second part, further Welch t-tests and Wilcoxon rank
sum tests were performed to compare the TV-LQR assisted
and manual condition as a whole and segregated in the non-
switch and switch condition to assess whether any changes were
observed. This provided a direct test for the hypothesis of the
TV-LQR assisted condition leading to higher accuracy. As a more
stringent criterion, linear mixed models (LMM) were employed
to factor in the repeated-measured aspect of the design. In
addition, for each subject, a linear regression on the complete
dataset collapsed across the switch and non-switch condition was
performed to assess whether the slope (β) coefficient from the
assisted to the manual condition would be positive. Namely, this
would indicate that for all subjects, the same results hold, and
our results were not driven by outliers (e.g., one subject in the
dataset). Finally, the results were inspected to assess whether
in the TV-LQR condition, subjects were led to their desired
trajectories and how this compared to manual control where
no assistance was provided. In this study, the final goal states
closest to the system pose were plotted as histograms of visitation
frequency and checked to assess whether there was a saturation of
visitations for the trajectories F, I, and J and whether the pattern
of visitations differed between the conditions.

3. RESULTS

The controller was first tested in simulation through
characterization runs to determine the optimal parameter
set (τ , α, S) for the testing domain and to investigate their impact
on accuracy (as shown in section 4). In this study, accuracy was
defined as the Euclidean distance between the final system pose
and the grasp target pose for a specific target trajectory after 50,
100, and 200 trajectory waypoints under constant input. The
final pose was always an arbitrarily picked grasp target pose
of a specific trajectory that remained the same throughout an
execution run. By keeping the input and final pose constant,
the contribution of individual parameters (τ , α, S) on accuracy
was determined. Crucially, despite providing constant input
and a constant final pose, non-additive unit noise (Equation
14) was added at each waypoint for each execution run, and
thus, all reported results include noise because the aim was
to design a robust control system that would generalize to
real-world domains.
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The optimal parameter set was then used on human subjects
where the controller was directly compared to manual control
with a within-subjects design. Due to a within-subjects design,
the sample size was (N = 6) subjects and is comparable to
previous related study (Shamaei et al., 2015; Tao et al., 2017; Sierra
et al., 2019).

3.1. Characterization Runs on Trajectories
With 50 Waypoints
The characterization run results with 50 waypoints are reported
first (Figure 2A). Two independent-sampleWelch t-tests showed
that the parameter setting α = 0.5 (M = 9.20 ± 0.33) yielded
best accuracy compared to both α = 0.1 [M = 11.62 ± 0.23,
t(3427.5) = 244.45, 95% CI [2.40, 2.44], p = 2.2e-16] and α = 0.9
[M = 11.59 ± 0.26, t(3206.2) = 258.72, 95% CI [2.38, 2.42],
p = 2.2e-16]. Furthermore, different parameter values of S and
τ did not affect accuracy, irrespective of which combination was
used during the characterization runs. This is also reflected by
independent-sample Welch t-tests where the pooled S = 1 with
the S = 5 [t(3,598) = 0.21, 95% CI [−0.07, 0.09], p = 0.83], and
S = 9 [t(3,597) = 0.05, 95% CI [−0.08, 0.08], p = 0.96] across
all α and τ values were compared and did not show a difference
in accuracy. Similarly, when the same analysis was repeated to
investigate the effect of τ on accuracy, the results showed that the
pooled τ = 0.1 was comparable to τ = 0.5 [t(3597.9) = 0.22,
95% CI [−0.07, 0.09], p = 0.83], and to τ = 0.9 [t(3597.9) = 0.11,
95% CI [−0.07, 0.08], p = 0.91] across all α and S values. In sum,
in trajectories with 50 waypoints, only the α parameter had an
impact on accuracy.

3.2. Characterization Runs on Trajectories
With 100 Waypoints
The same set of analyzes was applied to trajectories with lengths
of 100 waypoints. In contrast to the results from Figures 2A,B

reveals that α = 0.9 (M = 19.31± 0.99) led to highest accuracy.
To statistically evaluate this, Wilcoxon rank sum tests were used
and the difference between different levels of the α parameter
was assessed. Again, both S and τ were pooled to obtain means
corresponding to M = 23.69 ± 1.23, and M = 21.35 ± 2.26,
respectively. A comparison between α = 0.9 and α = 0.5
(W = 673730, 95% CI [2.93, 2.96], p = 2.2e-16), and α = 0.1
(W = 92510, 95% CI [1.45, 1.47], p = 2.2e-16) showed that the
difference observed in Figure 2B was statistically significant.

3.3. Characterization Runs on Trajectories
With 200 Waypoints
In the last set of characterization runs, the highest accuracy was
obtained when α = 0.1. Thus, when the strongest corrective
feedback was given by the TV-LQR controller (i.e., α = 0.1),
the smallest discrepancy between the final system pose and the
target grasp pose was observed. As in the case of the previous
trajectory lengths, when means were pooled across S and τ , it
was observed that M = 28.71 ± 2.55, M = 31.81 ± 2.41, and
M = 34.59 ± 1.94, for α = 0.1, α = 0.5 (W = 466, 280, 95%
CI [3.15, 3.16], p = 2.2e-16), and α = 0.9 (W = 75, 702, 95% CI
[5.315.33], p = 2.2e-16), respectively. That is, both statistical tests

showed that α = 0.1 had the best accuracy. Notably, Figure 2C
also revealed comparable performance in the case where τ = 0.5
and τ = 0.1 (W = 1, 589, 900, 95% CI [−0.02, 0.01], p = 0.33),
but improved performance when compared to τ = 0.9 (W =

1, 307, 800, 95% CI [0.07, 0.16], p = 2.2e-16).

3.4. Shared Control Improves Accuracy
Across All Conditions
With the obtained optimal parameter set, the controller was
tested on (N = 6) subjects. The main hypothesis was that shared
control would improve accuracy compared to manual control.
Subjects were more accurate in the shared compared to manual
condition (Figures 3A–C) for both the switch [shared - M =

24.33 ± 3.51; manual - M = 27.26 ± 4.56, t(5) = 2.57, 95% CI
[0.01, 5.86], p < 0.05] and non switch [shared -M = 24.20±3.41,
manual:M = 27.69± 5.11, t(11) = 4.69, 95% CI [1.70, 4.72], p <
0.001] conditions. Subjects were also more accurate in the shared
condition when we collapsed across conditions by computing
accuracy estimates per subject [t(5) = 4.07, 95% CI [1.29, 5.69],
p < 0.005]. Furthermore, shared control improved accuracy
when we investigated the raw data to account for potential
outliers in individual trials shared: M = 24.26 ± 3.46, manual:
M = 27.48 ± 4.85) (W = 106, 430, 95% CI [2.31, 3.18], p =

2.2e-16; Figure 3C). These results confirmed that the employed
TV-LQR controller outperformed manual control.

Crucially, we hypothesized that the improved accuracy should
be observed robustly across subjects as a critical test of the
usefulness of our proposed approach. To test, this we modeled
the responses of the subject using LMM (Figure 4). We aimed
to predict the observed Euclidean distance with the condition
(assisted, manual) and information about switching (Yes, No)
as fixed factors together with subjects as random intercepts with
varying slopes for both condition and switching information, and
trials as random intercepts. A Type III Analysis of Variance with
Satterthwaite’s method showed that only condition [F(5.00,1) =

22.91, p < 0.005] was a significant predictor for the final observed
accuracy or Euclidean distance. A change from shared to manual
control resulted in reduced accuracy [β = 3.49 ±0.71, t(6.28) =
4.92, p < 0.005]. In other words, this result implies accuracy
deteriorated in the manual compared to the shared condition
when accounting for variance in the responses of the subject, in
line with our previous results.

3.5. Assisted Control Improves Accuracy in
All Subjects
As the most stringent criterion for determining whether the
controller was better compared to manual control, the conditions
were compared for each subject separately. Namely, the focus
of this study was to see whether for each subject individually,
enabling shared control on a task would yield an improvement in
their accuracy compared to manual control where they received
no assistance. This is because a significant result in previous tests
could also be obtained if shared control improved accuracy for
most subjects. To test this, we assessed whether the regression
lines for each subject showed a positive slope (β) from the assisted
to the manual condition. A positive slope would in this case

Frontiers in Neurorobotics | www.frontiersin.org 7 September 2021 | Volume 15 | Article 695022

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Veselic et al. HRI With Robust Prediction of Movement Intention

FIGURE 3 | Accuracy of individual conditions for all subjects. (A,B) show subject color-coded summarized information (N = 6). The accompanying lines denote the

95% CI for the non-switch (A) and switch (B) condition. (C) Shows the same information collapsed across both (A,B) in addition to showing raw trial information

across all subjects to show the full distribution across all trials. The green dotted line in (A–C) is the grand mean collapsed across all conditions. The yellow error bar

corresponds to the condition mean and 95% CI. The superimposed blue bar shows the condition median. ***p < 0.001, **p < 0.01, *p < 0.05. All three panels show

that the assisted condition resulted in higher accuracy compared to manual control.

FIGURE 4 | Raw data with corresponding overlaid regression lines and shaded SEs for the assisted vs. manual condition across all subjects. The y-axis shows

accuracy for all trials for each subject individually. A positive slope from the assisted to the manual condition means that our controller improved accuracy across trials.

This can be observed for all subjects.
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FIGURE 5 | Raw data separated by subject with overlaid regression lines and shaded SEs for the assisted vs. manual condition. The y-axis shows accuracy for all

trials for each subject individually. A positive slope from the assisted to manual condition means that the controller improved the accuracy of the subjects. A positive

slope can be observed for all subjects in panel (A) data were collapsed across the switch and the no switch condition. Similarly, when the data was split according to

the switch and no switch condition, a positive slope can be observed for all subjects and conditions in (B), except for the bottom row of the second panel.

mean that there was a deterioration in performance when going
from assisted to the manual conditions and thereby a general
improvement under the TV-LQR assisted condition. We indeed
observed (Figure 5A) the βs for individual subjects (M = 3.21,
Min = 1.02, Max = 5.23) were positive, showing the assisted
condition improved accuracy in all subjects. Similarly, when
subjects were further split according to the switch and non-
switch condition (Figure 5B), we again observed positive slopes
indicating improved accuracy during shared control in all cases
except one subject in the switch condition.

In sum, all the described tests that assessed the difference
between shared/assisted and manual control provided congruent

evidence for our hypothesis of shared control, where the TV-LQR
provided assistance, improving the accuracy of the subjects on
our task compared to manual control.

All trials for one example subject were plotted in two
dimensions for clarity purposes (Figure 6). For a bundle of
runs in the assisted condition, the algorithm first filtered an
incorrect trajectory until approximately 3/4 of the trial, after
which it started converging on the correct target trajectory.
A similar pattern is observable on a few trials where filtering
first favored the incorrect trajectory D but then shifted toward
the correct target trajectory I toward the end. Furthermore,
this figure showcases the inaccuracy of the manual compared
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FIGURE 6 | Example data from a series of executions of the manual (gray lines) and assisted (orange lines) condition. Black, red, and blue lines correspond to the

optimal trajectories leading to their respective target grasp poses. More specifically, the blue line corresponds to the target trajectory (I), the red line to a neighboring

trajectory (F) to which the assisted condition incorrectly converged in some cases, and the black lines to remaining neighboring trajectories. This data displays the

starting and ending positions together with the error and dynamics of how the controller handled user input from the beginning until the end of a given trial.

to the assisted condition given the goal in both conditions
was identical.

3.6. Target Trajectories Are More Often
Achieved in the Switch Condition Under
Assisted Control
The last part of the results was related to the prediction of
intention. Figure 7 showed a higher convergence toward one
of the target trajectories in the case of TV-LQR assistance
(upper row, accuracy for non-switch condition: 27.33%, switch
condition: 32.33%) as opposed to manual control (bottom
row, accuracy for non-switch: 30.33%, switch condition:
30.00%), regardless of whether switching was required or not.
Furthermore, in both the manual non-switch (51.67%) and
switch (53.67%) conditions, the proportion of non-target final
trajectory states (all trajectories except F, I, J) was higher when
compared to both the non-switch (35.33%) and switch (29.00%)
case of the shared control condition with TV-LQR assistance,
indicative of a higher convergence on the final target goal states
and better estimation of the proximity of the desired target grasp
poses, as picked by the subjects. This shows that, in addition to
differences in accuracy between the two conditions, the shared
control condition with TV-LQR assistance provided feedback
for irrelevant goal states substantially less often in both the
non-switch (16.33%) and switch (24.67%) condition.

4. DISCUSSION

The presented approach shows how the accuracy and, thereby,
the usability of semi-autonomous robots for reach-to-grasp tasks,
such as human-operatedmanipulators for nuclear waste disposal,
can be improved. The key idea of the proposed study is to
develop systems that are simultaneously context- and user-aware.
Context-awareness was implemented as a black box by manually
generating feasible grasp candidates and noisy trajectories which
served as input to a TV-LQR controller. User-awareness was
implemented by filtering of the TV-LQR controller when the user
supplied motion commands.We showed the usefulness of the
TV-LQR by performing several tests where the grasping accuracy
of the subjects was improved with the help of our approach both
when they had to or when they were not required to switch
between their target grasps.

Our proposed approach employs a predict-then-blend
approach, in which the most likely intention of the user is
estimated first and then assistance is provided in the tested task.
Our semi-autonomous controller takes as input the command
of the user at each time step and filters them according to
its most likely interpretation of the intention of the user. No
switching thresholds need to be defined nor do complex user-
or task -dependent functions need to be learned. Our system
only requires as input a list of the targets of the user, i.e., feasible
grasps and associated trajectories. For such a procedure, we build
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FIGURE 7 | Histogram with the frequency of the final system pose being closest to the target grasp pose. In the case of a random visitation frequency expected by

chance, each target grasp, denoted by its trajectory name, would be frequented between five and six times (50 trials per condition).

upon our latest developments on autonomous robot grasping
(Kopicki et al., 2014; Zito et al., 2019), which can provide a
representation for clutter scenes, generation of feasible grasps,
and obstacle-free motion planning for reaching such grasps.
However, the work proposed in this study is independent of
the way the input is generated, and improving the perception
and planning abilities of the autonomous system is out of its
scope. In contrast, we present a set of results for establishing the
validity of our method in terms of better accuracy in reaching
tasks and predicting the user intention. We argue that our
TV-LQR controller empowers the user by achieving superhuman
performance in terms of accuracy when driving the system to
its chosen target. One observation we did not predict was that
total accuracy across both the switch and non-switch conditions
was similar. This may have occurred due to the employed testing
scenario and may be explored in our future study.

In addition to improving accuracy, the system was capable
of recovering from incorrect predictions, i.e., when the selected
target grasp was not the same as the one chosen by the user. This
is best observed in Figure 6, where a bundle of trajectories, which
first followed an incorrect optimal reach-to-grasp trajectory,
started shifting toward the one the user picked (blue line), and
finally converged on that one.

Crucially, because the aim was to build a robust controller
system that would mimic real-world use cases of remote tele
operations, all the trajectories that were generated had added
noise. Similarly, all the tests reported in the results were also
performed with non-additive, noisy updating of the system
at each waypoint of each trajectory. The main reason for
these design decisions was to ensure that the controller would
generalize to real-world noisy scenarios well, as both would
be predicted when observations are made from incomplete
information, e.g., in nuclear waste disposal scenarios and
subsequent faulty odometry reading that would render such a
system less useful.

Our simulated testing scenario has several advantages for the
tests reported in this study. Their simplicity allowed for full
control of the environment and a safe test of characterization
runs. Moreover, due to this, it was possible to assess the
benefits of adding context- and user-awareness with respect
to manual control by mimicking a real state-of-the-art setup
without potential confounds that could have affected the
proposed comparison. Namely, setups in real-world settings
require months of training for a human operator to become
proficient in a high DOF setting on one or several 2D displays.
This is due to the rudimentary and contra-intuitive interfaces
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employed, i.e., manual control in joint or Cartesian space, and the
lack of depth perception provided by a limited number of fixed
cameras on the robot site. In contrast, the employed experimental
setup circumvented this potential problem to focus and test
the proposed framework on naive users after a few training
trials. This was due to the fact that the employed experimental
setup did not require the users to learn a complex 2D-to-3D
mapping between the 2D feedback of a computer display and
the 3D environment while providing a full visual description of
the scene.

Overall, the results show that using a TV-LQR with a
predictive formulation can be used to improve performance
on reaching tasks in terms of better accuracy due to robust
prediction of movement intention and in terms of being
able to recover from incorrect predictions in an online
fashion. This was achieved in the simulation where both
the controller and the environment separately included noisy
components as a proof of principle test for the proposed
controller. Furthermore, the importance of parameter tuning
was demonstrated in the first part of the results as an auxiliary
component when it comes to optimizing such a system.
Namely, the employed parameter combination will potentially
impact the total accuracy of such controllers. This aspect
will become increasingly important as personalized controller
systems will need to account for interindividual variability of
human users in terms of their motor capacity and control
characteristics (i.e., the same default parameter combination
might not be optimal for every user), a notion that has
been long-acknowledged in other fields (e.g., personalized
medicine Schleidgen et al., 2013). In sum, we have shown
that the TV-LQR with a predictive formulation is a promising
approach that can be used in grasping scenarios with several
possible grasp targets. This study paves the way to future
implementations where shared control can be assessed in real-
world pHRI settings.
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