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With the rapid development of artificial intelligence, Cybernetics, and other High-tech

subject technology, robots have been made and used in increasing fields. And studies

on robots have attracted growing research interests from different communities. The

knowledge graph can act as the brain of a robot and provide intelligence, to support

the interaction between the robot and the human beings. Although the large-scale

knowledge graphs contain a large amount of information, they are still incomplete

compared with real-world knowledge. Most existing methods for knowledge graph

completion focus on entity representation learning. However, the importance of relation

representation learning is ignored, as well as the cross-interaction between entities

and relations. In this paper, we propose an encoder-decoder model which embeds

the interaction between entities and relations, and adds a gate mechanism to control

the attention mechanism. Experimental results show that our method achieves better

link prediction performance than state-of-the-art embedding models on two benchmark

datasets, WN18RR and FB15k-237.

Keywords: learning-based artificial intelligence, robot intelligence, human-robot interaction, knowledge graph

reasoning and completion, knowledge graph embedding

1. INTRODUCTION

With the development of science and technology, significant progress has been achieved in robotics
that the types and application fields of robots are constantly enriched. These robots have played key
roles in reducing tedious work. They provide optimal user service and improve the convenience of
life. The popularity of various kinds of robots is an inevitable trend.

The emergence of learning intelligent social robots means that robots have truly begun to play
roles in people’s daily lives, such as pepper and buddy. There are some typical applications, such as
greeting conversations, question responses, interest recommendations, and risk management (Gu
et al., 2021). Huge information is need at the backend of these services. However, the traditional
search engine will be affected by the combination of information, resulting in an increase in search
volume and a decrease in accuracy. Knowledge with unique meaning and with the goal of solving
practical problems can avoid this problem well.

The “Robot Brian” is taken the same as the brain for humans, which stores and infers knowledge
to support other behaviors. Knowledge base is usually used to work as the brain of an intelligent
robot. Unlike general applications that implicitly encode information in programs, it can explicitly
express the corresponding knowledge of actual problems. Providing continuous knowledge support
for robots through the knowledge base is equivalent to injecting “thought” into the robots to
realize real intelligence true intelligence. Knowledge base construction is a core configuration for
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intelligent robots. Without a knowledge base, a robot cannot
answer any questions. The richer the knowledge base, the more
intelligent the robot will have when interacting with users.

A large amount of research work in knowledge representing,
web data mining, natural language processing and other fields
are dedicated to acquiring large-scale knowledge (Jia et al.,
2021), providing rich knowledge bases for building the intelligent
brain of robots. In order to facilitate computer processing and
understanding, we express the knowledge base in a more formal
and concise way, that is, a highly structured knowledge graph
composed of triples (eh, rk, et). The Knowledge Graphs (KG) not
only provides robots with a more human-like representation of
the world, but also provides a better way to organize, manage and
utilize massive amounts of information.

Although the large-scale knowledge graphs already contain
a large amount of entity and relation information, they are
still incomplete compared with existing knowledge and newly
added knowledge (Zhao et al., 2020). Through knowledge
graphs and knowledge self-learning, problems in the knowledge
system can be found, and knowledge can be supplemented and
enhanced so that the robot’s knowledge base can be continuously
improved and evolved. There is no end to the optimization and
completion of the knowledge base, just as there is no end to
human learning, this is research work that needs continuous
improvement and development.

In order to alleviate the above problems, researchers have
proposed a knowledge graph embedding method, which predicts
missing links based on existing facts so as to expand the
knowledge base. Its purpose is to learn low-dimensional vector
representations of all entities and relationships, so as to simplify
operations while the original structured information of the
knowledge graph is retained. These knowledge graph embedding
methods are widely divided into translationmodels (Bordes et al.,
2013; Ji et al., 2015; Lin et al., 2015), semantic matching model
(Nickel et al., 2011, 2016; Yang et al., 2015; Trouillon et al., 2016),
and neural network models (Dettmers et al., 2018; Shang et al.,
2019; Vashishth et al., 2020). The related work will be introduced
in detail in section 2.

Compared with neural network models, the other types
of models are all shallow models, which leads to problems
with poor expressiveness. Therefore, more and more complex
and deeper models, which have better expressive performance
and have achieved competitive success in modeling knowledge
graphs, have been proposed in recent years. But these existing
models, such as Dettmers et al. (2018), Nguyen et al. (2018),
Shang et al. (2019), and Vashishth et al. (2020), are more
focused on entity representation learning, and the importance
of relation representation learning are ignored, let alone the
cross-interaction between entities and relations. The interaction
between entities and relations plays an important role in
knowledge graph representation learning that the entities and
relations in the knowledge graph will influence each other and
influence the prediction of new triples as they do in the real world.

In this paper, a method of knowledge reasoning and
completion based on neural networks on the knowledge graph is
designed for robots to simulate the reaction and learning process
of human brains. Our model adopts the encoder-decoder model.
The encoder model improved the KBGAT model with a gate

mechanism to control the attention mechanism and use entity
embeddings to update relation embeddings. The decoder model
uses Conv-TransE and Conv-TransR to achieve state-of-the-art
efforts. This method can enable the robot to quickly search for
information, predict answers, and complete knowledge from the
knowledge base, to better understand user intent and interact
with users more intelligently.

2. RELATED WORK

In this section, we mainly introduce the work related to
our Large-scale Knowledge Graph reasoning and completion
methods for robots. As one of the research hotspots, Large-
scale Knowledge Graph reasoning and completion has attracted
extensive attention from academia and industry. Thus, many
different types of methods are born, such as the translation
model, the bilinear model, the hyperbolic geometry model, the
neural network model, the rotate model, and so on. Among these
different kinds of methods, the knowledge graph Embedding
method is the closest to human expression, which can be
regarded as languages for computers and machines like robots.
The knowledge graph Embedding method generally includes
the following types of models: (i) translation models; (ii)
models based on semantic matching; (iii) models based on
neural networks; (iv) models with additional information. We
will mainly introduce the work related to translation models
and neural network based models related to our work in
the following.

The translation model represented by TransE (Bordes et al.,
2013) uses a simple vector form to represent the entities and
relations in the knowledge graph. TransE (Bordes et al., 2013)
regards relation as the conversion from the head entity eh to
the tail entity et , and uses eh + rk = et to determine whether
the given triplet is correct. In order to make up for the defect
that TransE can only handle the 1–1 relation, TransH (Wang
et al., 2014), TransD (Ji et al., 2015), TransR (Lin et al., 2015),
and other models have increased the ability to handle multiple
relations and semantics and enhanced the knowledge embedding
model. It shows that entities and relations can also be embedded
in other spaces besides real number space. TransG (Xiao et al.,
2015) introduces Gaussian distribution to solve the problem of
multi-relational semantics to capture the uncertainty of entities
and relations. TorusE (Ebisu and Ichise, 2018) is the first model
to embed objects outside the space of real or complex numbers
and select a torus (compact Lie group) as the embedding space.

Neural network-based embedding models have received
extensive attention in recent years. These methods include
embedding models based on convolutional neural networks
(CNN) and graph convolution networks (GCN). For example,
convE (Dettmers et al., 2018), ConvKB (Nguyen et al., 2018),
and InteractE (Vashishth et al., 2020) are both relational
prediction models based on convolutional neural networks.
ConvE (Dettmers et al., 2018) stacks the embeddings of
head entity and relation into a 2-dimensional matrix, and
performs convolution operation to extract features with fewer
parameters and faster calculations. IntercatE (Vashishth et al.,
2020) increases the expressive power of ConvE and expands
the interaction between entities and relations through three
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FIGURE 1 | Model Architecture. The encoder in the left uses is our GI-KBGAT to obtain the embeddings of entity and relation. The right decoder model feeds the

embeddings of eh and rk and use logits activation function to calculate scores. Dashed arrows in the figure represent concatenation operation. The dimension of

vector Eeh and Erk in the middle is the same with the left in fact. We here use 4 dimension to simply the representation of the model.

key ideas—feature permutation, feature reshaping, and circular
convolution. ConvKB (Nguyen et al., 2018) represents each triple
as a 3-column matrix where each column vector represents
a triple element and feeds this matrix to a 1D convolution
layer to generalize transitional characteristics in transition-based
embedding models.

Graph convolution networks have made great progress in
improving the efficiency of node representation in the graph,
and it is also applied in the knowledge graph by researchers.
Graph convolution network (GCN) (Kipf and Welling, 2017)
gathers information for node(entity) from its neighbors with
equal importance. Velickovic et al. (2018) introduce a graph
attention network (GAT) to learn to assign varying levels
of importance to node(entity) in every neighbor. However,
these models are unsuitable for KGs, since they ignore that
edges (triples) play different roles depending on the relation
they are associated with in KGs. SACN (Shang et al., 2019)
extends the classic GCN to a weighted graph convolutional
network (WGCN) as an encoder, and uses a convolution
model Conv-TransE as a decoder to construct an end-to-
end model. WGCN weighs the different types of relations
differently when aggregating multiple single-relation graphs
into a multi-relation graph and the weights are adaptively
learned during the training of the network. But WGCN inherits
GCN’s shortcomings in that it treats the same relation type
for different entities of the same weight. Nathani et al. (2019)
extends classic GAT to KBGAT by incorporating relation and
neighboring node features in the attention mechanism and
uses KBGAT as encoder and ConvKB (Nguyen et al., 2018) as
a decoder.

The above-mentioned models have achieved good
performance in knowledge graph embedding for knowledge
graph reasoning and completion. However, as far as we know,
few works consider the cross-interaction of entities and relations
when designing models. Our proposed model uses a variant
of the graph attention network (GAT) as the encoder and
uses variants of ConvE [Conv-TransE (Shang et al., 2019),
Conv-TransR] as decoder, to achieve the simultaneous capture
of entity-to-relation and relation-to-entityc

¯
ross-interaction.

3. MODEL

This section begins by introducing some notations and
definitions used in the rest of this article. This is followed
by an introduction of our encoder model GI-KBGAT, an
improved Graph Attention Network for KG, which considers
gatemechanism onmulti-head attention and interaction between
entities and relations to generate embeddings. Finally, we
describe our decoder network based on Conv-TransE (Conv-
TransR). The architecture of our model is as shown in Figure 1.

3.1. Notations and Definitions
The knowledge graph is defined as G = (E ,R, T ), where E =
{e1, e2, ...eN} and R = {r1, r2, ...rK} represent the set of entities
(nodes) and relations. N is number of entities and K is number
of relations. T denotes the triples (edges) of the form thtk =
(eh, rk, et) ∈ E ×R× E , where eh is head entity, et is tail entity,
and rk is the relation between head and tail entity. In particular,
entity eh and et in this paper refer to the head entity and the tail
entity, respectively, while other entities with subscripts, such as
entity ei are not specified. Table 1 explains the notations that will
be used in the rest of this article.

3.2. Encoder: GI-KBGAT
As shown in section 2, most existing models ignore the cross-
interaction of entities and relations. They only use relations to
updating entities, but ignore the effects of entities on relations.
We improve the KBGAT (Nathani et al., 2019) by modifying
the update process of embeddings of entities and relations to
consider the interaction between entities and relations in the
update process, and adding a gate mechanism to the attention
mechanism for control.

Ourmodel uses the initial embeddings of entities and relations
as input, and the following layers use the embeddings obtained
from its previous layer as input. The same as Nathani et al.
(2019)’s GAT model, in order to learn the embeddings of entity
ei, we aggregate features of triples associated with it. The triple’s
embedding is learned by performing a linear transformation over
the concatenation of entity and relation vectors corresponding to
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TABLE 1 | Some of the notations and explanations used in this paper.

Notation Explanation Notation Explanation

E,R Embedding matrices

for entities and relations

[‖] Concatenation of vectors

Eei , Erk Embedding vectors of

entity ei and relation rk

| S | Number of elements in set S

Ni Neighbor sets of entity

ei

φ LeakyReLU function

Rij Relation sets

connecting entities ei
and ej

σ Activate function

Pk Entity pair (eh, et ) sets

with relation rk

ψ ReLU function

it, as shown in Equation (1).

Ethtk = Wt[ Eeh ‖ Eet ‖ Erk] (1)

Where Ethtk, Eeh, Eet , and Erk represent the embeddings of triple thtk,
entity eh, et , and relation rk, respectively, Wt denotes the linear
transformation matrix. To measure the importance of each triple
thtk for entity eh, the LeakyRelu non-linearity activation function
φ is used to get the absolute attention value, the activate vector

is defined as Eb, and the softmax function is used to obtain the
relative attention values αhtk, as shown in Equation (2).

αhtk =
exp(φ(Eb Ethtk))∑

n∈Nh

∑
r∈Rhn

exp(φ(Eb Ethnr))
(2)

Then, the new embedding of entity eh is obtained by aggregating
the features of the triples associated with eh through weighted by
their attention values. As shown in Equation (3), attention values
are used to calculate the linear combination of triples(neighbor)
features, and the embedding is obtained with a activate
function σ .

Eeh = σ (
∑

t∈Nh

∑

k∈Rht

αhtk Ethtk) (3)

To stabilize the learning process and encapsulate more
information, our encoder also uses a gated multi-head attention
mechanism inspired by Vaswani et al. (2017), Velickovic et al.
(2018), and Zhang et al. (2018). Considering M independent
attention heads, M embeddings for an entity are obtained. For
example, the embedding of entity eh calculated by the m − th
attention head is represented as Eeh

m. These embeddings of an
entity are concatenated with independent gate value gm

h
except

the last layer (for which we use themean pooling). The final entity
embedding update equation is as follows:

Eeh = σ ([‖Mm=1 (g
m
h · σ (

∑

t∈Nh

∑

k∈Rht

αhtk Ethtk)
m)]) (4)

For the relation update, we propose an update mechanism that
uses the same projection operation as the TransR model (Lin
et al., 2015). Similar to GAT, TransR model holds that an entity
is a complex of various attributes, and different relations focus

on different attributes of the entity. TransR uses the projection
matrix Mr to project the head entity eh and tail entity et into the
corresponding relation space, and defines the score function as
fr(eh, et) =‖ EehMr +Er− EetMr ‖

2
2. Inspired by TransR, we project

the head entity eh and the tail entity et of a triple into the relation
space with a projection matrixWr , and update their relation rk as
Equation (5).

Erk =
1

| Pk |

∑

(h,t)∈Pk

(Eet − Eeh)Wr (5)

In order not to lose the initial embeddings information during
training, our model design a gated mechanism to aggregate the
initial embeddings and the updated embeddings with learnable
gate values. The equation is as shown in Equation (6).

E = geiEinitialWte + geuEupdate

R = griRinitialWtr + gruRupdate

(6)

Where Wte and Wtr are the linearly transform matrices for the
initial embeddings of entity Einitial and relation Rinitial, gei, and
gri are the memory gate for the initial embeddings of entity
Einitial and relation Rinitial, geu, and gru are the update gate for
the updated embeddings of entity Eupdate and relation Rupdate

obtained by Equations (4) and (5), respectively. The scoring
function for the GI-KBGAT method is defined as follows:

f (�) =
∑

thtk∈S

∑

t′
htk

∈S ′

(‖ Eeh + Erk − Eet ‖1 − ‖ Ee′
h
+ Er′

k
− Ee′t ‖1) (7)

Where S and S ′ denotes the set of valid triples [thtk = (eh, rk, et)]
and invalid triples [t′

htk
= (e′

h
, r′

k
, e′t)], respectively, ‖ · ‖1 means

L1-norm dissimilarity.

3.3. Decoder
The convolutional structure is used as the base model of our
decoder, which transforms the embedding vector to another
space and possesses powerful feature extraction ability and good
parameter efficiency. The decoder takes the embeddings of entity
and relation trained from the encoder as input. We test both
Conv-TransE (Shang et al., 2019), and Conv-TransR, which
keeps the translational property of TransR ( EehW + Erk ≈ EetW)
with 1D convolution inspired by Conv-TransE to be consistent
with encoder, as decoder as shown in Figure 1.

The only difference between Conv-TransR and Conv-TransE
is that the Conv-TransR model has one more project matrix for
entities than Conv-TransE. Following shows the model of Conv-
TransR: Conv-TransR uses matrix W to project the entity eh
into its corresponding relation rk’s space, the result is EehW. This
result is then stacked with its corresponding relation embedding
Erk to get [ EehW, Erk] as the input of convolutional network.
The convolutional network uses different filters(kernels) ω ∈
R
2×F(F ∈ {1, 2, 3...}) to generate different feature maps as Conv-

TransE. The scoring function for the Conv-TransR method is
defined as below:

g(eh, rk, et) = τ (ψ([‖ ψ([ EehW, Erk]⊛ ω)]Wc)Eet) (8)
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Where ⊛ represents a 1D convolution operation, [‖] denotes
vector concatenation which concatenates features output from
convolution with different filters ω, Wc is a learnable weight
matrix for linear transformation to projected the concatenation
embedding into the tail entity et space, ψ is chosen to be a ReLU
non-linear function, then the calculated embedding is matched
to tail entity et by an appropriate distance metric, and the logistic
sigmoid function τ is used for scoring finally.

4. EXPERIMENTS AND RESULTS

4.1. Datasets
Through continuous learning, the data scale of intelligent robots
will only increase. Therefore, when evaluating our proposed
method, we ignore the small datasets and chose two large datasets
WN18RR (Dettmers et al., 2018) and FB15k-237 (Toutanova
et al., 2015) as the benchmark datasets. WN18RR and FB15k-
237 are improved versions of two common datasets WN18 and
FB15k (Bordes et al., 2013) derived from WordNet and freebase,
respectively, in which all inverse relations have been deleted
to prevent direct inference of test triples by reversing training
triples. Table 2 provides statistics of them.

4.2. Training Settings
We follow a two-step training procedure that, we first train our
GI-KBGAT to encode information about the graph entities and
relations and then train decoder model Conv-TransR to perform
the link prediction task. For encoder training, we use the margin
ranking loss, use Adam to optimize all the parameters with

the initial learning rate set at 0.001, set the entity and relation
embedding dimension of the last layer to 200, and set the other
hyper-parameters for each dataset to be the same as KBGAT
(Nathani et al., 2019). For decoder training, we use the standard
binary cross-entropy loss with label smoothing, set the size and
number of the kernel to 9 and 200, respectively, and set the other
hyper-parameters for each dataset to be the same as InteractE
(Vashishth et al., 2020).

4.3. Evaluation Protocol
Following the previous work, we use the filtered setting (Bordes
et al., 2013) that all valid triples are filtered out from the candidate
set while evaluating test triples. The performance is reported on
the standard evaluation metrics: Mean Reciprocal Rank (MRR)
and the proportion of correct entities ranked in the top 1, 3, and
10 (Hits@1, Hits@3, Hits@10).

4.4. Results and Analysis
Table 3 presents the experimental results of our methods and
several baseline methods on FB15K-237 and WN18RR test sets.
In which all values are presented in percentage. Among these
baseline methods, the methods in the first box, namely TransE
(Bordes et al., 2013), ConvE (Dettmers et al., 2018), ConvKB
(Nguyen et al., 2018), Conv-TransE (Shang et al., 2019), and
InteractE (Vashishth et al., 2020), have their results taken from
the original paper and can be resumed to acceptable results. We
compared our methods with these methods inTable 3 to label the
best score in bold.

TABLE 2 | Statistics of the experimental datasets.

Dataset
# Entities

| E |

# Relations

| R |

# Edges | T | Mean

in-degree

Median

in-degree
Training Validation Testing Total

WN18RR 40,943 11 86,835 3,034 3,134 93,003 2.12 1

FB15k-237 14,541 237 272,115 17,535 20,466 310,116 18.71 8

TABLE 3 | Experimental results on FB15K-237 and WN18RR test sets.

Models
FB15k-237 WN18RR

MRR H@1 H@3 H@10 MRR H@1 H@3 H@10

TransE Bordes et al., 2013 29.4 – – 46.5 22.6 – – 50.1

ConvE Dettmers et al., 2018 32.5 23.7 35.6 50.1 43 40 44 52

ConvKB Nguyen et al., 2018 39.6 – – 51.7 24.8 – – 52.5

Conv-TransE Shang et al., 2019 33 24 37 51 46 43 47 52

InteractE Vashishth et al., 2020 35.4 26.3 – 53.5 46.3 43.0 – 52.8

SACN Shang et al., 2019 35 26 39 54 47 43 48 54

KBGAT Nathani et al., 2019 20.5 11.4 22.8 39.6 40.4 32.2 44.8 55.4

Our encoder model (+ ConvTransE) 35.5 26.3 39.1 53.8 45.9 42.8 46.7 52.5

Our encoder model (+ ConvTransR) 33.9 24.4 37.6 52.8 46.6 43.4 47.9 52.9

Our encoder model (+ InteractE) 35.5 26.2 39.2 54.1 46.7 43.5 48.1 52.9

All values are in percentage and the best scores of our model is in bold regardless of the second box (SACN and KBGAT).
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FIGURE 2 | The convergence study of InteractE and our encoder model with InteractE as decoder (represented by “+InteractE”) and with Conv-TransE as decoder

(represented by “+Conv-TransE”) in FB15k-237 using the validation set. Here we only report the results of loss, MRR and Hit@10.

TABLE 4 | Ablation experimental results on WN18RR test sets.

Models
WN18RR

MRR H@1 H@3 H@10

KBGAT encoder (+ KBGAT decoder) 40.4 32.2 44.8 55.4

Our encoder model (+ KBGAT decoder) 41.1 (+0.7) 33.1 (+0.9) 45.5 (+0.7) 55.9 (+0.5)

Our encoder model (+ ConvTransR) 46.6 43.4 47.9 52.9

−gate 46.1 (−0.5) 43.0 (−0.4) 47.3 (−0.6) 52.4 (−0.5)

−rel 46.2 (−0.4) 43.0 (−0.4) 47.5 (−0.4) 52.7 (−0.2)

−gate − rel 46.1 (−0.5) 42.9 (−0.5) 47.3 (−0.6) 52.2 (−0.7)

Since our method is inspired by methods SACN (Shang et al.,
2019) and KBGAT (Nathani et al., 2019) that we present their
results in the second box. The results of the SACN model are
obtained from its corresponding paper, but this model requires
a large GPU to train and these results can not be reproduced with
the authors’ code. KBGAT has test data leakage in its original
implementation that the results in its paper are not credible. In
our experiment results table, we fix the problem and show the
correct results of the model.

We first compare our model use Conv-TransE as the decoder
with the Conv-TransE model. Our model performs better than
Conv-TransE on both datasets. Especially in the FB15K-237
dataset, our model improves upon Conv-TransE’s MRR by a
margin of 7.6%, Hits@1 of 9.6%, Hits@3 of 5.7%, and Hits@10 of
5.5%. In the WN18RR dataset, our model improves upon Conv-
TransE’s Hits@10 by a margin of 1.0%. Under the same accuracy,
our model achieves the same performance on the other metrics
compared with Conv-TransE.

Second, we compare our model use InteractE as the decoder
with the InteractE model to better prove the effectiveness of our
encoder. As shown in the Table 3, compared with the original
model, most metrics of InteractE have been improved after our
encoder model is added. For example, our model with InteractE
improves upon InteractE’sMRR by amargin of 0.3% andHits@10
of 1.1% in the FB15K-237 dataset.

Third, we compare our model with the other baseline models.
In the FB15K-237 dataset, our model with Conv-TransE as
decoder achieves the best performance inHit@3 andHit@10, and
tied for the best in Hit@1. In the WN18RR dataset, our model

with Conv-TransR as decoder achieves the best performance
in all metrics. Meanwhile, these two models both can achieve
the top three effects on the other datasets. In conclusion, our
model can achieve the best results on both datasets FB15K-237
and WN18RR.

Figure 2 shows the convergence of the three models:
InteractE, our encoder model with InteractE as the decoder,
and Conv-TransE as the decoder. Because Conv-TransE uses
a different loss function, we do not put its loss result for
comparison. We can see that our models (the red line and green
line) are always better than InteractE (the blue line) under MRR
and Hit@10. And our models converge faster than InteractE.

4.5. Ablation Experiment
In order to prove the validity of our model, we do some
ablation experiments onWN18RR dataset to show the influences
of different parts of our model. The results of the ablation
experiments are shown in Table 4. Compared with the KBGAT
model, our improved encoder with the KBGAT decoder
(convKB) can achieve better performance as shown in the first
box. After changing the decoder methods, our method performs
more superior as in the second box. Combined with Table 3, the
decoders we use are both better than the ConvKB which is used
by KBGAT, which shows the effectiveness of our decoder chosen.

To better show the influences of our innovation in KBGAT,
we also test the influence of different parts in our encoder.
We separately remove the gate mechanism, the interaction
mechanism, and both of them to see the impact on results.
The results are shown in the second box of Table 4. The gate
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mechanism and the interaction mechanism both perform a
similar influence on the encoder model. And the best result can
be achieved by combining them in the KBGAT model as the
encoder model.

For these results, we conclude that our encoder-decoder
model can better the expressive performance of entity
embeddings and relation embeddings, and can achieve
competitive success in modeling knowledge graphs. Since
the hyper-parameters of our model for each dataset are set to
the same as the existing methods and no parameter tuning
is performed to obtain the best performance, we believe that
the performance of our model can still be improved with
parameter tuning.

5. CONCLUSION

In this paper, we propose a novel approach for knowledge
graph relation prediction, which can be used in intent
understanding in human-robot interaction and in robots’
knowledge graph completion. Our methods can work well in
large-scale knowledge graphs and can be extended to learn
embeddings for various applications of robots, such as dialog
generation and question answering.

In the future, we intend to extend our method to work as
an end-to-end work and consider the attribute information and
temporal information into our model to improve the ability to
handle complex knowledge graphs. And we also intend to test

our work in a real robot’s “brain” to test the ability of our model
in actual work.
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