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Striving for more robust and natural control of multi-fingered hand prostheses, we

are studying electrical impedance tomography (EIT) as a method to monitor residual

muscle activations. Previous work has shown promising results for hand gesture

recognition, but also lacks generalization across multiple sessions and users. Thus,

the present paper aims for a detailed analysis of an existing EIT dataset acquired

with a 16-electrode wrist band as a prerequisite for further improvements of machine

learning results on this type of signal. The performed t-SNE analysis confirms a

much stronger inter-session and inter-user variance compared to the expected in-

class variance. Additionally, we observe a strong drift of signals within a session. To

handle these challenging problems, we propose new machine learning architectures

based on deep learning, which allow to separate undesired from desired variation and

thus significantly improve the classification accuracy. With these new architectures we

increased cross-session classification accuracy on 12 gestures from 19.55 to 30.45%.

Based on a fundamental data analysis we developed three calibration methods and thus

were able to further increase cross-session classification accuracy to 39.01, 55.37, and

56.34%, respectively.

Keywords: electrical impedance tomography, gesture recognition, artificial intelligence, neural networks, deep

learning, data analysis

1. INTRODUCTION

In the past decades, we have seen tremendous progress in the development of bionic hands
and other prosthetic devices providing multiple, self-powered degrees of freedom to restore lost
dexterity for upper-limb amputees. One, maybe the most advanced example nowadays, is the Luke
Arm1, which is the commercial version of the Modular Prosthetic Limb (MPL) providing up to
26 articulating degrees of freedom (DOF) via 17 actuators from shoulder to hand and sensory
feedback via vibrotactile sensors (Perry et al., 2018). Traditionally, electric prosthetic devices are
controlled via surface electromyography (sEMG), where the electrical activity of surface muscles is
recorded from electrodes attached to the skin (Farina et al., 2014). However, these electrodes are
only passive sensors, which amplify the body’s own electrical activity. Thus, the signal quality of
their measurements is very limited. Another, non-invasive approach that promised to overcome
this limitation was tactile myography: a high-resolution array of tactile force sensors, worn as a
bracelet around the forearm, is measuring the bulging of muscles with up to 320 tactile cells (Kõiva
et al., 2015). Using simple linear regression methods, Connan et al. (2020) achieved a remarkable
success rate of 70% in continuous hand pose control trained on a few singular hand poses only.
However, a limitation common to both of these approaches is their restriction to the surface

1https://www.mobiusbionics.com
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of the skin. To also reach deeper muscular layers, electrical
impedance tomography (EIT) has emerged in the past few years
as a potential new alternative for myographic signal acquisition.
EIT, proposed by Henderson and Webster (1978), uses pair-wise
impedance measurements from surface electrodes surrounding
an object to recover the impedance distribution of its inner
structure, which in turn allows conclusions to be drawn about
the internal structure of the object itself. Originally, EIT has
been used successfully in clinical applications imaging the thorax
region of the human body (Khan and Ling, 2019). Zhang and
Harrison (2015) first reported its use for hand gesture recognition
employing a mobile eight-electrode system. Using a support
vector machine (SVM) with a standard polynomial kernel, they
achieved an in-session classification accuracy of up to 97%,
distinguishing eight gross gestures. However, when considering
reproducibility between sessions, i.e., after removing and re-
attaching the sensor band, the accuracy dropped by a range of 14–
29%. Considering universality, i.e., the generalization capabilities
between different users, the accuracy again dropped significantly
to a level around 40%. Later results from Wu et al. (2018a)
confirm these poor generalization capabilities.

To better understand the underlying changes in the data
between different sessions and users, the present paper aims for
an in-depth data analysis using modern visualization techniques.
This will pave the way toward more realistic applications
requiring high recognition accuracies also across sessions.
Retraining the system before each usage is laborious and simply
not practical. Our analysis reveals that inter-class variance of the
data is much smaller than cross-session and cross-user variances,
which both range at a similar level. We also observe a significant
data drift within sessions, which calls for a continuous co-
adaptation scheme as suggested, e.g., by Beckerle et al. (2018), to
maintain high-quality control. Based on our analysis, we propose
different normalization techniques and modern deep neural
network approaches for machine learning, which considerably
improve generalization capabilities.

FIGURE 1 | General structure of an EIT system: In (A) the overall system structure is shown, where a central unit controls the whole system and processes measured

values. In (B) the adjacency measurement protocol for the first cycle is shown, where red indicates electrodes used for current injection and blue indicates electrodes

used for voltage measurements.

2. STATE OF THE ART

2.1. Electrical Impedance Tomography
(EIT) for Hand Gesture Recognition
EIT is a non-invasive imaging technology, to recover the
inner impedance distribution (and thus the inner structure) of
conductive objects. In the medical domain, it is predominantly
applied to imaging of the thorax region, e.g., the lung (Khan and
Ling, 2019). To this end, a low-magnitude, alternating electrical
field is applied to the body via surface electrodes. This field
is unequally distorted by different layers of tissue due to their
varying impedance (caused by different ion concentrations in
the tissue) and the resulting potential distribution is measured
with another set of electrodes on the body surface. Based on
these measurements the interior impedance distribution can be
determined using various reconstruction techniques, see Holder
(2015) for a detailed description of the methodology.

The overall approach is illustrated in Figure 1A: A current
source generates an analog alternating signal with a frequency in
the beta range (10 kHz–1 MHz). These frequencies have proven
to be best suited for the measurement of tissue impedance.
To avoid damage to the tissue, the net current injected should
be zero. Thus, according to the standard (DIN/EN 60601-1
VDE 0750-1:2013-12, 2013), the DC component needs to be
smaller than 10 µA, which is achieved by suitable filtering. A
multiplexer distributes the voltage to the injecting electrodes on
the object’s surface. The signal from the measurement electrodes
is multiplexed back to an analog-digital converter (ADC) and
then fed into the central processing unit that computes the
amplitude and phase shift relative to the injected signal. To
this end, several oscillations of the signal are recorded and
subsequently processed.

The EIT systems for hand gesture recognition published so far
comprise 8–32 electrodes arranged circularly around the forearm
as illustrated in Figure 1B for a system ofN = 16 electrodes. The
electrodes are aligned and positioned equidistantly to achieve
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optimal coverage of the arm’s circumference. Most current work
applies a four-electrode measurement method approach, where
the current is injected via two electrodes and the potential
distribution is measured via two other, distinct electrodes. This
avoids erroneous measurements compared to the two-electrode
measurement, which injects and measures via the same pair
of electrodes.

Obviously, there exists a multitude of electrode combinations
that could be used for injection and measurements. The most
common approach used in literature is the adjacency pattern
shown in Figure 1B: Two adjacent electrodes are used for
current injection (red-colored) and two other adjacent electrodes
are subsequently used for voltage measurements (blue-colored),
resulting in N − 3 differential voltage measurements V1-V13,
called a cycle. For the next cycle, the arrangement is rotated
by 360◦/N, such that the current is injected via the next pair
of adjacent electrodes. After a full rotation, N cycles and thus
N(N − 3) measurements were gathered, which form a frame.
According to Kaufmann (2015), this adjacency measurement
pattern provides higher data density and thus more information
content than other patterns.

The existing EIT systems developed for hand gesture
recognition differ by the number of electrodes used, the details
of the current generation and readout circuits, as well as
their injection and measurement scheme. The first EIT system,
introduced by Zhang and Harrison (2015) used a ring of
N = 8 electrodes with a two-electrode measurement for
all N(N − 1)/2 = 28 combinations of electrode pairs. In
their successor system they compared rings of 8, 16, and 32
electrodes in a modular design (Zhang et al., 2016) that allowed
for both, two- and four-electrode measurements as well as
different measurement patterns. To handle the much larger
number of electrode pairs, they reduced the sensing time by a
factor of 10 employing customized hardware. In both setups,
they used a 40 kHz excitation signal and recorded 250 voltage
samples for each measurement (i.e., ca. 5 periods of the injected
signal), whose overall power was subsequently computed with
a discrete Fourier transformation, then serving as a scalar
measurement value.

Wu et al. (2018b) developed an EIT system to control a hand
prosthesis. They used eight electrodes and the adjacency pattern
as well. Jiang et al. (2020) compared two different wristband
layouts, each comprising 16 electrodes in total. Additionally to
the traditional layout with all electrodes arranged in a single ring,
they also considered a layout of two separate rings comprising
eight electrodes each. This layout proved to be slightly superior
as it can measure the muscle tension at two different locations.

Yao et al. (2020) compared gesture recognition rates of
different electrode materials and shapes, using a portable 8-
electrode EIT device. They tested rectangular copper, curved
copper, conductive cloth, and (circular) medical electrodes.
While the first three were fixed using elastic bandages, the
medical electrodes were fixed usingmedical tape and additionally
conductive fluid was applied. The secondary aim of the
comparison was to investigate the influence of electrode-skin
contact impedance on gesture recognition rates. Yao et al.
concluded that a higher contact impedance contributes to a

higher recognition rate, and found quadratic copper electrodes
to achieve the best results.

Finally, the system developed by Gibas et al. (2020) that
was used to acquire the dataset analyzed in the present paper,
used a wristband of 16 rectangular copper electrodes as well.
The design is modular to allow for different measurement
patterns, excitation signals, and data acquisition schemes. As
shown in Figure 2, separate electrode contacts for injection
and measurement were used. In the active electrode, the
measuring signals are pre-amplified by a factor of two via
the multiplexer architecture to a differential amplifier. In all
experiments considered in this paper, the excitation frequency
was fixed to 50 kHz (sinusoidal waveform, rms value of 5 mA)
and the adjacency pattern was used for data acquisition resulting
in N(N − 3) = 208 measurements per frame. 50 kHz were
used in this study, because higher frequencies rapidly increase
the complexity of the electrical layout, whereas lower frequencies
reduce the frame rate. The hardware integrated filters also have
been optimized for 50 kHz. Similarly to Zhang et al. (2016),
five periods of the excitation/measurement signal were recorded
to determine the signal amplitude via peak-to-peak analysis,
which serves as a single measurement. Phase information was
neglected for now, as in most other previous work as well. The
employed ADCs have a resolution of 16 bits (at least 12 bits
are required for EIT) and a sampling rate of 2 MSPS. Thus, we
can sample 40 values per period of the 50 kHz excitation signal,
which corresponds to a twentyfold oversampling according to
the Nyquist-Shannon sampling theorem. Overall, the system
provides a data frequency of 1.2 frames per second.

2.2. Machine Learning Approaches for
EIT-Based Gesture Recognition
Existing machine learning approaches to classify hand gestures
based on EIT signals can be divided into two classes: those which
first apply classical image reconstruction methods and those
which operate directly on the raw data. Various machine learning
approaches have been used, ranging from simple nearest-
neighbor classifiers, over support-vector machines (SVM) to
modern deep neural networks (DNN). As all previous work has
used a different set (and also a different number) of gestures to
distinguish, their results are only hardly comparable. The more
gestures need to be distinguished and the more similar those
gestures are, the more difficult the classification task becomes.

In Wu et al. (2018b), three distinctly trained neural networks
were used to recognize a total of 11 distinct gestures divided into
three hierarchical groups of 5, 5, and 3 gestures (the gesture “fist”
was present in all groups), where each network was responsible
for a single group. In a study involving five volunteers, the
neural networks achieved accuracies of 98.5% (3 gestures), 92
and 97%, respectively using cross-validation on data recorded
in a single session. Further experiments showed that training
a new model was necessary when a user starts to wear the
device, i.e., the system lacks inter-session generalization. Using
the combined data of several sessions across five subjects, a
comparison between several variants of k-Nearest-Neighbor and
support-vector machines, as well as two neural networks with
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FIGURE 2 | EIT system used to record the data analyzed in this work: The central control unit (A) controls the current injection and voltage measurement. The

electrode ring with 16 electrodes (B) exhibiting protective pads (red) and two silver pads indicating separate electrodes for current injection and measurement.

100 and 10 hidden neurons, respectively was performed. This
comparison demonstrated that the neural networks did not only
reach competitive scores, but also required significantly less time
to train.

Zhang et al. (2016) performed classical image reconstruction
employing the EIDORS toolkit (Adler and Lionheart, 2006),
before they performed SVM-classification on the reconstructed
16×16 pixel images. In a trial with 10 participants, the accuracy
on a set of 11 gestures was evaluated with 8, 16, and 32 electrode
measurements and two-pole as well as four-pole measurement
schemes. The results showed that four-pole sensing was superior
in all setups—with accuracies increasing with the number of
electrodes available. Using 16 and 32 electrodes, they achieved
an in-session accuracy of 92.4 and 94.3% at frame rates of 16
and 3 Hz, respectively. Thus, they concluded that for interactive
applications a 16-electrode setup would be more beneficial given
the limited frame rate of the 32-electrode setup, which is only
slightly more accurate.

Yao et al. (2020) tested six subjects performing three distinct
hand gestures with the device attached on the wrist. For each
electrode setup, 10 measurements per gesture were recorded
without taking the device off. Four-pole sensing was used
and measured electrode-skin contact impedances were used as
additional input features. As classification algorithms a radial
basis function (RBF) kernel SVM, a bagged tree ensemble,
and a quadratic discriminant classifier were applied. They
found the RBF SVM to be the best performing classifier with
quadratic copper electrodes, resulting in an average (in-session)
classification rate of 95% across all subjects.

Using a set of eight gestures, Jiang et al. (2020) compared
various classification methods [decision tree, SVM, and neural
network (NN) with 10 hidden neurons] with respect to the two
wristband layouts. The results showed that the split wristbands,
placed at a distance of 10 cm, could better distinguish similar

gestures. The single band with 16 electrodes achieved accuracies
of 97.9% (decision tree), 97.5% (SVM), and 95.4% (NN), while
the double band layout achieved almost perfect classification with
99.5, 99.4, and 99.5% accuracy, respectively. Note that in this
case, for model training a five-fold cross-validation approach was
chosen on the whole dataset, such that the trained models have
seen each data point at least once.

In the field of EIT image reconstruction, neural networks have
often been applied to solve the forward and inverse problems
(see Khan and Ling, 2019 for a review) and recently also more
specialized deep learning architectures are being explored in
that domain (Kłosowski and Rymarczyk, 2017; Hamilton and
Hauptmann, 2018; Wei et al., 2019). In contrast to that, classical
machine learning methods have been predominantly applied for
gesture recognition so far. Only the works of Gibas et al. (2020),
which is the basis for the present paper, and the works of Wu
et al. (2018a,b) and Jiang et al. (2020) have considered neural
networks and only rather classical MLP variants. In the present
work, we compare some more specialized network architectures,
particularly convolutional neural networks (CNN) and two-input
networks to achieve better cross-session generalization.

3. DATA DESCRIPTION

In all experiments considered in this work, the left arm was taken
as the measurement object. It is assumed that measurements on
the right arm yield symmetrically correlated results. To ensure
that only required muscle groups get activated for a specific
hand gesture, subjects are asked to rest their elbow on a table,
letting the forearm point vertically upwards. If both, flexors and
extensors are relaxed, a relaxed claw hand is resulting, which
serves as a neutral reference gesture for calibration in section 4.5.
The remaining gestures shown in Figure 3 cover full closing and
opening of the hand (0, 1), wrist joint motions (2–5), and various
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FIGURE 3 | The used gesture set for the experimental setup of the study.

finger gestures (7–11). The gestures are shown in Figure 3 along
with their labels, which are used for later referencing.

To record a single gesture, the participant was asked to mimic
a gesture displayed on the screen and keep it as still as possible.
During that time, we recorded 10 consecutive frames at a rate
of 1.2 FPS as described in section 2.1. After recording these 10
frames, the participant was prompted to mimic a new gesture.
No data was recorded for the transitions between gestures. This
procedure was repeated until all 12 gestures were conducted
by the participant in series, concluding a single iteration. A
recording session typically comprises several of those iterations,
ranging from 5 to 8 across different sessions in our experiments.
Note that between iterations the device was not taken off or
moved. However, a new session was started as soon as the EIT
device was (re)attached to a subject’s arm. We reference sessions
by an ID composed of a unique alphabetic subject identifier and
a subject-unique session number, e.g., A1 for session 1 of subject
A. Sessions E2 and E8 have eight iterations, A1, E1, E3, E5, and

E7 have seven iterations, B1, C1, and D1 have six iterations, and
E4 and E6 have five iterations.

To reduce inter-session variance, we took care to place the
EIT device with its electrodes in the same position relative to
the subjects’ arms when starting a new session or switching
subjects. While this reduces inter-session variance due to a
rotation of the wristband, there are other sources of variance
that are not easily controllable, namely: salt formation on
the skin, indirect electrode-skin contact, or general pressure
fluctuations of the electrodes. These external contributions can
affect measured impedances significantly. Salt, already resulting
from light sweating, acts as an electrically promoting medium
that can massively influence the actual contact impedance
between the EIT system and the measured object. If an irregular
spread of salt on the electrodes is assumed, a proportionate
inaccuracy in measurements must be expected.

Furthermore, electrode-skin contact can generally suffer from
various other uncontrollable parameters. For example, a hair
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between an electrode and the skin will form an additional barrier
posing an additional source of error, since a supposedly higher
impedance is detected at the affected electrode. The elastic band
used here ensures that the contact between the electrodes remains
as constant as possible, but an electrode on the ulna or salivary
bone, for example, has a significantly higher contact pressure
than an electrode placed in a gap. Finally, longer use of the EIT
system will warm up the device and its electrodes due to the
flow of current and the contact to the skin. This will result in
an increased conductivity (or reduced resistance) between the
electrodes and the skin, which can be noticed as in-session drift
in the data.

Upon inspection of the existing dataset from Gibas et al.
(2020), we remark that in iteration 1 of session E1 no samples of
gesture 3 are available, and in iteration 7 of session E8 samples
of classes 9, 10, and 11 are missing. Other than that, we did
not observe any outliers in the data; thus we conclude that the
technical acquisition process worked fine during the course of
the experiments.

3.1. Additionally Recorded Data
As an initial analysis of the dataset revealed different sessions
of the same user to be quite dissimilar, we conducted a second
measurement experiment focused on increased within-user data
variance. To this end, 20 sessions were gathered from a single
subject (later referenced as subject F). In contrast to the previous
experiment procedure, these recordings were limited to a single
iteration per session. However, all sessions were recorded in a
row. The data set, including the additionally recorded data, is
available as open access publication (Leins et al., 2020).

3.2. Pre-processing
A major strength of (deep) neural networks over classical
machine learning approaches is that features are automatically
learned. Thus, our models operate on the raw input data, which
is just normalized to the range 0 to 1.

4. METHODS

4.1. Classification Tasks
Considering the variance in the combined dataset we are able
to study EIT-data-based recognition of 12 hand gestures under
three different aspects: within-session, across-session, and across-
subject. Intuitively within-session gesture recognition poses the
easiest problem, as subject physiology and device placement
remain constant. Cross-session recognition is more difficult, as
a slight mismatch in device placement not only results in higher
data variance because of a rotational or translational offset,
but also influences the contact impedances of the electrodes
directly as discussed in the previous section. Finally, cross-subject
recognition additionally introduces changed subject physiology,
which requires a higher level of abstraction.

As mentioned in section 2.2, previous work primarily focused
on in-session analysis and reported accuracies above 90%.
On the other hand, considering cross-session and cross-user
experiments the accuracies dropped to the point where the results
are no longer suitable for application.

With our EIT dataset we attempted to verify these findings
as follows:

1. We evaluated a set of distinct classifiers with a stratified
random shuffle split (75/25% for each class individually),
to verify that within-session classification can be considered
trivial.

2. Following the within-session evaluation procedure of Zhang
and Harrison (2015), we evaluated the same classifiers as
before on within-session data with a leave-one-iteration-out
train/test split, meaning a single (randomly chosen) iteration
was used as the test set while the remaining iterations were
used for training. This experiment will reveal if generalization
on an unseen iteration is possible.

3. Further, we analyzed cross-session recognition quality with
the two participants in our set for which more than a
single session is available. In this case, train/test splits
were performed on a leave-one-session-out basis for each
combination of sessions.

4. Finally, we evaluated cross-user accuracy by analyzing the
prediction quality of leave-one-subject-out train/test splits for
each combination.

As baseline models, we chose a variation of SVMs with distinct
kernels and four multilayer perceptron (MLP) neural network
architectures. As SVM kernels we chose a linear kernel, an RBF
kernel, and three polynomial variants with 2, 3, and 6 degrees
of freedom. Besides the choice of kernel and degree, the default
scikit-learn parameters were used. The first MLP (MLP 1) is the
same architecture that performed best in Gibas et al. (2020):
it has two hidden layers with 128 neurons each, uses ReLU
activations, and has a dropout rate of 50% after both layers. The
second MLP (MLP 2) has three hidden layers with 256, 128, and
64 neurons respectively with ReLU activations and a dropout
rate of 50% after the first two layers. To reveal the impact of
the dropout regularization, both MLPs were also tested without
dropout (MLP 1 Unreg and MLP 2 Unreg). For each model,
we use categorical cross-entropy loss and the Adam optimizer
(Kingma and Ba, 2014).

4.2. Convolutional Neural Networks (CNN)
Considering the circular structure of the measuring process, a
frame of 208 measurements can be reshaped into a 16×16×1
tensor explicitly preserving the structure of 16 cycles composing
a frame. With the expectation that harnessing this structural
information with convolutional layers would improve model
performance, we also explored some basic convolutional
neural network (CNN) architectures. These networks consist
of convolution blocks, comprising a 3×3-kernel convolution,
followed by batch normalization and ReLU activation. After a
certain number of convolution blocks, the output is eventually
flattened and fed into a fully-connected classification layer. The
inputs to all convolution layers are zero-padded to maintain
the input dimensions. We provide results for our two best-
performing CNNs, denoted as CNN 1 and CNN 2. CNN 1
uses four convolution blocks with 64 filters, each followed
by a dropout layer with 25% dropout rate. All convolution
blocks except the first one, use a dilation rate of 3 to increase
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the receptive field while maintaining the number of kernel
parameters. CNN 2 uses only three convolution blocks with
64 filters and no dropout. Only the last block uses a dilated
convolution with a rate equal to two.

4.3. Raw Data Analysis
To gain deeper insight into the spatial characteristics of our
data set, and particularly to understand inter-class, inter-session,
and inter-user variability we performed a t-SNE analysis on
the overall data set. t-SNE or t-distributed stochastic neighbor
embedding (Maaten and Hinton, 2008) is a visualization
method aiming for a non-linear projection of the data onto a
low-dimensional (typically two-dimensional) space preserving
the distribution of distances observed in the original, high-
dimensional data space. The perplexity parameter of t-SNE
weighs the influence of neighboring points in the distribution
based on their distance. A lower perplexity focuses on the
local structure, whereas a higher perplexity shifts the focus
toward the global structure. The cost function of t-SNE, i.e.,
the Kullback-Leibler divergence between the joint probabilities
in the embedding space and the high-dimensional data, is not
convex and optimized via gradient descent. Hence, additionally
to perplexity, the results depend on learning rate, computation
steps, and initialization.

Note that in t-SNE embeddings, the (relative) size of clusters
and their rotation are irrelevant. Also, distances between clusters
in t-SNE projections are not necessarily meaningful, because
the algorithm retains probabilities of distances rather than the
distances themselves. Further, data distances after projection
are heavily influenced by the chosen perplexity and the overall
data density.

In our experiments we use scikit-learn’s t-SNE
implementation, always setting the random seed to 42 and
the iterations (computation steps) to 5,000. A perplexity
of 90 was chosen for class/session projection, while for the
iteration-focused projection it was set to 100.

4.4. Iteration Drift Experiment
As the t-SNE analysis revealed the presence of in-session drift,
we performed a series of experiments to further analyze and
quantify this drift between iterations. To this end, we trained
individual classifiers on the data of a single iteration and
evaluated them on the data of the subsequent iteration. When
there is little to no drift, the classifier should successfully
generalize across these two iterations. If the datasets of the two
iterations differ more strongly, e.g., due to drift, we would expect
a worse generalization capability. To gain statistical relevance,
the results from five independent, randomly initialized network
trainings were averaged for each configuration. This analysis was
performed for the datasets of all subjects individually. Subject F
was excluded, because we only have a single iteration per session
for this subject.

4.5. Manual Calibrations
In case of data drift, it is common practice to employ difference
measurements to an initial reference measurement to focus the
analysis/classification on the relevant changes relative to this

reference. This idea also applies to EIT for gesture recognition:
As we are only interested in relative changes of muscle activity
rather than the subject’s (absolute) physiology, we expect an
improvement in classification accuracy when using difference
measurements. As long as the regions of muscle activation
remain consistent across iterations, sessions, or subjects the
difference to an individual reference posture should provide
a more robust basis for classification of individual gestures.
Between sessions of the same subject, a calibration based on
such a reference measurement should also cancel out stationary
offsets in measurements caused by a changed conductivity of
the electrodes.

The neutral gesture (no. 6) is the most suitable to use as a
reference measure because we expect the relaxed state of arm and
hand to be more similar between subjects than other gestures.
Given that we recorded 10 consecutive measurement frames for
each gesture within a single iteration, we have several options to
compute a reference measurement: Firstly, we could compute the
mean of these 10 measurement frames within the first iteration
only. This approach, denoted as global calibration, will shift
the data of all iterations within a session by the same amount.
This might allow compensating variations across subjects and
sessions but cannot contribute to a normalization of drift within
a session. To handle this as well, secondly, we consider employing
a different reference measurement for each iteration by averaging
across the 10 neutral-gesture measurements within the respective
iteration. This approach is denoted as local calibration as each
iteration is normalized on its own. While the former approach
will be more suitable for real-world applications, as calibration is
necessary only at the beginning of a session, the latter can be used
to normalize the data set with significantly reduced drift effects
for further analyses.

To verify and quantify the anticipated improvements by the
proposed calibrations, the raw data classification experiments
were repeated with both calibration variants and compared to
each other.

4.6. Learned Calibration
As we discuss in section 5.4, the naive approach to calibration,
simply subtracting the reference measurement from an input
measurement, does not yet yield satisfying results. Alternatively,
we considered a learned-calibration approach, where the
neural network was fed with two inputs, namely the actual
input measurement to classify and the reference measurement
(employing local calibration). This allows the network to learn its
own, non-linear way to offset themeasurement with the reference
gesture. Within this scope, we considered two approaches
to dual input processing: firstly, concatenating both samples
directly after the input layer, i.e., considering a monolithic, 512-
dimensional input for MLPs or a 16×16×2 tensor for CNNs,
and secondly, processing both inputs separately in structurally
identical, but individually trained computation branches before
concatenating the output of both branches and processing them
together in some subsequent, common layers. While the first
approach attempts early fusion (and is denoted with the suffix
E), the latter approach (denoted with the suffix L) allows for
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FIGURE 4 | Template network architecture for dual input CNNs. Note that this depiction shows the late fusion variant. In the early fusion variants, the inputs are

concatenated directly after the input layers and processed in one branch, instead of providing an individual convolution block for both inputs before fusion.

TABLE 1 | Parameters of dual-input CNN models derived from the template architecture shown in Figure 4.

Filters_1 Filters_2 Dropout_1 Dropout_2 Num_convs Dilation_rate

CNN 3 L 64 64 0.0 0.0 3 3

CNN 3 L D-25 64 64 0.25 0.25 3 3

CNN 3 L D-50 64 64 0.50 0.50 3 3

CNN 4 L 64 64 0.0 0.0 1 2

CNN 5 L 32 32 0.0 0.0 3 3

CNN 6 L 64 64 0.0 0.0 1 1

CNN 6 L D-25 64 64 0.25 0.25 1 1

CNN 6 L D-50 64 64 0.50 0.50 1 1

CNN 6 E 64 64 0.0 0.0 1 3

CNN 6 E D-25 64 64 0.25 0.25 1 3

CNN 6 E D-50 64 64 0.50 0.50 1 3

CNN 7 L 64 64 0.0 0.0 2 2

CNN 8 E 64 64 0.0 0.0 1 2

CNN 8 E D-25 64 64 0.25 0.25 1 2

CNN 8 E D-50 64 64 0.50 0.50 1 2

CNN 9 E 128 128 0.0 0.0 1 2

CNN 9 E D-25 128 128 0.25 0.25 1 2

CNN 9 E D-50 128 128 0.50 0.50 1 2

some non-linear pre-processing before attempting late fusion
exploiting a presumably better linearized embedding space.

In this paper we report results for the following set of learned-
calibration MLP networks:

• MLP 3 processes the input with three hidden 128-neuron
layers with ReLU activations, followed by the classification
layer (monolithic input case). In the dual input case, the
first two layers are duplicated for the secondary output. After
traversing two layers each, the outputs are concatenated before
traversing the last hidden, and the classification layer.

• MLP 4 with monolithic input is exactly the same architecture
asMLP 2. For two inputs, the respective samples are processed
separately in two identical copies of the first three layers (256,
128, and 64 neurons with ReLU), after which the outputs are
concatenated and fed to the classification layer.

For CNNs, we considered a whole bunch of architectures
differing in the number of computed filters, the number of
convolutional layers, the employed dilation rate, and the dropout
rate used for regularization. Figure 4 displays the template
architecture that was employed to derive all dual-input CNNs
from and Table 1 lists all considered CNN architectures with
their parameters. With this explorative approach, we empirically
scanned the hyper-parameter space for the most promising
architectures. Note that the two parallel computation branches
of the late fusion models share their architectures, but are trained
independently, i.e., they do not use weight sharing.

All network architectures are available as a TensorFlow 2
implementation on the dedicated Github repository2, together

2https://github.com/DavidPL1/eit_data_analysis.
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FIGURE 5 | Baseline classification accuracies for verification of results from previous research using the indicated strategies for train/test splits. The dashed red line

indicates the random accuracy considering a uniform distribution of samples across the 12 classes, while the vertical lines depict the respective 95% confidence

intervals. To improve the statistical relevance of neural network results, each train/test setup was evaluated on five random initializations.

with an example of how to train the classifiers with the
studied dataset.

4.7. Evaluation and Statistical Relevance
As main metric for comparison between models, we use the best
accuracy achieved on the test set during model training. For a
fair comparison to Gibas et al. (2020), we evaluate our models on
subject E, which was used in that prior work as well.

A more detailed analysis revealed that cross-validated
confusion matrices of various models are quite similar. They
do not show signs of a class-specific bias, but rather exhibit a
uniform distribution of misclassifications. For this reason, we
omit a more detailed discussion of misclassification behavior.

Statistical relevance was evaluated using a one-way analysis
of variance (ANOVA) with a significance value of p < 0.05.
If a significant difference between the mean best accuracies
was found, post-hoc student’s t-tests with Holm-Bonferroni
correction were performed.

5. RESULTS

5.1. Classification Tasks
The results of the four classification tasks introduced in section
4.1 can be seen in the respective panels of Figure 5. The stratified
shuffled split test (upper right corner) confirms that random-split
in-session classification is trivial. Noticeably, in this case, even the
linear kernel SVM achieves good accuracies on some subjects.We
discarded data of subject F for this experiment, as we consider the
amount of in-session data too low to yield representative results:
The concerning sessions only hold a single iteration (10 samples
per class) and stratified splits result in a train/test distribution of
7 vs. 3 samples per class.

Splitting by iteration, i.e., testing on one iteration and training
on the others, is shown in the top right corner of Figure 5. This
splitting approach has a visibly negative effect on accuracies,
compared to the random-split results. The drop in accuracy is

the strongest for those subjects, which were hard to handle by
simple (linear) SVMs already in the random split case. This
is a first indication of sensor data drift, which is studied later
in section 4.3.

The cross-session experiment yields even worse results,
exhibiting a drop in accuracy from 0.4 to 0.3 for MLPs and
below 0.2 for SVMs. These experiments are limited to subjects
F and E, because only for these we have a sufficient number of
sessions available, namely 20 and 8 sessions, respectively. For
both subjects, all four MLP variants do not show significant
differences in performance, the same holds for the set of various
SVMs. However, for subject E, only MLP 1 Unreg and MLP 2
Unreg yield significantly better results than the SVM models
(pairwise p < 0.05, d ≥ 1.53), whereas for subject F all MLPs
clearly outperform the SVMs (pairwise p ≤ 0.001, d ≥ 1.21).
Overall, models trained on data of subject F yield a much better
performance (p < 0.001, d = 0.85).

Finally, in the cross-user experiment, the MLPs are the only
models that achieve a better score than a random uniform
classifier for all subjects. Again, both unregularized MLPs are the
only models clearly outperforming the SVMs (pairwise p < 0.05,
d ≥ 1.71).

Figure 6 compares the results of the MLPs and CNNs
introduced in the present work to those introduced in Gibas et al.
(2020) (denoted as baseline). The accuracy differences between
sessions are often larger than the confidence intervals. Hence,
in these configurations, the models yield rather stable learning
results, but are unable to generalize well across all sessions. On
average, the top performing model remains MLP 2 Unreg (µ =

30.45%), closely followed by MLP 1 Unreg (µ = 30.13%) and
MLP 2 (µ = 28.79%). Compared to the baseline scores, MLP 2
Unreg and MLP 1 Unreg increase the score significantly (p <

0.05, d = 1.44 and p < 0.05, d = 1.11, respectively). Averaged
across all sessions, the results of CNN 1 and CNN 2, do not
differ significantly from the unregularized MLPs, and also beat
the baseline significantly (p < 0.05 and d ≥ 1.07). We also notice
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FIGURE 6 | Average test accuracies of cross-session recognition on subject E. The vertical lines mark the 95% confidence interval and the red dotted line depicts

chance level classification accuracy. The displayed data is drawn from 10 trials of evaluation performed in a leave-one-session-out cross-validation fashion, summing

up to 80 training runs per model. The session number corresponding to each block denotes the session left out for testing. Note that for the baseline only one result

per session is available, thus no confidence intervals can be computed.

FIGURE 7 | Average test accuracy and (sparse) cross-entropy loss per training epoch of MLP 2 Unreg by holdout session. The dashed red line indicates the accuracy

of a uniform random classifier.

that our results always perform better than a random uniform
classifier (red dotted line), whereas the baseline model achieved
only random accuracy on sessions 6 and 8, and only slightly better
on sessions 2 and 7.

In Figure 7, the evolution of test accuracy and test loss are
displayed for one exemplary run of each train/test configuration
using MLP 2 Unreg. In each run, the most beneficial part of
the learning process seems to be the beginning until about 20–
30 epochs. In this segment, the losses of most runs roughly
stay constant or even decrease, but after that, all losses tend to
increase. This segment also displays the highest improvement of
accuracies. The two of the weaker performing sessions, namely
the runs of sessions 2 and 3, display their top accuracies in the first
few epochs and then slowly converge toward random accuracy.
We observe a similar behavior from runs of other models. This
indicates that after this part of the training process the models
overfit the training set.

5.2. t-SNE Analysis
For t-SNE embeddings into a two-dimensional space, we found
that clusters start to form with a perplexity of 20 or higher.
These clusters resemble distinct sessions and we observed that
with increasing perplexity the clusters do not visibly change
in shape and distribution other than getting more compact.
Figure 8 displays the almost perfect clustering of sessions that
t-SNE was able to find with a perplexity of 90. A remarkable
feature of this projection is that most sessions form compact
clusters (except for a few outlier samples), but sessions E1,
E2, E3, E7, E8, as well as C1, are either stretched or split
into two or more clusters each, with session E2 having the
largest distance between its two sub-clusters. However, as
mentioned before, distance between clusters is not necessarily
meaningful. Looking into the differences between sessions,
we notice that in this embedding each session has a unique
class distribution.
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FIGURE 8 | t-SNE projection of the 256-dimensional data space of raw measurements colored by session (perplexity = 90). Annotations indicate the mean sample

position of a session cluster and the markers show which subject each sample comes from.

FIGURE 9 | t-SNE projection of Figure 8 colorized by iteration (perplexity increased to 100). Here, classes are indicated by distinct markers. As subject F has a single

iteration for each session only, the plot is limited to subjects A–E. The gradient from dark to light, visible in most clusters, illustrates the sample drift with increasing

number of iterations. Sessions D1 (left) and E8 (right) are zoomed in upon for closer inspection.

We also observe that clusters of sessions belonging to subject
F, which contain only a single iteration of each gesture, are much
more compact. This indicates a (stronger) presence of drift in
sessions with more iterations. The t-SNE projection in Figure 9

emphasizes this data drift during the course of a session by
coloring the projection of Figure 8 by iteration number. In this
depiction, most clusters exhibit a typical color gradient, clearly
indicating a temporal drift during the course of a session. Note
that some sessions are limited to 5 or 6 iterations only. Upon

closer inspection we find that aforementioned sub-clusters of
sessions also have a temporal correlation: For E1, iterations 1–
3 and iterations 4–7 form two separate clusters. For E2 the
second cluster starts after class 10 of iteration 4. E3, is stretched
and displays a spatial transition starting on the right side from
iteration 1 to 2 to 3, after which the remaining iterations seem to
stabilize position-wise on the left. The smaller cluster belonging
to E7 is composed of iteration 6 starting from class 10 and
iteration 7. In C1 (from the bottom to the top), iteration 1
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FIGURE 10 | Cross-iteration prediction accuracies: a network model trained on the data of a single iteration was evaluated on the data of the subsequent iteration.

Each data point of the plot represents an average across five training runs and five subjects (A–E). The number above/below a point denotes how many training runs

contribute to the computed average. Error bars indicate the 95% confidence interval. Except iteration 8, accuracies increase over time, indicating a convergence

of drift.

composes the first compact sub-cluster, iteration 2 and classes 0
and 1 of iteration 3 form the adjacent cluster, which is next to the
cluster composed of iteration 4, classes 0–8, and the remaining
samples form the last cluster. The close-up of the leftmost cluster
(D1) gives an insightful example of the drift. The illustration
does not only show a drift in terms of translation, but in later
iterations the variance of the class distribution seems to increase
as well. Opposed to this pattern, in E8, which is displayed in the
right hand close-up, most classes seem to be separable across
all iterations and later iterations only seem to introduce a little
offset. Thus, in the original high-dimensional feature space, the
inter-iteration variance of E8, i.e., the drift, is smaller than before.

The effect that in most cases later iterations are closer together,
hints at a convergence of drift. The time between sessions and
iterations was not recorded, thus no exact correlation parameters
can be computed. Since E8 is the last recorded session of subject
E, the very limited distortion induced by drift from the first
iteration on is another hint to long-term drift convergence.

5.3. Cross-Iteration Drift
Figure 10 presents the average test results of the cross-iteration
drift experiment, i.e., evaluating generalization on the named
iteration, while training was performed on the previous iteration
only. Again, the error bars indicate the 95% confidence intervals.
The scores across all four MLP models are very similar. Since
there are only two sessions that have eight iterations, the sample
size for the last data point is very low, which is reflected in the
rather large confidence interval for iteration 8. For this reason,
we neglect iteration 8 in the following discussion of the results.

We notice a significant increase in accuracy from iteration 2
to the remaining iterations (p < 0.001, d ≥ 0.68), and a slight
improvement from iterations 3 and 5 to iteration 7 (p < 0.01, d =

0.33 and p < 0.01, d = 0.39, respectively). This could be an
indication of a non-linear convergence of the drift effect.

5.4. Local and Global Calibration
To improve cross-iteration generalization and counteract drift we
introduced local and global calibration in section 4.5. Figure 11
displays the effect of both types of calibrations on a PCA and
a 2D t-SNE projection compared to the respective raw data

projection. In the PCA projection (left column of Figure 11),
the uncalibrated data forms a conical shape, mainly expanding
along the x-axis. The global calibration causes the samples of a
session to be centered around the origin, which corresponds to
the neutral reference gesture. Consequently, the data becomes
more uniform and PCA can better focus on in-session structures.
The overall variance of the data is reduced. In fact, the variance
of the first two principal components is reduced by 48 and 36%,
respectively (from 0.224 and 0.095 to 0.117 and 0.035). The local
calibration basically has the same effect on a different scale, as
unification is applied per iteration instead of per session now.
The variances of the first two principal components are further
reduced by another 86 and 66%, respectively (from 0.117 and
0.035 to 0.016 and 0.012). The projection of the locally calibrated
data already allows to better recognize groups of data points
corresponding to individual classes, but that’s not yet sufficient
to discriminate these classes.

The t-SNE embedding of the raw data essentially resembles
the characteristics already known from Figures 8, 9, namely that
individual sessions form clusters and in-session drift becomes
visible as a wide distribution of in-class samples across each
cluster. The global calibration only modifies the formed clusters
to a small extent. As mentioned before, cluster size and rotation
of t-SNE projections are irrelevant and distances between clusters
are not necessarily meaningful. Hence, as long as the internal
structure of the clusters remains the same, they can be considered
unchanged. Intuitively, the translation in the original feature
space causes overlapping of the individual session distributions.
This can be drawn from the fact that a new fuzzy cluster is
formed roughly at the origin of the embedding space. Expectedly,
all first iteration neutral samples are located at the core of
the newly formed cluster. First iteration samples of several
classes are dispersed loosely around this core, which should
correspond to the other samples of the overlapping regions in
the original feature space. Outside of the overlapping regions,
distance relationships between samples remain unchanged,
hence—neglecting internal structural differences caused by the
absence of the samples that formed the new cluster—they form
the same clusters as before. We observe the same behavior using
t-SNE embeddings with much lower perplexity.
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FIGURE 11 | Effects of calibration on PCA and t-SNE (perplexity = 90). Data points are colored by class label. For all projections, data from subject F was omitted for

a better comparison between local and global calibration.

Because the local calibration causes much more overlap
between sessions and iterations, the distance relationships and
thus the structure of the respective t-SNE embedding is visibly
changed. While all neutral samples (with exception of three data
points) compose a single cluster, more and smaller clusters than
before are formed. Noticeably, in almost every case for each
session, each class forms a compact cluster holding samples of
each iteration. This indicates that the local calibration actually
achieves the intended drift mitigation.

These observations become even better visible when
comparing the calibration effects isolated by session, class, and
iteration. For a more in-depth study of those results, we refer
to our Github repository3, which provides an interactive plot
allowing to filter by all of these criteria.

A comparison of model performance between raw data, global
calibration, and local calibration is better suited to conclude if
these methods have a positive impact on classification accuracies.
Results of a corresponding analysis are shown in Figure 12.
Both MLP 1 and MLP 2 yield slightly worse results for global
calibration (p < 0.001, d = 1.14, and p < 0.001, d = 1.56) and
much worse results for local calibration (p < 0.001, d = 2.02
and p < 0.001, d = 2.29). On the other hand, while for both
unregularized models global calibration causes a slight decrease

3https://github.com/DavidPL1/eit_data_analysis.

in test accuracy (insignificant forMLP 1 Unreg and p < 0.05, d =

0.57 for MLP 2 Unreg), local calibration achieves visibly better
results (p < 0.001, d = 1.08 and p < 0.001, d = 0.89).

The same procedure of testing calibration effectivity was
repeated for the CNNs introduced in section 4.2. While the raw
data results of the CNNs do not differ much from the ones of the
previous models, they can evidently better leverage the calibrated
data: For both CNN 1 and CNN 2 global calibration results in an
average increase of about 6% for CNN 1 (p < 0.01, d = 0.7) to a
total of 35.12%, and about 9% for CNN 2 (p < 0.001, d = 0.91)
to a total of 39%. The local calibration raises performance even
higher to 56.34% for CNN 1 (p < 0.001, d = 3.51) and to 54.36%
for CNN 2 (p < 0.001, d = 2.64).

5.5. Learned Calibration
To further increase the effectiveness of calibration, we enabled
the networks themselves to find a suitable calibration method,
providing the averaged neutral pose of the considered iteration as
a second input to the network (cf. section 4.6). The corresponding
results are shown in Figure 13. The MLP variants are not able
to draw useful information from the additional data, they even
perform slightly but insignificantly worse than previous MLP
models trained on raw data only.

All CNNs, on the other hand, clearly beat the baseline
(CNN 5 L and CNN 3 Lwith p < .05, d ≥ 1.53, CNN 7 Lwith p <
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FIGURE 12 | Comparison of average cross-session test accuracy on subject E with and without calibration. The black vertical lines display the 95% confidence

intervals, whereas the red dotted line represents the average baseline score. Every train/test setup was repeated five times for each model, to account for variability

due to random weight initialization.

FIGURE 13 | Comparison of average cross-session test accuracy on subject E with learned calibration and our baseline. The black vertical lines display the 95%

confidence intervals. Again, every train/test setup was trained five times on each model, to achieve statistical robustness. Suffixes “E” and “L” denote early and late

fusion architectures, respectively.

0.01, d = 1.88, and the remaining ones with p < 0.001, d ≥ 2.52).
The models CNN 4 L D-50 through CNN 6 E D-50 also manage to
beat the global calibration scores of CNN 1 (p < 0.001, d ≥ 1.11)
and CNN 2 (p < 0.05, d ≥ 0.72).

Unlike before, where unregularized models performed better,
adding dropout to dual input models either improves the result
or does not change the outcome significantly. For example,
CNN 4 L, CNN 6 L, and CNN 9 E, using dropout does not
make a big difference. On the other hand, adding dropout layers
with 25 or 50% dropout rate after the convolutions, improves
the performance of CNN 3 L (p < 0.001, d ≥ 0.81), CNN 6 E
(p < 0.05, d = 0.49, and p < 0.01, d = 0.61), and CNN 8 E
(p < 0.01, d ≥ 0.59). This indicates that the early fusion
models generally benefit more from dropout regularization. In
our results, we identify a clear benefit of early fusion over late
fusion models (p < 0.001, d = 0.89). We also notice a saturation
of average best test accuracy at about 50–55%.

CNN 6 E D-50—the best performing learned-calibration
model—with an average classification rate of 55.37%, reaches

about the same performance level achieved with local calibration
(with insignificant deviation). However, a comparison of the
evolutions of test loss and test accuracy over time reveals that
the dual input networks exhibit much more robust training.
This can be observed in Figure 14, where we compare our
best performing dual-input model (CNN 6 E D-50) with our
best performing standard model (CNN 1) running on locally
calibrated data. Stability in this case not only refers to the lower
fluctuation of average values between epochs, but also to the fact
that different random initializations of the model achieve more
similar results. This can be concluded from the more narrow
error bands indicating 95% confidence intervals. Furthermore,
the loss of the dual-input model is also noticeably smaller than
that of the manually calibrated model.

Analogously to the single input global calibration, we also
evaluated a calibration approach that only considers the 10
neutral pose measurements of the very first iteration and
employing this single reference for all other iterations. However,
the training results on all considered network architectures only
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FIGURE 14 | Comparison of average cross-session test accuracy and loss on holdout sessions of subject E between dual input and local calibration single input

network. This depiction clearly shows that the dual input model’s test accuracy and loss are more stable. The error bands depict the 95% confidence intervals.

achieved random-level test accuracies, again emphasizing the
importance of iteration-local calibration to handle sensor drift.

6. DISCUSSION

The lack of standards in this relatively young field of research,
e.g., considering the number and type of gestures used or
the large variety of custom-made EIT devices and measuring
techniques employed, limit the comparability of results and
allow only general conclusions. With regard to this, our initial
classification results reported in section 5.1 are mostly consistent
with the findings of the previous works, with exception of the
much better cross-session and cross-user accuracies reported by
Zhang and Harrison (2015).

Based on this preliminary evaluation, we choose to mainly
focus on the further improvement of cross-session prediction
results. Because the studied dataset was originally recorded for
Gibas et al. (2020) (except subject F), we used their cross-session
results as a baseline to measure increase in performance.

The fact that on average subject F yields a much better
performance suggests that more training data—as usual—
increases the generalization capabilities of the trained models.
Another influencing factor is that the data of subject F is less
distorted by drift, as only a single iteration was recorded for each
gesture. Still, the best accuracies achieved with the MLPs are not
yet suitable for an actual application. An interesting question for
further research would be to find the number of sessions that
makes the positive effect of data variance saturate. However, this
is bound to the specific device and the study design.

While a network with 2 hidden layers might already be
considered a deep neural network, the architectures we employed
so far are very basic, as the small number of layers limits
the networks’ capability of modeling high-level features as a
composition of simpler ones. With that in mind, the best
classification result of 50.23% accuracy (achieved by MLP 1
on session 5) on raw data is a promising result that gives
hope for even better cross-session results when trained on more
sophisticated network architectures and/or more data. Figure 7
demonstrates that the first 20–25 epochs have the highest impact
on the test accuracy and later epochs cause the accuracy to jitter.
The same effect seems to be even more prominent for local and
learned calibration, as can be observed in Figure 14. Looking
only at the accuracies this behavior could be explained by an
inappropriate learning rate preventing the model to converge to
its optimum. But several tests with varying batch sizes, learning
rates, and training epochs displayed similar behavior differently
stretched throughout the training process. Thus, we rule out an
incorrectly chosen learning rate and attribute this to overfitting
of the training set.

The t-SNE projections give an impression of how data is
distributed in the original feature space, which allows for some
conclusions about the data domain and inferring reasons for the
low classification accuracies the models achieved. The results of
these analyses confirm that the in-session similarity of data points
is higher than the cross-session class similarity, which is the core
reason why cross-session classification becomes so difficult.

The t-SNE embedding reveals that even sessions of the
same subject form distinct clusters with strongly different local
geometries, which correspond to different spatial distributions
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of classes in the original feature space. Thus, physiological
differences can be ruled out as a cause for the unique
distributions. We conclude that even slight differences in
the placement of the EIT device, and (inherently) differing
contact impedances result in a significant change of the sample
distribution. Based on these observations we conclude that cross-
session learning poses the problem of anticipating the local
geometry of an unseen cluster, i.e., the session-specific spatial
class distribution (including its drift), which is expected to
strongly vary from already seen examples.

The iteration drift experiment was carried out to gain some
insight into how the drift affects the generalization capability
to the next iteration. The results do not allow a conclusive
assessment, but we hypothesize a convergence of drift. This could
mean that the drift is mainly rooted in the changingmeasurement
magnitudes due to heat development of the electrodes until
the operating temperature is reached. The degradation effect
is much stronger when the first iteration is used for training
and the second for evaluation, and then strongly decreases
in later iterations. This could be explained by a non-linear
heating process of the electrodes, where the initial strong effect
is caused by a cold start and later convergence is explained by the
temperature converging over time.

Unfortunately, we do not have enough data available to further
narrow down the exact characteristics and cause of the drift.
However, the problems of drift and gesture recognition can
be tackled separately. Thus, we came up with the calibration
approaches to further analyze the classification problem without
fully understanding the drift yet.

The projections comparing raw data with calibrated data did
show the effects we wanted to achieve, however, in the ideal case,
an embedding would display well-defined clusters for each class,
but this is not the case for either of the calibrations. On the
other hand, it is important to note that here we mainly used t-
SNE and PCA for the purpose of calibration effect visualization.
Though these projections try to preserve as much information as
possible, the reduction from 256 to 2 feature dimensions entails
a significant loss of information. Hence, the projections alone
can not be used to determine if the calibrations are advantageous
or not.

The performance of the previously used models on the
calibrated data surprisingly shows that the MLPs regularized
by dropout yield worse results in both cases, whereas the
unregularized variants only perform better with locally calibrated
data. In contrast to that, the CNNs are much better at leveraging
the calibration effects, but do not provide any benefit on the
raw data.

The learned calibration results show that in this case the ability
to leverage spatial information also proves to be advantageous:
While the MLPs, regardless of employing single or dual input,
do not yield better results than the previous raw data results,
the CNNs manage to get similar or even better results than the
previous global calibration experiments. But they do not manage
to beat the best local calibration results.

Even if the best learned-calibration models only reach the
same level of accuracy of local calibration results, the direct
comparison of the accuracy and loss evolutions during training

shows that learned calibration should be preferred. It becomes
apparent that the higher average scores of the single input models
are due to the high variance in accuracy. However, the greater
stability of the dual-input models is a more desirable property
for the models, because then they are not only less affected
by random initialization, but also after 25–30 training epochs
the test accuracy is far less dependent on when the training
is stopped.

7. CONCLUSION AND OUTLOOK

In our analysis, we were able to confirm that in-session gesture
recognition can be considered rather trivial, but that cross-
session recognition poses a challenging research problem because
the data distribution between sessions varies much more than
between classes, even if the data was recorded from the same
subject. This variance can be attributed to static differences in
contact impedances rooted in slightly different placements of
the EIT device, as well as dynamic impedance changes, e.g.,
caused by changes in electrode temperatures. We presented
different calibration techniques that improve classification results
on offline data up to an average of 56%, which beats previous
results on the same data by 37%. The dual input models receiving
the average neutral pose of each iteration as secondary input
achieve promising results, as they are not only less sensitive to
random weight initialization than the previous models, but the
optimization steps also seem to have a more predictable effect on
the test data. However, these results require a local calibration,
employing the neutral gesture of each individual iteration for
calibration. An approach that only employs the calibration
gesture of the first iteration does not achieve acceptable results
yet. We believe this is due to the strong drift we found to be
present in the data and without contextual information we derive
from the study setup our models are unable to overcome the
difficulty imposed by the drift. Because of this, we think it will
be necessary to better understand and model the properties of
drift to achieve acceptable classification rates with online data in
a natural scenario. Therefore, a thorough analysis of drift will play
an important role in our further research.

Up to this point, we focused on very basic architectures with
a small number of layers. Without question, these models leave
much room for further improvement toward specialization for
the specific data domain. However, a highly specialized model
requires a more thorough exploration of the layer architecture
and its hyper-parameters and without established best practices
for this specific data domain, it may take a while until we are
able to achieve as good results with neural networks as we are
used to from other research fields. We also notice that these
basic architectures tend to fit the train set quite good after only
a few training epochs, while the test losses tend to increase
over time. Another interesting property of the trained models
is that misclassifications across all gestures are rather uniformly
distributed. This behavior suggests that the models struggle with
generalization across high session variability, while maintaining
the high class separability that we observe within sessions. This is
an indication that the problem does not lie in gestures being too
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indistinguishable, and can eventually be solved with more data
and more sophisticated network architectures.

We did also consider data augmentation techniques to
generate additional training data, but currently these methods
are limited to a circular shifting of the cycles in a frame, thus
simulating a rotation of the device by 360◦/16 such that electrodes
just switch places. However, this will only achieve invariance for
this discrete type of rotation, which is equivalent to arbitrarily
choosing the electrode pair where current is injected in the first
cycle of a frame. With a resolution of 16 electrodes, we consider
this augmentation not to be very useful and corresponding
experiments confirmed this concern, i.e., did not improve the test
set accuracy significantly. Yet, at our current state of knowledge,
we are limited to this augmentation method, because we are
unable to verify if newly generated data is close to reality.
Further experiments with phantoms could prove useful to find
augmentation patterns regarding drift and rotation that also
apply to measurements on a human forearm. Notably, a deeper
understanding of the data distribution and the underlying data
would also allow the application of generative models such as
generative adversarial nets (GANs) (Goodfellow et al., 2014) and
variational autoencoders (VAEs) (Kingma and Welling, 2013),
which try to learn the underlying generative factors of the
available data and are not only able to generate new samples, but
can also be leveraged for classification purposes.
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