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Lower-limb exoskeletons often use torque control to manipulate energy flow and ensure

human safety. The accuracy of the applied torque greatly affects how well the motion

is assisted and therefore improving it is always of interest. Feed-forward iterative

learning, which is similar to predictive stride-wise integral control, has proven an effective

compensation to feedback control for torque tracking in exoskeletons with complicated

dynamics during human walking. Although the intention of iterative learning was initially

to benefit average tracking performance over multiple strides, we found that, after proper

gain tuning, it can also help improve real-time torque tracking. We used theoretical

analysis to predict an optimal iterative-learning gain as the inverse of the passive actuator

stiffness. Walking experiments resulted in an optimum gain equal to 0.99 ± 0.38 times

the predicted value, confirming our hypothesis. The results of this study provide guidance

for the design of torque controllers in robotic legged locomotion systems and will help

improve the performance of robots that assist gait.

Keywords: exoskeleton, iterative learning, control, rehabilitation, gait assistance

1. INTRODUCTION

Being able to reduce interface impedance, increase the reactiveness of robotic systems and thus
improve human safety and comfort (Haddadin et al., 2008; Lasota et al., 2014), torque control has
been widely used in physical human-robot interactive systems. This is especially true in lower-
limb systems, which help human bodies to locomote and were involved in high density of energy
exchange. Torque control enables easy manipulation of energy flow from the robot to the human,
which is one major research interest in the field of biomechanics (Veneman et al., 2007; Sawicki
and Ferris, 2009; Stienen et al., 2010; Malcolm et al., 2013; Jackson and Collins, 2015). It has also
been used to exploit passive system dynamics or render virtual systems with different dynamics
in humanoid robots (Pratt et al., 1997), robot prostheses (Sup et al., 2009; Caputo and Collins,
2013), and exoskeletons (Kawamoto et al., 2010; Witte et al., 2015). In torque controlled human-
robot interactive systems, torque tracking accuracy equals precision of the applied intervention or
assistance and thus directly affects how well the assisted motion is. Therefore, improving torque
control performance has always been an active interest in the field of lower-limb human-robot
interactive systems.
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Due to the presence of complicated, time-varying, and
highly non-linear human dynamics, interaction dynamics and
transmission dynamics, a fixed accurate system model was
neither easy to get nor very meaningful due to the fast
changes of system mechanical properties when human walk.
Thus, high accuracy torque tracking of lower-limb exoskeletons
was not easy to achieve. Different control methods have been
introduced to improve torque tracking performances of lower-
limb wearable robotic devices (van Dijk et al., 2013; Zanotto
et al., 2013; Zhang et al., 2015, 2017a,b; Zhang and Collins, 2017).
Among them, the combination of model-free, integration-free
feedback control and iterative learning showed high accuracy
and has been applied in multiple robotic legged locomotion
systems (van Dijk et al., 2013; Zhang et al., 2015, 2017a,b;
Zhang and Collins, 2017). This control architecture ignored the
complicated and changing system dynamics caused by human-
robot interactions and transmission frictions. It focused on the
power transmission subsystem which was modeled as a linear
spring. A P-type learning term (Arimoto et al., 1984) serves
as a stride-wise integral control entity and reduces steady-state
errors by exploiting the cyclic behavior of walking. Therefore, the
structure is analogous to a traditional PID controller, in which
tracking capability, stability and steady-state error manipulation
are all managed. In this structure, iterative learning term is
added due to the cyclic behavior of walking and is used in
a feed-forward way, it thus has lagged response to real-time
torque tracking errors. Therefore, the addition of this term in
the control structure was expected to eliminate errors nominal to
a stabilized gait pattern. However, walking experiments showed
interactions of iterative learning gain with real-time tracking
performance after stabilization of the learning process. This
suggested a possibility to further improve real-time torque
tracking performance in lower-limb exoskeletons.

Since the proposal of the basic iterative learning control
concept in the 1980s (Arimoto et al., 1984), various techniques
have been developed to optimize the learning gain. One approach
was to enforce system convergence to follow some gradient of
an objective function defined by the quadratic cost of tracking
errors (Togai and Yamano, 1985; Moore, 1993; Fukuda and Shin,
1998), or a weighted combination of tracking errors and change
in control inputs (Amann et al., 1996). Other works defined
learning gains by maximizing convergence speed of control
inputs (Atkeson and Mclntyre, 1986; Hać, 1990; Heinzinger
et al., 1992; Saab et al., 1997). These early algorithms dealt
with invariant and deterministic system dynamics. More recent
work has discussed algorithms to compute optimal and sub-
optimal iterative learning gains under measurement noises for
time-varying linear (Saab, 2003) and non-linear systems (Saab,
2005).

These existing works mainly optimized learning gains by
expediting the convergence process of learning. In addition,
fairly good knowledge of the system dynamics and noise level
were available. However, in the problem of exoskeleton assisted
walking, there exist stride-to-stride gait variations and gait
adaptation, which make walking not exactly periodical. This
results in tracking errors even after stabilization of the iterative
learning process. The control architecture combining feedback

and iterative learning depends mainly on the feedback part to
contain these errors, which might be further reduced by tuning
the gain of the iterative learning part.

This paper explores the possibility of optimizing the post-
stabilization real-time control performance of Arimoto’s
P-type learning control on lower-limb legged robots driven
by series elastic actuators. Given complicated, varying and
uncertain human-robot interaction, transmission friction
dynamics, stride-to-stride variations of human gait, and limited
knowledge of gait variation distribution, this study investigated
whether and how one could maximize the real-time torque
control performance. Previous studies have shown that the
torque tracking performance can be achieved by a proper
feedback + iterative learning structure (Zhang et al., 2015,
2017a), and optimized passive stiffness values of series elastic
actuators (Zhang and Collins, 2017). On top of those, this study
aims to further improve torque tracking performance of control
architecture in Zhang et al. (2015, 2017a,b), and Zhang and
Collins (2017) in lower-limb exoskeletons and other robotic
locomotion systems. In particular, we look into the possibility of
relating the optimal learning gain based on real-time tracking
errors with actuator passive stiffness and desired quasi-stiffness.
Results of this study are expected to follow previous work (Zhang
et al., 2015, 2017a; Zhang and Collins, 2017) to further improve
assisted torque assertion accuracy for lower-limb exoskeletons
and prosthesis, and thus the locomotion performance of the
resulting coupled human-robot systems.

2. METHODS

We investigated the effects of iterative learning gain on the torque
tracking performance of lower-limb exoskeletons using an ankle
exoskeleton driven by a uni-directional Bowden cable.

We hypothesized an optimal value of iterative learning gain
based on theoretical analysis and tested it during exoskeleton
assisted walking experiments.

In testing the hypothesis, multiple desired quasi-stiffness
values, i.e., torque vs. ankle angle relationships, were
implemented, each tested with multiple actuator passive
stiffness values. For each of the desired stiffness and passive
stiffness combination, multiple iterative learning gains were
tested. Every experiment session identified by a unique set
of {Learning Gain, Desired Stiffness, Passive Stiffness} values
required the participant to walk on the treadmill with a fixed
speed for at least one hundred strides after stabilization of the
iterative learning process. The existence and value of the learning
gain were then investigated by comparing the torque tracking
errors of different experiment sessions.

2.1. Exoskeleton System and Simplified
Model
The system we investigated was a tethered ankle exoskeleton
made of an off-board real-time controller and geared motor, a
uni-directional Bowden cable transmission with a series spring,
and an exoskeleton frame that interfaced with the human body
(Figure 1).
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A real-time control unit (ACE1103, dSPACE Inc.) was used
to sample sensory data at 5 kHz, filter them at 200 Hz,
and then compute control outputs in terms of desired motor
velocity. The actuation unit included a low-inertia 1.6 kW AC
servo motor, a 5:1 gear, and a motor driver configured to
velocity control mode (BSM90N-175AD, GBSM90-MRP120-5,
and MFE460A010B, Baldor Electric Co.). A digital encoder (E4,
US Digital Corp.) was used to measure motor position.

A uni-directional Bowden cable was used to transmit forces
from the motor side to the exoskeleton side. The cable was
made of a coiled-steel conduit (415310-00, Lexco CableMfg.) and
a 0.003 m diameter synthetic rope. A spring (DWC-148M-12,
DiamondWire Spring Co.) of a 190 N·m·rad−1 effective stiffness
(in terms of ankle position) was attached at the end of the rope to
realize series elastic actuation.

The exoskeleton frame applied an plantarflflexion torque
to human ankle. Torque was measured using strain gauges
(MMF003129, Micro-Measurements), and amplified using a 1
kHz signal conditioner (CSG110, Futek Inc.). Ankle angle was
measured using a digital encoder (E5, US Digital Corp.).

Wemade the following assumptions in generating a simplified
model of the system for the purpose of theoretical analysis:

1. Both static and dynamic frictions in Bowden cable
transmission were zero. Thus, cable tension at the motor
output pulley side was always the same as the exoskeletons
side. This tension was denoted as F.

2. The Bowden cable transmission and the series spring together
behaved as a linear spring, i.e.,

F = Kc · (rp · θp − ra · θe) (1)

where Kc was the combined effective stiffness of the Bowden
cable and series spring; θp and θe were the pulley and
exoskeleton joint positions relative to where the Bowden cable
first started to go slack; rp and ra were the pulley radius and
the lever arm at the ankle joint.

3. Exoskeleton joint rotated in a small range. Thus, the cable
tension lever arm at exoskeleton joint side was almost
constant, i.e., ra was fixed. Therefore, torque applied to human
body by the exoskeleton was always

τ = F · ra. (2)

Denoting the aspect ratio of transmission as

R =
rp

ra
(3)

and combining it with Equations (1) and (2), the torque applied
by the exoskeleton to the human ankle was

τ = F · ra

= r2a · Kc[θp
rp

ra
− θe]

= Kt(θpR− θe)

(4)

Where Kt was the transmission stiffness which related applied
torque to exoskeleton joint. It was defined as

Kt = r2a · Kc. (5)

2.2. Controllers
2.2.1. Low Level Control
Prior work in the field found that in real-time torque tracking
of lower-lime exoskeletons during walking, the combination of
model-free, integral-action-free feedback control and iterative
learning were most effective controller with complicated
and time-varying dynamics of human-robot interactive
systems (Zhang et al., 2015, 2017a,b; Zhang and Collins, 2017).
The overall torque tracking performance of Equation (6) is
a combined effect of feedback control and iterative learning.
To simplify theoretical analysis and experimental tests of the
existence of the optimal learning gains, only iterative learning
was used as the lower level controller in this study. The controller
was expressed as:

θp,des(i, n+ 1) = θp,des(i, n)− Kl · eτ (i, n)

θ̇p,des(i, n) =
1

T
(θp,des(i, n)− θp)

θ̇m,des(i, n) =
N

T
(θp,des(i, n)− θp)

(6)

Here i is the time index or number of control cycles elapsed
within the current stride. n denotes this stride and n + 1 is the
next. τ , τdes and eτ = τ − τdes are the measured exoskeleton
torque, the desired torque and the torque error, respectively. Kl is
the iterative learning gain. The motor run in velocity mode. The
desire motor output pulley velocity θ̇p,des was always converted to

desired motor velocity θ̇m,des before commanded. T is a constant
simulating the rise time of motor position tracking and N is
the gear ratio. As shown by the equation, torque error in the
current stride will not affect the control input until the next stride.
Therefore, iterative learning was used in a feed-forward way.

2.2.2. High Level Control: Linear Desired

Quasi-Stiffness
The main high-level controller used in this study was a linear
torque vs. ankle angle curve, i.e., a equilibrium-controlled
stiffness as shown in Figure 2 and expressed in Equation (7).

τdes = −Kdes(θe − θe,0)
τdes = max(τdes, 0)

(7)

where θe,0 denotes the maximum ankle position to apply external
force and Kdes is a quasi-stiffness to be realized.

2.3. Theoretical Analysis on Optimal
Iterative Learning Gain
In this analysis, we assumed perfect motor position tracking, i.e.,

θp(i, n) ≡ θp,des(i, n) (8)

for any index i. θp is the measured motor pulley position and
θp,des is the desired one. n denotes the nth stride and i denotes
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FIGURE 1 | Tethered ankle exoskeleton system. Besides sensor data acquisition and outputting control signal to the motor, the dedicated controller has two main

computational modules: a high-level controller that generates the desired torque according to ankle angle in real-time, and a low-level controller that generates control

signal as desired motor velocity according to desired torque, applied torque and current motor status. Changes in motor motion status tunes the torque applied

through Bowden cable transmission to the end effector, an ankle exoskeleton with series spring.

the current index counted from the latest stride start time. The
iterative learning of desired motor position was conducted as
(Zhang et al., 2015, 2017a,b; Zhang and Collins, 2017),

θp,des(i, n+ 1) = θp,des(i, n)− Kl · eτ (i, n) (9)

Torque transmission was modeled in Equation (4) and the
desired torque was set as Equation (7).

In this study, we were interested in the real-time torque
tracking performance under gait variations after the stabilization
of iterative learning, i.e., disturbance rejection performance of
the controller. Therefore, we assumed that at stride n − 1 and
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FIGURE 2 | The ankle angle based high-level desired torque curve imposed in

experiments to realize different desired quasi-stiffness profiles. It commands

desired torque that is linearly proportional to exoskeleton joint angle θe defined

by anchor point [θe,0 0] and desired quasi-stiffness Kdes.

time index i the learning controller has reached stabilization with
perfect torque tracking, i.e.,

τ (i, n− 1) = τdes(i, n− 1)
eτ (i, n− 1) = τ (i, n− 1)− τdes(i, n− 1) = 0.

(10)

The dynamic changes of the desired and generated torque
in the next strides due to human gait variations are then
investigated hereinafter.

Assuming an ankle kinematics change from stride n − 1 to n
at index i of

1θe(i, n) = θe(i, n)− θe(i, n− 1), (11)

then the desired torque changes by

1τdes(i, n) = τdes(i, n)− τdes(i, n− 1)
= −Kdes · 1θe(i, n)

Based on the iterative learning rule in Equation (9) and the
assumption of perfect motor position tracking in Equation (8),
current desired and actual motor position are

θp(i, n− 1) = θp,des(i, n)

= θp,des(i, n− 1)− Kl · eτ (i, n− 1)

= θp,des(i, n− 1)− Kl · 0

= θp,des(i, n− 1).

(12)

Therefore, combining Equation (12) with Equation (4), the
measured torque at stride n and index i is

τ (i, n) = τ (i, n− 1)− Kt · 1θe(i, n) (13)

and the desired torque is

τdes(i, n) = τdes(i, n− 1)+ 1τdes(i, n)
= τdes(i, n− 1)− Kdes · 1θe(i, n)

(14)

Combining Equations (20) and (21), for stride n and index i, the
torque error is

eτ (i, n)
= τ (i, n)− τdes(i, n)
= τ (i, n− 1)− Kt1θe(i, n)− [τdes(i, n− 1)− Kdes1θe(i, n)]
= eτ (i, n− 1)+ (Kdes − Kt)1θe(i, n)
= 0+ (Kdes − Kt)1θe(i, n)
= (Kdes − Kt)1θe(i, n)

(15)
This means with perfect torque tracking in stride n − 1, the
torque error of stride n is minimized when the desired and
passive stiffness match. This agrees with a previous study on
the optimization of passive stiffness for torque tracking (Zhang
and Collins, 2017). Next, at index i of stride n + 1, the
desired/actual motor position (equal per perfect motor tracking
assumption 8) is

θp,des(i, n+ 1) = θp,des(i, n)− Kl · eτ (i, n)

= θp,des(i, n)− Kl · (Kdes − Kt) · 1θe(i, n).

(16)
In case there is no change in ankle kinematics from stride n to
n+1 at time index i, i.e., θe(i, n+1) = θe(i, n), the desired torque
values have τdes(i, n+ 1) = τdes(i, n). The actual torque at current
stride and index is

τ (i, n+ 1)
= Kt[θp(i, n+ 1)R− θe(i, n+ 1)]
= Kt[(θp,des(i, n)− Kl(Kdes − Kt)1θe(i, n))R− θe(i, n+ 1)]

= Kt[(θp,des(i, n)− Kl(Kdes − Kt)1θe(i, n))R− θe(i, n)]

= Kt[θp,des(i, n)R− Kl(Kdes − Kt)R1θe(i, n)− θe(i, n)]

= τ (i, n)− KtKl(Kdes − Kt)R1θe(i, n).
(17)

Therefore, the latest torque error, i.e., that of stride n + 1 and
index i, is

eτ (i, n+ 1)
= τ (i, n+ 1)− τdes(i, n+ 1)
= τ (i, n+ 1)− τdes(i, n)
= τ (i, n)− KtKl(Kdes − Kt)R1θe(i, n)− τdes(i, n)
= (Kdes − Kt)1θe(i, n)− KtKl(Kdes − Kt)R1θe(i, n)
= (Kdes − Kt)(1− KtKlR)1θe(i, n)

(18)

if Kt · Kl · R = 1, i.e., Kl =
1

KtR
, we have

eτ (i, n+ 1) = 0,

and balance is restored.
On the other hand, if there exists ankle kinematics change

from stride n to n+ 1 at index i, i.e.,

1θe(i, n+ 1) = θe(i, n+ 1)− θe(i, n) 6= 0, (19)
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we have

τdes(i, n+ 1) = τdes(i, n)− Kdes · 1θe(i, n+ 1), (20)

and the actual torque at (i, n+ 1) is

τ (i, n+ 1)
= Kt[θp(i, n+ 1)R− θe(i, n+ 1)]
= τ (i, n)− KtKl(Kdes − Kt)R1θe(i, n)− Kt1θe(i, n+ 1).

(21)
Combining Equations (20) and (21), the torque error at (i, n+ 1)
is

eτ (i, n+ 1)
= τ (i, n+ 1)− τdes(i, n+ 1)
= (Kdes − Kt) · [(1− KtKlR) · 1θe(i, n)+ 1θe(i, n+ 1)]

(22)
Assuming that the ankle kinematics change is bounded, i.e.,

||1θe(i, n)|| ≤ ǫ ∀ n ∈ R1

Then, the error at (i, n),

||eτ (i, n)|| = ||(Kdes − Kt) · 1θe(i, n)||
≤ ||(Kdes − Kt)|| · ||1θe(i, n)||
= ||(Kdes − Kt)|| · ǫ

(23)

The error at (i, n+ 1) then has

eτ (i, n+ 1)

=(Kdes − Kt) · [(1− KtKlR) · 1θe(i, n)+ 1θe(i, n+ 1)]

≤||Kdes − Kt|| · [||1− Kt · Kl · R|| + 1] · ǫ

It is still in our best interest to assert

1− Kt · Kl · R = 0.

Therefore, we make the following hypothesis.

Hypothesis 1. There is an optimal iterative learning gain that
benefits real-time torque tracking performance of iterative learning
in exoskeleton assisted walking under a linear spring-like desired
torque profile:

Kl,opt =
1

KtR
(24)

2.4. Experimental Methods
The experiments of this study was conducted not to quantify
human reactions but the performance of various torque control
conditions. Therefore, only one healthy subject (N = 1, female, 32
years, 1.65 m, 56 kg) was involved. In all experiment sessions, the
subject walked with a self-paced frequency on a treadmill running
at 1.25 m/s while wearing the ankle exoskeleton on the right foot.
All experimental protocols were approved by Carnegie Mellon
University IRB.

In presentation of all experimental methods and results, this
paper uses meter, Newton-meter and degree as the units for
distance, torque and angle. The testbed system had an aspect ratio
R = 2.5 and a gear ratio ofN = 5. In all experiments, low level
control parameters T in Equation (6) was set as 50 ms.

TABLE 1 | List of desired stiffness tested in experiments with assigned ID.

Desired stiffness ID D1 D2 D3

Kdes (Nm/deg) 2 5 8.5

FIGURE 3 | All three tested linear desired torque vs. ankle angle curves used in

the form of Equation (7) with θe,0 = −2 (deg) and Kdes values listed in Table 1.

2.4.1. Generation of Desired Torque Curves
Three different desired quasi-stiffnesses in the form of
Equation (7) were implemented to test the hypothesis. In
all cases, θe,0 = −2 (deg), in which θe = 0 was defined by the
neutral standing position. The tested desired stiffness Kdes spans
(Table 1) with a maximum value that is 4.25 times the minimum.
The resulting desired torque-ankle-angle relationships are
demonstrated in Figure 3.

2.4.2. Realization of Different Passive Stiffness and

Evaluation of Their Values
With every desired stiffness value defined by a torque-angle
curve, we tested it in combination with three different passive
transmission stiffness values by changing the series spring
in the ankle exoskeleton (Figure 1). Two were realized
by attaching different compression springs (Diamond
Wire Spring, Glenshaw, PA) and the last one was by
eliminating the spring from the structure. In that case, the
system passive stiffness equalled the stiffness of the rope in
Bowden cable.

The values of effective passive stiffness, Kt , with different
spring configurations were experimentally evaluated using
passive walking where motor position was locked. The process
went like this: under each set-up, motor position was fixed where
forces began to be generated when the participant stood in a
neutral position. Then the participant walked while wearing
the exoskeleton on the treadmill for more than one hundred
steady strides. Such sessions were done multiple times for
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FIGURE 4 | Instantaneous passive stiffness values under passive walking

plotted against the measured torques for different spring configurations, one

session for each. Each session consisted of one-hundred strides with motor

position locked. The stabilized passive stiffness value of one session was

defined as the median of the values over a stabilized region. The effective

stiffness of the one configuration was defined as the mean of stabilized values

of multiple sessions.

TABLE 2 | List of passive stiffness values.

Passive stiffness ID S1 S2 S3

Spring part no. DWC-148M-13 DWC-187M-12 No Spring

Length (m) 0.0635 0.0508 –

Spring rate (N/m×103) 15.1 50.1 –

Max load (N) 413.7 778.4 –

KT (Nm/deg) 1.8957 3.6672 5.9365

each stiffness configurations. For one hundred steady strides of
each walking session, the instantaneous passive stiffness value
was calculated and plotted against the torque values. Figure 4
shows examples of such plots of passive walking sessions, one
session for each spring configuration. Each session produced
a stabilized passive stiffness which was defined as the median
of the instantaneous stiffness values within a stabilized region.
For any passive stiffness set-up, the stabilized region was chosen
as a 5.65 Nm torque range, within which the change of the
instantaneous stiffness trend averaged over all sessions was
minimum. Then, the effective passive stiffness value of a specific
spring configuration was defined as the mean of the stabilized
passive stiffness values acrossmultiple experimental sessions with
this configuration.

The list of springs used and their corresponding properties
and their actual values of passive stiffness as calculated with
methods discussed above are listed in Table 2. This passive
stiffness set spanned a range with a 3.5 times difference between
the maximum and minimum values.

2.4.3. Experimental Procedures
For each desired stiffness and passive stiffness combination,
ten iterative learning gains that span a range with a 20-times
difference between the maximum and minimum around the
predicted optimal value per Equation (24) (Table 3). Therefore,
3 × 3 × 10 experiment sessions were conducted in total. During
each experiment session defined by a unique combination of
learning gain, desired stiffness and passive stiffness, the subject
walked for at least one hundred strides after stabilization of the
learning processes.

The theory-predicted optimal iterative learning gain values
according to Hypothesis 1 were also listed in the table as
a comparison.

Four different indicators of torque tracking performance were
calculated for each combination. The first as we call an “absolute
error” was defined as the mean of stride-wise root-mean-squared
torque errors over the one hundred stable strides. The second
one was a “relative error” defined by the absolute error divided
by the mean of peak desired torque of the one hundred stable
strides. Besides, the normalized instantaneous torque error value
of a specific time index within the stride was defined by dividing
the original torque error by the standard deviation of a centered
1 × 100 ankle position array of the same time index over all one
hundred strides. A centered ankle position array of one particular
time index of the stride was defined as the difference between
the original array and filtered array as demonstrated in Figure 5.
The resulting values were then used to calculate the “normalized
absolute error” and the “normalized relative error” in a similar
fashion as those of the “absolute error” and “relative error.”

For each unique combination of desired and passive stiffness
values, we investigated the relationship between the defined
error indices and the corresponding learning gains to test
the hypothesis.

3. RESULTS

The mean of root-mean-squared torque errors of various
learning gains were presented against the ratio of actual learning
gains to the theory predicted one in logarithmic scale, i.e.,

ln(
Kl

Kl,opt
) (Figure 6). For each combination of passive stiffness

values and a desired torque curves, the values tracking errors of

and ln(
Kl

Kl,opt
) were fitted into a second order polynomial, i.e.,

e(ln(
Kl

Kl,opt
)) = a(ln(

Kl

Kl,opt
))2 + bln(

Kl

Kl,opt
)+ c.

We defined the Kl value at which the value of the polynomial
was minimized as the experimental optimum of iterative learning

gain and label it as Kl,opt,exp. The
Kl,opt,exp

Kl,opt
values of all

combinations are listed in Table 4.
From the results, for all tracking error definitions and

all combinations of desired and passive stiffness values,
the minimum tracking errors happen in a rather closed
neighborhood of Kl = Kl,opt , which agreed with Hypothesis
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TABLE 3 | List of iterative learning gain values tested in experiments (deg/Nm).

Passive stiffness ID

Desired stiffness ID S1 S2 S3

D1 0.0443, 0.0593, 0.0885, 0.1328,

0.1770, 0.2655, 0.3540, 0.5310,

0.7081, 0.8851

0.0354, 0.0443, 0.0593, 0.0885,

0.1328, 0.1770, 0.2655, 0.3540,

0.5310, 0.7081

0.0266, 0.0354, 0.0443, 0.0593,

0.0885, 0.1328, 0.1770, 0.2655,

0.3540, 0.5310

D2 0.0443, 0.0593, 0.0885, 0.1328,

0.1770, 0.2655, 0.3540, 0.5310,

0.7081, 0.8851

0.0354, 0.0443, 0.0593, 0.0885,

0.1328, 0.1770, 0.2655, 0.3540,

0.5310, 0.7081

0.0266, 0.0354, 0.0443, 0.0593,

0.0885, 0.1328, 0.1770, 0.2655,

0.3540, 0.5310

D3 0.0443, 0.0593, 0.0885, 0.1328,

0.1770, 0.2655, 0.3540, 0.5310,

0.7081, 0.8851

0.0354, 0.0443, 0.0593, 0.0885,

0.1328, 0.1770, 0.2655, 0.3540,

0.5310, 0.7081

0.0266, 0.0354, 0.0443, 0.0593,

0.0885, 0.1328, 0.1770, 0.2655,

0.3540, 0.5310

Predicted optimum Kl,opt 0.2107 0.1089 0.0674

FIGURE 5 | Centering process of index-wise ankle positions. (A) Ankle position array of the one hundred strides investigated for an example time index within strides.

(B) Ankle position array as shown in (A) zero-phase filtered with a 1/20 cut-off frequency butter-worth filter. (C) Centered ankle position array achieved by subtracting

array in (B) from that in (A).

1. Furthermore, among all four torque error indices, the absolute
error normalized to the standard deviation of centered ankle
position trajectories showed experimental optimum closest to
theory prediction. The average of experimental optimal gains
under nine different combinations of passive and desired
stiffness values was 0.9929 ± 0.3846 times the predicted
optimum (Table 4).

Besides, the slope between the error and learning gain is rather
shallow in the area around the expected optimal gain for all
combinations of desired and passive stiffness values. A 100%

increase in learning gain only results in a 4.54% increase in
normalized torque error on average.

4. DISCUSSION

We examined the possibility of optimizing the real-time torque
tracking performance of iterative learning control after the
stabilization of learning process in series elastic actuator driven
walking robots. We made predictions based on theoretical
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FIGURE 6 | Mean of stride-wise root-mean-squared torque tracking errors of all {gain, desired stiffness, passive stiffness} combinations and the relative errors to their

peak desired torques. (A) Values computed with raw torque errors. (B) Values computed by normalizing raw torque errors by position-wise ankle position variance.

TABLE 4 | Calculated relative optimal iterative learning gain values Kl,opt,exp/Kl,opt through curve-fitting experimental data.

Stiffness combination (desired, passive)
RMS tracking errors Normalized RMS tracking errors

Absolute Relative Absolute Relative

(D1, S1) 0.3923 0.3047 0.5667 0.4823

(D2, S1) 0.7779 0.6472 1.1623 0.9884

(D3, S1) 0.7307 0.6726 0.5850 0.3731

(D1, S2) 0.8006 0.8374 0.7524 0.7738

(D2, S2) 0.7472 0.8150 1.0389 1.0767

(D3, S2) 1.0377 0.9533 1.3639 1.1933

(D1, S3) 1.4233 1.1708 1.6885 1.3190

(D2, S3) 0.6286 0.6147 0.6616 0.5767

(D3, S3) 0.9768 1.0023 1.1173 1.1332

Average 0.8350 ± 0.2892 0.7798 ± 0.2547 0.9929 ± 0.3846 0.8796 ± 0.3398

analysis and tested the theory using exoskeleton assisted human
walking experiments.

Theoretic analysis suggested that to attenuate the effects
of gait variations to minimum using iterative learning feed-
forward torque control, the gain should be set as the inverse

of the actuator passive stiffness with respect to the motor

side. Among the various torque error indices investigated for
walking experiments, torque errors normalized by the standard
deviation of the centered ankle position array demonstrated

strongest agreement with this hypothesis. The experimental
optimal iterative learning gain identified was 0.9929 ± 0.3846
times the predicted one, i.e.,

Kl,opt,exp = (0.9929± 0.3846)× Kl,opt (25)

These results showed that this optimal learning gain mostly
suppressed the torque errors due to the step-to-step variation
of human gait after stabilization, but not those due to slow
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adaptation of human gaits, which agreed with the theoretical
analysis and the purpose of this study. In ankle exoskeleton
assisted walking experiments and sessions with less stable gait
patterns due to participant conditions or environment, this result
is expected to be highly useful.

The results also suggested a shallow slope of tracking error
increase when the learning gain deviated from the hypothesized
optimum. A 100% increase in learning gain only results in a
4.54% increase in normalized torque error on average. This
means a rather robust performance of the theory in this
study, which is especially meaningful in exoskeletons. The high
non-linearity of the series spring and time-varying property
of the transmission and interaction subsystems all mean a
difficult system identification process and constantly present
model-system mismatch. Besides, the fairly flat bottom of the
error-vs.-gain curve also partially explained the relatively big
standard deviation of the experimental optimum (0.3846 as in
Equation 25).

Due to the presence of the non-linear, complex, and
time-varying system dynamics and the employment of a
highly simplified model, many features were not reflected in
the theoretical hypothesis, which led to imperfection in the
alignment between theory and experiment results. One issue that
contributed was the non-linearity of the passive stiffness coming
from the slow stretching of the synthetic rope as demonstrated
by Figure 4. Besides, there existed unstructured changes of
passive stiffness between loads and trials, but only one single
stabilized value was used for one passive stiffness setup. Another
complication of the system dynamics not accounted for in
theoretical analysis was the highly non-linear, complex, and time-
varying static and dynamic frictions in Bowden cable. We also
assumed perfect motor position tracking, which was not true in
practical cases due to the limitation of motor velocity.

Regardless of the imperfection of systemmodeling, the torque
tracking errors did arrive at a minimum at the neighborhood
of the hypothesized optimal iterative learning gain. The shallow
slope of changes around the optimum value also suggested a
rather relaxed learning gain tuning process. When the iterative
learning gain spans a range of [50% 200%] relative to the
theoretical optimum, the average increase in torque error is
expected to be <5% of that at the optimal gain. Considering
a relative torque error of only 2–8% of desired torque at the
optimum, a 5% increase on top is rather insignificant and will
not harm exoskeleton performance or accuracy of experiments.

This study is the last part of a series of three studies focusing
on improved torque tracking for lower-limb exoskeletons
during walking. The first one compared a group of prominent
controllers used in this type of devices, and identified model-
free, integral-control-free feedback combined with feedforward
iterative learning as the most effective controller structure, with
the potential to reduce torque tracking error to around 1% of
peak desired torque (Zhang et al., 2015, 2017a). The second
optimized the passive stiffness value of the series elastic actuator
of the exoskeleton (Zhang and Collins, 2017). This last study
aimed to further improve the torque tracking performance by
tuning iterative learning gain in presence of stride-to-stride
human gait variations after stabilization of learning. When the
combination of feedback control and iterative learning stabilizes

during human walking, the real-time control output mainly
comes from the learning part (Zhang et al., 2015, 2017a). Just like
a traditional PID control, at the end of which the control output
was mainly contributed by the integral control part. Therefore, in
analysis and experiments of this study, only the iterative learning
part was discussed.

A lot of complications, such as frictions and other non-
linearities, uncertainties, time-varying dynamics were not
discussed or featured in the analysis of this study. The reason was
that previous studies (Zhang et al., 2015, 2017a) have shown that
in presence of all these complications, a combination of model-
free, integration-free control with iterative learning was most
effective. The reason was that it is analogous to a traditional PID
control, in which tracking, stability and steady-state errors were
all dealt with.

Besides, stability of iterative learning was also solved in
previous studies (Zhang et al., 2015, 2017a). Errors accumulated
and propagating along the way can be suppressed by adding a
forgetting factor, error filtering factor and an optional resetting
process during human walking.

5. CONCLUSIONS

This study is the last part of a trilogy of studies on accurate
torque tracking for lower-limb exoskeletons during human
walking, followed by the identification of an effective control
structure (Zhang et al., 2015, 2017a) and the optimization of
device series elastic actuator passive stiffness (Zhang and Collins,
2017). It hypothesized the existence and value of an optimal
iterative learning gain for real-time torque tracking in ankle
exoskeleton during walking with gait variations and validated
it with walking experiments. The optimal gain was identified
as the inverse of transmission stiffness relative to the motor
side. This result further improved exoskeleton torque tracking
performance considering limited knowledge of the human and
interaction dynamics we can achieve with current technologies.
It provided clear guide to iterative learning gain tuning process
in exoskeleton systems. Besides, a shallow slope of changes
in tracking errors around the neighborhood of the optimal
gain suggested a rather robust performance, which is especially
meaningful for exoskeleton systems that are complicated, time-
varying, and difficult to do system identification. Based on the
results of this study, we recommend a iterative learning gain
range that is [50% 200%] of the hypothesized optimum 1

KtR
.
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Hać, A. (1990). “Learning control in the presence of measurement noise,”

in American Control Conference 1990 (San Diego, CA: IEEE), 2846–2851.

doi: 10.23919/ACC.1990.4791239

Haddadin, S., Albu-Schaffer, A., De Luca, A., and Hirzinger, G. (2008).

“Collision detection and reaction: a contribution to safe physical human-robot

interaction,” in 2008 IEEE/RSJ International Conference on Intelligent Robots

and Systems (Nice: IEEE), 3356–3363. doi: 10.1109/IROS.2008.4650764

Heinzinger, G., Fenwick, D., Paden, B., and Miyazaki, F. (1992). Stability of

learning control with disturbances and uncertain initial conditions. IEEE Trans.

Autom. Control 37, 110–114. doi: 10.1109/9.109644

Jackson, R. J., and Collins, S. H. (2015). An experimental comparison of the relative

benefits of work and torque assistance in ankle exoskeletons. J. Appl. Physiol.

(1985) 119, 541–557. doi: 10.1152/japplphysiol.01133.2014

Kawamoto, H., Taal, S., Niniss, H., Hayashi, T., Kamibayashi, K., Eguchi, K., et al.

(2010). Voluntary motion support control of robot suit HAL triggered by

bioelectrical signal for hemiplegia. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc.

2010, 462–466. doi: 10.1109/IEMBS.2010.5626191

Lasota, P. A., Rossano, G. F., and Shah, J. A. (2014). “Toward safe close-

proximity human-robot interaction with standard industrial robots,” in 2014

IEEE International Conference on Automation Science and Engineering (CASE)

(Taipei: IEEE), 339–344. doi: 10.1109/CoASE.2014.6899348

Malcolm, P., Derave, W., Galle, S., and De Clercq, D. (2013). A simple exoskeleton

that assists plantarflexion can reduce the metabolic cost of human walking.

PLoS ONE 8:e56137. doi: 10.1371/journal.pone.0056137

Moore, K. L. (1993). Iterative Learning Control for Deterministic Systems. London:

Springer Science & Business Media.

Pratt, J., Dilworth, P., and Pratt, G. (1997). “Virtual model control of a

bipedal walking robot,” in Proceedings. 1997 IEEE International Conference on

Robotics and Automation 1997, Vol. 1 (Albuquerque, NM: IEEE), 193–198.

doi: 10.1109/ROBOT.1997.620037

Saab, S. S. (2003). Stochastic p-type/d-type iterative learning control algorithms.

Int. J. Control 76, 139–148. doi: 10.1080/0020717031000077717

Saab, S. S. (2005). Selection of the learning gain matrix of an iterative

learning control algorithm in presence of measurement noise.

IEEE Trans. Autom. Control 50, 1761–1774. doi: 10.1109/TAC.2005.

858681

Saab, S. S., Vogt, W. G., and Mickle, M. H. (1997). Learning control algorithms

for tracking “slowly” varying trajectories. IEEE Trans. Syst. Man Cybernet B

Cybernet. 27, 657–670. doi: 10.1109/3477.604109

Sawicki, G. S., and Ferris, D. P. (2009). Powered ankle exoskeletons reveal

the metabolic cost of plantar flexor mechanical work during walking

with longer steps at constant step frequency. J. Exp. Biol. 212, 21–31.

doi: 10.1242/jeb.017269

Stienen, A. H., Hekman, E. E., ter Braak, H., Aalsma, A. M., van der Helm, F. C.,

and van der Kooij, H. (2010). Design of a rotational hydroelastic actuator for

a powered exoskeleton for upper limb rehabilitation. IEEE Trans. Biomed. Eng.

57, 728–735. doi: 10.1109/TBME.2009.2018628

Sup, F., Varol, H. A., Mitchell, J., Withrow, T. J., and Goldfarb, M.

(2009). Preliminary evaluations of a self-contained anthropomorphic

transfemoral prosthesis. IEEE ASME Trans. Mechatron. 14, 667–676.

doi: 10.1109/TMECH.2009.2032688

Togai, M., and Yamano, O. (1985). “Analysis and design of an optimal learning

control scheme for industrial robots: a discrete system approach,” in 24th

IEEE Conference on Decision and Control 1985 (Fort Lauderdale, FL: IEEE),

1399–1404. doi: 10.1109/CDC.1985.268741

van Dijk, W., Van Der Kooij, H., Koopman, B., and van Asseldonk, E. (2013).

Improving the transparency of a rehabilitation robot by exploiting the

cyclic behaviour of walking. IEEE Int. Conf. Rehabil. Robot. 2013:6650393.

doi: 10.1109/ICORR.2013.6650393

Veneman, J. F., Kruidhof, R., Hekman, E. E., Ekkelenkamp, R., Van Asseldonk,

E. H., and Van Der Kooij, H. (2007). Design and evaluation of the lopes

exoskeleton robot for interactive gait rehabilitation. IEEE Trans. Neural Syst.

Rehabil. Eng. 15, 379–386. doi: 10.1109/TNSRE.2007.903919

Witte, K. A., Zhang, J., Jackson, R. W., and Collins, S. H. (2015). “Design of two

lightweight, high-bandwidth torque-controlled ankle exoskeletons,” in 2015

IEEE International Conference on Robotics and Automation (ICRA) (Seattle,

WA). doi: 10.1109/ICRA.2015.7139347

Zanotto, D., Lenzi, T., Stegall, P., and Agrawal, S. K. (2013). Improving

transparency of powered exoskeletons using force/torque sensors on

the supporting cuffs. IEEE Int. Conf. Rehabil. Robot. 2013:6650404.

doi: 10.1109/ICORR.2013.6650404

Zhang, J., Cheah, C. C., and Collins, S. H. (2015). “Experimental comparison

of torque control methods on an ankle exoskeleton during human walking,”

in 2015 IEEE International Conference on Robotics and Automation (ICRA)

(Seattle, WA: IEEE), 5584–5589. doi: 10.1109/ICRA.2015.7139980

Zhang, J., Cheah, C. C., and Collins, S. H. (2017a). “Torque control in legged

locomotion,” in Bioinspired Legged Locomotion: Models, Concepts, Control and

Applications, eds M. A. Sharbafi and A. Seyfarth (Oxford: Elsevier), 347–400.

doi: 10.1016/B978-0-12-803766-9.00007-5

Zhang, J., and Collins, S. H. (2017). The passive series stiffness that optimizes

torque tracking for a lower-limb exoskeleton in human walking. Front.

Neurorobot. 11:68. doi: 10.3389/fnbot.2017.00068

Zhang, J., Fiers, P., Witte, K. A., Jackson, R. W., Poggensee, K. L., Atkeson, C.

G., et al. (2017b). Human-in-the-loop optimization of exoskeleton assistance

during walking. Science 356, 1280–1284. doi: 10.1126/science.aal5054

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2021 Zhang and Collins. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neurorobotics | www.frontiersin.org 11 May 2021 | Volume 15 | Article 653409

https://doi.org/10.1049/cp:19960710
https://doi.org/10.1002/rob.4620010203
https://doi.org/10.1109/ICRA.2013.6630940
https://doi.org/10.1007/978-1-4615-5629-9_11
https://doi.org/10.23919/ACC.1990.4791239
https://doi.org/10.1109/IROS.2008.4650764
https://doi.org/10.1109/9.109644
https://doi.org/10.1152/japplphysiol.01133.2014
https://doi.org/10.1109/IEMBS.2010.5626191
https://doi.org/10.1109/CoASE.2014.6899348
https://doi.org/10.1371/journal.pone.0056137
https://doi.org/10.1109/ROBOT.1997.620037
https://doi.org/10.1080/0020717031000077717
https://doi.org/10.1109/TAC.2005.858681
https://doi.org/10.1109/3477.604109
https://doi.org/10.1242/jeb.017269
https://doi.org/10.1109/TBME.2009.2018628
https://doi.org/10.1109/TMECH.2009.2032688
https://doi.org/10.1109/CDC.1985.268741
https://doi.org/10.1109/ICORR.2013.6650393
https://doi.org/10.1109/TNSRE.2007.903919
https://doi.org/10.1109/ICRA.2015.7139347
https://doi.org/10.1109/ICORR.2013.6650404
https://doi.org/10.1109/ICRA.2015.7139980
https://doi.org/10.1016/B978-0-12-803766-9.00007-5
https://doi.org/10.3389/fnbot.2017.00068
https://doi.org/10.1126/science.aal5054
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	The Iterative Learning Gain That Optimizes Real-Time Torque Tracking for Ankle Exoskeletons in Human Walking Under Gait Variations
	1. Introduction
	2. Methods
	2.1. Exoskeleton System and Simplified Model
	2.2. Controllers
	2.2.1. Low Level Control
	2.2.2. High Level Control: Linear Desired Quasi-Stiffness

	2.3. Theoretical Analysis on Optimal Iterative Learning Gain
	2.4. Experimental Methods
	2.4.1. Generation of Desired Torque Curves
	2.4.2. Realization of Different Passive Stiffness and Evaluation of Their Values
	2.4.3. Experimental Procedures


	3. Results
	4. Discussion
	5. Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	References


