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The trajectory tracking and control of incomplete mobile robots are explored to improve

the accuracy of the trajectory tracking of the robot controller. First, the mathematical

kinematics model of the non-holonomic mobile robot is studied. Then, the improved

Backpropagation Neural Network (BPNN) is applied to the robot controller. On this

basis, a mobile robot trajectory tracking controller combining the fuzzy algorithm and

the neural network is designed to control the linear velocity and angular velocity of the

mobile robot. Finally, the robot target image can be analyzed effectively based on the

Internet of Things (IoT) image enhancement technology. In the MATLAB environment,

the performances of traditional BPNN and improved BPNN in mobile robots’ trajectory

tracking are compared. The tracking accuracy before and after the improvement shows

no apparent differences; however, the training speed of improved BPNN is significantly

accelerated. The fuzzy-BPNN controller presents significant improvements in tracking

speed and tracking accuracy compared with the improved BPNN. The trajectory tracking

controller of the mobile robot is designed and improved based on the fuzzy BPNN. The

designed controller combining the fuzzy algorithm and the improved BPNN can provide

higher accuracy and tracking efficiency for the trajectory tracking and control of the

non-holonomic mobile robots.

Keywords: backpropagation neural network, Internet of Things, image enhancement, non-holonomic mobile

robot, trajectory tracking and control

INTRODUCTION

As human society enters the era of science and technology, computers, and artificial intelligence
have developed rapidly; machines to replace human labor to improve production efficiency
have become a reality (Ma et al., 2020). However, Lv et al. (2019) also proposed that
the existing network structure migrated computing tasks to the cloud, while the increase
in cloud data transmission put huge pressure on the core network and affected the
quality of service (Lv and Xiu, 2019). Internet of Things (IoT) is a famous object vision.
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Information-sensing equipment, such as sensors and electronic
tags installed on the object, transmits information collected
back and forth through the internet connection according
to the agreed protocol. Connecting a simple robot to the
internet will become valuable because it can obtain updated
information about its environment from sensors or understand
the user’s whereabouts and the status of nearby devices (Marques
et al., 2019). In short, robots integrated with IoT can use
IoT data to help machines interact with each other and take
necessary actions, enabling robots to communicate effectively
and make appropriate decisions by themselves. The core of
“IoT+Robot” is the ubiquitous sensors, cameras, and actuators
embedded in the environment, as well as autonomous robots
that collect data in real-time (Rehman et al., 2019). Sensors
provide not only raw data but also interpretation and abstraction
to some degree, which can be utilized for decision-making
or high-level automation. Lv et al. (2019) applied the sensor
technology of the ZigBee wireless network organization, which
could provide people with a smarter and more comfortable
living environment (Lv et al., 2019). Connecting machine vision
systems to IoT can create powerful network functions that can
recognize objects from cameras. Such functions can enhance the
local nodes’ intelligence and autonomy, reducing the processing
load on the central server and achieving a better-distributed
control architecture.

The IoT-based multi-robot collaborative operation utilizes
the intelligent perception inside and outside the robot, makes
timely judgments and control decisions according to the signals
collected by the network, and timely issues control instructions
to the robot to ensure that multiple robots complete tasks safely
and efficiently (Özdemir, 2019; Michie et al., 2020). Mobile
robots are highly intelligent systems that can continuously obtain
information of the surrounding environment and themselves
through sensors in real-time, make decisions, analyze, plan
for different environments, and control the drive motors to
move autonomously toward the targets, thereby completing
specific tasks.

Tracking control in mobile robots’ motion control has always
been a sophisticated problem, which has received extensive
attention from researchers in this field. Yang and Pan proposed
a sliding mode control method for wheeled mobile robots,
established a motion control model for mobile robots, and
designed a sliding mode trajectory tracking controller, which
effectively reduced the jitter of sliding mode control’s input,
accelerated the convergence speed, and improved the tracking
accuracy (Yang and Pan, 2018). Tinh and Linh improved the
online weight adjustment algorithm based on backpropagation
and proposed an adaptive tracking controller based on a three-
layer neural network, which could ensure the stability of the
entire closed-loop system and realize the desired mobile robots’
trajectory tracking performance (Tinh and Linh, 2018).

In practical applications, trajectory tracking of mobile robots
should ensure versatility while ensuring stability and robustness
optimization. Therefore, the focus is on the trajectory control
of mobile robots. Here, a trajectory tracking method combining
improved Backpropagation Neural Network (BPNN) and fuzzy
neural network is proposed, denoted as fuzzy-BPNN. Then

this method’s feasibility and accuracy in robots’ trajectory
tracking and control are verified through simulation. On this
basis, the IoT multi-sensor data fusion and target infrared
image enhancement technology are researched. The multi-robot
system can fuse the sensor data, enhance the target images,
and provide new ideas for robot obstacle avoidance through
fuzzy control.

MATERIALS AND METHODS

Mathematical Kinematics Models of
Non-holonomic Mobile Robots
In mechanics, mathematical equations containing coordinate
parameters can express constraints. The motion constraints that
mobile robots are subjected to include holonomic constraints and
holonomic constraints. Holonomic constraints are restrictions
on the configuration space, and non-holonomic constraints are
restrictions on system motion (Chu et al., 2018). The holonomic
constraint reduces the dimensionality of the configuration
space. The system can transform the holonomic constraints it
receives into the constraints on the position through integration
during the motion. The non-holonomic constraints reduce the
dimensionality of the velocity. The equations of holonomic
constraints and non-holonomic constraints can be expressed as
Equations (1) and (2):

h
(

q, t
)

= 0 (1)

h
(

q,
·
q , t

)

= 0 (2)

In Equations (1) and (2), q represents the coordinate vector of
the system,

·
q represents the velocity vector of the system, and t is

the time parameter.
For practical problems, the motion constraint can be

transformed into a linear relationship with the system velocity
·
q ; that is, the Pfaffian constraint:
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In Equation (3), A
(

q
)

∈ Rm×n represents a set of m velocity
constraints, and Ai

(

q
)

∈ R1×n is the row vector of A
(

q
)

, which
is a constraint on the direction of the generalized velocity q of
the system.

A wheel moves on the ground, as shown in Figure 1. Four
parameters can describe the wheel’s configuration: the contact
points x and y with the ground, the current rotation angle θ ,
and the forward direction Φ . If the wheel makes a non-slip
motion, the direction of the wheel will always be (cosφ, sinφ). The
non-slip constraint does not reduce the dimension of the wheel
configuration space; that is, the wheel can reach any position on
the plane. However, this constraint reduces the dimensionality
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of the wheel’s velocity space so that the wheel can only move in
direction (cosφ, sinφ) at a particular time.

Assuming that the wheel’s radius is r, the distance between
the wheel’s center

(

xc, yc
)

and the ground track is always the
same during the non-slip rolling motion of the linear track. The
non-slip rolling between it constrains the wheel’s motion and the
ground, expressed as the instantaneous velocity v of the wheel’s
contact point and the ground track is zero. Therefore, the wheel’s
motion can be regarded as a rapid rotation around the contact
point, and the constraint equation can be expressed as:

yc = r (4)

A
(

q
)

·

(

·
q
)

= [1 0 -r]







·
xc
·

yc
·
φ






=

·
xc −r

·
φ = v = 0 (5)

Equation (4) is a geometric constraint on the wheel, and
Equation (5) represents a linear motion constraint, which can be
further expressed by integral:

xc − rφ = C (6)

In Equation (6), C is the integral constant.
The non-holonomic constraint equation does not have

a corresponding geometric constraint. Hence, it puts no
restriction on the position vector but only restrictions
on the particle’s velocity at each position. Therefore,
the non-holonomic constraint does not reduce the
number of independent generalized coordinates; instead,
it only reduces the number of independent generalized
velocities (Gutiérrez-Giles et al., 2018).

A non-holonomic mobile robot is also a non-holonomic
system, and the non-holonomic constraint equation can reflect

FIGURE 1 | Non-slip rolling constraints of wheels on the ground.

its motion characteristics. While the robots are moving, two
physical phenomena, tire rolling and sliding, will occur when the
wheels contact the ground. The structure of a non-holonomic
mobile robot is shown in Figure 2. One coordinate system
is the global coordinate system XOY ; the other coordinate
system is the local coordinate system xoy (the mass center
of the robot is the origin). In Figure 2, R is the radius of
the robot’s driving wheel, θ is the robot’s forward direction
angle, q is the robot’s pose, [v ω]T is the robot’s control
quantity (linear velocity and angular velocity), vL and vR are
the linear velocity of the robot’s left and right wheels, and
L is the distance between the centers of the robot’s two
driving wheels.

For error reduction, assuming that the mobile robot
moves along a linear track gradually, the wheels do not
slide left and right. Then the non-holonomic constraints
and the kinematics model can be expressed as in Equations
(7) and (8):

·
y cosφ−

·
x sin θ = 0 (7)







·
x
·

y
·
θ






=





cos θ 0
sin θ 0
0 1





[

v
ω

]

(8)

The non-holonomic mobile robot’s left and right wheels’ linear
velocities vL and vR share the following relationship with its linear
velocity v and angular velocity ω :

[

vL
vR

]

=

[

1/R L/2R
1/R L/2R

] [

v
ω

]

(9)

FIGURE 2 | Structure of a non-holonomic mobile robot.
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In summary, the kinematics model of the discussed non-
holonomic mobile robot is:
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2 sin θ
R
L −R

L





[

vL
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]

(10)

Robot Trajectory Tracking Based on
Improved BPNN
Mobile robots are widely used in unmodeled spaces and
environments; thus, accurate trajectory tracking is the basis of
practical applications (Alshakarchi and Al-Maliky, 2018; Singh
and Thongam, 2018; Tu et al., 2019; Wang et al., 2019). The
traditional control method depends too much on the dynamic
model, resulting in low robustness. The intelligent neural
networks have strong robustness and adaptability, presenting
significant advantages in trajectory tracking and control of
mobile robots. As the core of the feedforward network in artificial
neural networks, BPNN is widely applied to solve problems
such as function approximation and pattern recognition (Yi
et al., 2019). The most commonly used transfer functions of
backpropagation neurons are log function and tan function,
and the output can be expressed as y = log sig

(

Wp+ b
)

.
Generally, BPNN presents a multi-layer structure. The model of
backpropagation neuron and the two-layer structure diagram are
shown in Figure 3.

BPNN needs to adjust the weights according to each training
sample, which requires a massive amount of training data in
practical applications, resulting in reduced efficiency of weight
adjustment and failure to meet the real-time requirements (Singh
and Thongam, 2019). Therefore, the traditional BPNN is divided
into several smaller sub-networks, which are trained separately to
improve computational efficiency.While dividing the BPNN into
n sub-networks, it is also necessary to divide the training samples
into n groups of sub-samples. It is also necessary to compare
the current training sample with the previous training sample
to calculate the corresponding group’s mean square error sum.
Finally, according to the comparison result, whether to input the
data into BPNN for operation is decided. The improved BPNN
eliminates the need for repeated calculations, which significantly

shortens the calculation time for large-scale neural networks and
improves weight adjustment efficiency.

The improved BPNN is adopted to model the unknown
parameters of the robot, and a dynamic controller that meets the
real-time requirements of mobile robots is designed. First, the
kinematic equation of the mobile robot is expressed as:







·
x= v cos
·
y= v sin
·
θ = ω

(11)

In Equation (11),
(

x, y
)

is the actual position of the mobile robot,
θ is the azimuth angle, and both the linear velocity v and the
angular velocity ω are control inputs in the kinematic model.
Robot trajectory tracking is to track the target robot with pose

qr =
[

xr , yr , θr
]T

and velocity
·
q r = [vr ,ωr]T . The tracking error

of the mobile robot is expressed as:

e =





e1
e2
e3



 = Te

(

qr − q
)

(12)

The error change rate of the mobile robot can be expressed as:

·
e=





·
e 1
·
e 2
·
e 3



 =





ωe2 − v+ vr cos e3
−ωe2 + vr sin e3

ωr − ω



 (13)

The improved BPNN is applied to robot dynamics control. If
a vector P (·) is a variable function, a static neural network
is utilized for modeling, and the following equation will
be obtained:

P (·) =
[

{WP}
T · {ξP (·)}

]

+ EP (·) (14)

In Equation (14), {WP}
T and {ξP (·)} are OpenGL vectors, each

element is a model error vector, and (·) represents a general
vector or matrix.

FIGURE 3 | Model of backpropagation neuron and the two-layer structure diagram. (A) BP neuronal structure. (B) BP neural structure.
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Robot Trajectory Tracking Based on the
Fuzzy Algorithm Combining Neural
Networks
In fuzzy systems, the design of fuzzy sets, membership functions,
and fuzzy rules are based on empirical knowledge. This analysis
method has a lot of subjectivity (Lu et al., 2018). Hence,
the learning mechanism is introduced into the fuzzy system
to modify and improve the membership function and fuzzy
rules through continuous learning. The connection between
the fuzzy system and the fuzzy neural network shows that the
fuzzy neural network is essentially the realization of the fuzzy
system. The difference between the two reveals that the fuzzy
neural network has the characteristics of the neural network.
Introducing the learning ability of the neural network into
the fuzzy system and representing the fuzzy processing, fuzzy
reasoning, and precise calculation of the fuzzy system through
a distributed neural network is an important way to realize the
self-organization and self-learning of the fuzzy system (Amador-
Angulo et al., 2016). In a fuzzy neural network, the input
and output nodes are used to fuzzify the input and output
signals of the system (Caraveo et al., 2017; Lagunes et al.,
2019). The hidden nodes of this neural network express the
membership function and fuzzy rules, and the parallel processing
capability of the neural network makes the inference ability of
the fuzzy system greatly improved. The fuzzy neural network
combines fuzzy system and neural network. A fuzzy neural
network is essentially a conventional neural network that assigns
fuzzy input signals and fuzzy weights. Its learning algorithm
is usually a typical neural network’s learning algorithm or
its extension.

According to the kinematic model of the non-holonomic
mobile robot, the current pose of the robot can be obtained
as long as u = [v ω]T is controlled. Assuming that the actual

pose of the robot is p =
[

x y θ
]T
, the actual motion velocity is

[v ω]T ; the reference pose is pr =
[

xr yr θr
]T
, and the reference

motion velocity is [vr ωr]T . Then the error vector between

the actual pose and the reference pose is pe =
[

xe ye θe
]T
.

Essentially, trajectory tracking of a non-holonomic mobile robot
is to find a bounded input for any initial pose and velocity error
and make:

lim
t→∞

∥

∥

∥

[

xe ye θe
]T

∥

∥

∥
= 0 (15)

The error vector between the actual pose and the reference pose
can be expressed as:

pe =





xe
ye
θe





T

=





cos θ sinθ 0
−sinθ cos θ 0

0 0 1



 ·





xr − x
yr − y
θr − θ



 (16)

Equation (16) is derived to obtain the differential equation of the
mobile robot’s tracking error, expressed as:





·
x e
·
y e
·
θ e



 =





vr cos θe − v+ yeω
vrsinθe − xeω

ωr − ω



 (17)

According to the above principles and derivations, a fuzzy-
BPNN trajectory tracking controller for mobile robots is
designed, as shown in Figure 4. It can control the linear velocity
and angular velocity of mobile robots.

The actual trajectory tracking process will be disturbed by
obstacles and other external environmental factors. Hence, the
pose error will change significantly (Boujelben et al., 2017; Lu
et al., 2017; Bencherif and Chouireb, 2019). Fuzzy logic can
imitate the thinking way of the human brain and process systems
with unknown models. Therefore, fuzzy logic can determine
the location of obstacles while mobile robots are moving. Its
core is to process the pose error data to avoid problems such
as an increased number of fuzzy neural network’s rules and
the repeated change of weights. A data detection step is added,
which uses the averaged error changes of the previous pose as a
reference and compares it with the new pose error for decision-
making. The data detection step can eliminate the error data
with apparent mutations in the input. The fuzzy neural network’s
parameters do not need to be adjusted significantly. Therefore,
the stability of the system and the overall calculation efficiency
can be improved.

IoT Multi-Sensor Data Fusion and Image
Enhancement
A primary function of IoT technology is information perception.
The object is connected to the network for information exchange
through the installed sensors, electronic tags, and other sensing
devices, realizing intelligent identification, positioning, and

FIGURE 4 | A fuzzy-BPNN trajectory tracking controller for mobile robots.
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supervision operations. In the process of information collection,
the mobile robots’ sensors summarize multiple sensors’ data
through data fusion, thereby reducing the transmission of
redundant information and improving the stability and accuracy
of the system (Jing et al., 2017).

IoT intelligent image enhancement establishes an image
enhancement model through a wavelet conversion scale, which
can adaptively adjust the window of different digital image
frequencies to intelligently and adaptively enhance the IoT
images. To improve the accuracy of environmental information
collection, a mobile robot often uses an adaptive fusion algorithm
to process the environmental information collected by its system
(Yamashita et al., 2017; Ravi and Krishnan, 2018; Fan et al.,
2019). Since the background of the original image collected by the
infrared thermal imager and the monitored target robot are not
notable, the details of the target image are difficult to identify, and
the image feature cannot be clearly extracted. Hence, the image
enhancement method is adopted to process the target image.
The grayscale transformation method is adopted to enhance the
image’s contrast and improve its visual effects. Standard methods
include (1) direct grayscale transformation; (2) transformation
with the help of histogram; (3) transformation with a series of
operations between images (such as addition and subtraction)
(Chen et al., 2020). The direct grayscale transformation is the
most commonly used and most convenient method. First, in the
process of negating the gray, the image needs to be negated; that
is, to reverse the gray value of the original image. Second, the
image’s contrast enhances the contrast of each part of the original
image. Sometimes the dynamic range of the original image
can exceed the allowable range of display devices. Therefore,
if the original image is used directly, some details will be
lost (Long et al., 2018; Singh et al., 2018). The solution is
to compress the original image in grayscale. The principle of
grayscale negation, contrast enhancement, and dynamic image
compression is shown in Figure 5.

Moreover, image noise processing is vital in image
enhancement, including impulse noise and Gaussian noise.
Usually, image denoising separates the image into two kinds
of noise; then, the median filter algorithm and the mean filter
algorithm are used to eliminate these noises. The median filter
algorithm arranges the to-be-processed pixels’ gray values in the

neighborhood from large to small. Then it selects the median
value to replace the to-be-processed pixel value in the template
center. The mean filtering algorithm removes the sudden change
by calculating the mean value of a central point and several
surrounding points, thereby removing the noises.

Simulations Experiments
MATLAB is chosen as the simulation software to analyze the
performances of the improved BPNN and the fuzzy-BPNN in
robot trajectory tracking and control. MATLAB is one of the
excellent science and technology application software. It has
powerful calculation and visualization functions but is simple
and easy to operate. In particular, the accompanying toolbox that
supports more than 30 different fields has made it the basic tool
and preferred platform for computer-aided design and analysis
in various fields.

The performance differences between the two algorithms are
compared. The reference linear velocity of the target robot is
set to vr = 3 m/s, the reference angular velocity is set to ωr =

2 rad/s, the initial pose is set to
[

xr yr θr
]

= (−5, 0.25, 0), and

the initial pose error is set to [e1 e2 e3]T = [2.6 2.4 π/2]T . Ten
groups of samples are taken for training. Each group of samples is
divided into five groups of sub-samples equally. The mean square
errors of the corresponding sub-samples of each group of samples
(Table 1) are summed. The errors eventually converge to 0, the
convergence speed is fast, and satisfactory results can be achieved.

RESULTS AND DISCUSSION

Trajectory Tracking Performance of
Fuzzy-BPNN
The effects of traditional BPNN and improved BPNN in mobile
robots’ trajectory tracking are compared, and the results are
shown in Figures 6 and 7. The improved BPNN algorithm
has a slight improvement in tracking accuracy than the
traditional BPNN; however, the difference between the two is
not notable. On the contrary, the improved BPNN algorithm
has a significant improvement in training speed, showing its
performance advantages in processing huge samples in reality.

FIGURE 5 | Principle of each image enhancement step. (A) Inversion of gray scale. (B) Enhance contrast. (C) Dynamic image compression.
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The fuzzy-BPNN algorithm is applied to track the
mobile robot’s trajectories, whose effects are compared
with the improved BPNN. The simulation results are
shown in Figure 8. The fuzzy-BPNN controller has
significantly improved tracking speed and tracking
accuracy compared with the improved BPNN, proving
its effectiveness.

Non-holonomic Mobile Robot’s Trajectory
Tracking and Control Results
The designed fuzzy-BPNN is integrated with the sliding mode
trajectory tracking controller to solve the trajectory tracking
and control problems of non-holonomic mobile robots. The
tracking and control of typical circular and curved trajectories
are simulated. Figures 9 and 10 show the tracking effects
and pose error changes in circular trajectory tracking, and
Figures 11 and 12 demonstrate the tracking effects and pose error
changes in curve trajectory tracking. The designed algorithm
integrating the sliding mode trajectory tracking controller shows

TABLE 1 | The sum of the mean square errors of the sub-samples of each

training sample.

Training samples (1) (2) (3) (4) (5)

Group 1 0 0 0 0 0

Group 2 3.4 53.5 6.6 12.3 78.9

Group 3 11.3 5.6 5.3 4.3 53.5

Group 4 30.4 11.2 54.5 45.7 6.6

Group 5 6.9 22.3 34.1 23.6 5.9

Group 6 12.5 91.3 1.8 66.5 45.6

Group 7 34.5 11.7 7.2 4.8 12.3

Group 8 88.9 23.5 4.7 67.8 3.4

Group 9 2.2 23.4 44.6 32.4 11.1

Group 10 77.4 32.5 38.8 44.6 65.4

FIGURE 6 | Trajectory tracking effect of the improved BPNN algorithm.

good trajectory tracking and control effects for these two
different trajectories.

CONCLUSION

As an essential branch of robotics, mobile robots can
continuously obtain the surrounding environment’s status
through sensors to make decisions and complete highly
intelligent tasks. Robot intelligence is embodied in planning
and executing an optimal path for mobile robots. Its core
is trajectory tracking and control. Here, the mathematical
kinematics models of non-holonomic mobile robots are analyzed
first. Then the advantages of BPNN being widely used in
pattern recognition and other problems are discussed. The
traditional BPNN is improved, considering loads of data need
to be trained in practical applications. The computational

FIGURE 7 | Trajectory tracking error curve of the improved BPNN algorithm.

FIGURE 8 | Trajectory tracking effect of fuzzy-BPNN.
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FIGURE 9 | Circular trajectory’s tracking effect.

FIGURE 10 | Changes in pose error in circular trajectory tracking.

efficiency is improved by dividing BPNN into several smaller
sub-networks for separate training. A fuzzy-BPNN tracking
controller for mobile robot trajectories is designed to control
the robot’s linear velocity and angular velocity, in an effort
to improve the accuracy of trajectory tracking. In addition,
adaptive fusion algorithms and image enhancement techniques
are used to process the environmental information collected by
mobile robots to improve the accuracy of the environmental
information collection.

A simulation experiment is run in the MATLAB environment
to analyze the performances of the improved BPNN and the
fuzzy-BPNN in robot trajectory tracking and control. Compared
with traditional BPNN, the improved BPNN algorithm has a
significant improvement in training speed, which has better
application value for the large sample problems in reality. The
fuzzy-BPNN controller has notably improved the tracking speed
and accuracy compared with the improved BPNN algorithm.

FIGURE 11 | Curve trajectory’s tracking effect.

FIGURE 12 | Changes in pose error in curve trajectory tracking.

The designed fuzzy-BPNN algorithm is integrated with the
sliding mode trajectory tracking controller, whose performances
in tracking and controlling circular and curve trajectories are
simulated. The designed fuzzy BPNN algorithm is integrated
with the sliding mode trajectory tracking controller. The circular
and curved trajectories are simulated, and both show good
trajectory tracking and control effects. However, the external
environment is complicated and changeable; maintaining the
stability of the mobile robot controller will be the principal
direction of the following research.
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