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Deep neural networks (DNNs) are known for extracting useful information from large

amounts of data. However, the representations learned in DNNs are typically hard to

interpret, especially in dense layers. One crucial issue of the classical DNN model

such as multilayer perceptron (MLP) is that neurons in the same layer of DNNs are

conditionally independent of each other, which makes co-training and emergence of

higher modularity difficult. In contrast to DNNs, biological neurons in mammalian brains

display substantial dependency patterns. Specifically, biological neural networks encode

representations by so-called neuronal assemblies: groups of neurons interconnected by

strong synaptic interactions and sharing joint semantic content. The resulting population

coding is essential for human cognitive and mnemonic processes. Here, we propose

a novel Biologically Enhanced Artificial Neuronal assembly (BEAN) regularization1 to

model neuronal correlations and dependencies, inspired by cell assembly theory

from neuroscience. Experimental results show that BEAN enables the formation

of interpretable neuronal functional clusters and consequently promotes a sparse,

memory/computation-efficient network without loss of model performance. Moreover,

our few-shot learning experiments demonstrate that BEAN could also enhance the

generalizability of the model when training samples are extremely limited.

Keywords: deep learning-artificial neural network (DL-ANN), neuronal assemblies, neuronal correlations,

regularization, explainability, interpretability, explainable AI, representation learning

1. INTRODUCTION

Deep neural networks (DNNs) are known for extracting useful information from a large amount
of data (Bengio et al., 2013). Despite the success and popularity of DNNs in a wide variety of
fields, including computer vision (Krizhevsky et al., 2012; He et al., 2016) and natural language
processing (Collobert and Weston, 2008; Young et al., 2018), there are still many drawbacks
and limitations of modern DNNs, including lack of interpretability (Zhang and Zhu, 2018), the
requirement of large data (Kimura et al., 2018), and post selection on complex model architecture
(Zheng andWeng, 2016a,b). Specifically, the representations learned in DNNs are typically hard to
interpret, especially in dense (fully connected) layers. Despite recent attempts to build intrinsically

1The code is available at https://github.com/YuyangGao/BEAN.
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more interpretable convolutional units (Sabour et al., 2017;
Zhang and Zhu, 2018), the exploration of learned representations
in the dense layer has remained limited. In fact, dense layers
are the fundamental and critical component of most state-
of-the-art DNNs, which are typically used for the late stage
of the network’s computation, akin to the inference and
decision-making processes (Krizhevsky et al., 2012; Simonyan
and Zisserman, 2014; He et al., 2016). Thus improving the
interpretability of the dense layer representation is crucial if we
are to fully understand and exploit the power of DNNs.

However, interpreting the representations learned in dense
layers of DNNs is typically a very challenging task. One
crucial issue of the classical DNN model such as multilayer
perceptron (MLP) is that neurons in the same layer of DNNs
are conditionally independent of each other, as dense layers in
MLP are typically activated by all-to-all feed-forward neuron
activity and trained by all-to-all feedback weight adjustment.
In this comprehensively “vertical” connectivity, every node is
independent and abstracted “out of the context” of the other
nodes. This issue limits the analysis of the representation learned
in DNNs to single-unit level, as opposed to the higher modularity
in principle afforded by neuron population coding. Moreover,
recent studies on single unit importance seem to suggest that
individually selective units may have little correlation with
overall network performance (Morcos et al., 2018; Zhou et al.,
2018). Specifically, Morcos et al. (2018) and Zhou et al. (2018)
conducted unit-level ablation experiments on CNNs trained on
large scale image datasets and found that ablating any individual
unit does not hurt overall classification accuracy.

On the other hand, understanding the complex patterns
of neuron correlations in biological neural networks (BNNs)
has long been a subject of intense interest for neuroscience
researchers. Circuitry blueprints in the real brain are “filtered”
by the physical requirements of axonal projections and
the consequent need to minimize cable while maximizing
connections (Ropireddy et al., 2011). One could naively
expect that the non-all-to-all limitations imposed in natural
neural systems would be detrimental to their computational
power. Instead, it makes them superiorly efficient and
allows cell assemblies to emerge. Neuronal assemblies or
cell assemblies (Hebb, 1949) can be described as groups of
neurons interconnected by strong synaptic interactions and
sharing joint semantic content. The resulting population coding
is essential for human cognitive and mnemonic processes
(Braitenberg, 1978).

In this paper, we bridge such a crucial gap between DNNs
and BNNs by modeling the neuron correlations within each
layer of DNNs. Leveraging biologically inspired learning rules in
neuroscience and graph theory, we propose a novel Biologically-
Enhanced Artificial Neuronal assembly (BEAN) regularization
that can enforce dependencies among neurons in dense
layers of DNNs without substantially altering the conventional
architecture. The resultant advantages are threefold:

• Enhancing interpretability and modularity at the neuron

population level. Modeling neural correlations and
dependencies allows us to better interpret and visualize

the learned representation in hidden layers at the neuron
population level instead of the single neuron level. Both
qualitative and quantitative analyses show that BEAN
enables the formations of identifiable neuronal assembly
patterns in the hidden layers, enhancing the modularity and
interpretability of the DNN representations.

• Promoting jointly sparse and efficient encoding of rich

semantic correlation among neurons. Here, we show that
BEAN can promote jointly sparse and efficient encoding of
rich semantic correlation among neurons in DNNs similar
to connection patterns in BNNs. BEAN enables the model
to parsimoniously leverage available neurons and possible
connections through modeling structural correlation, yielding
both connection-level and neuron-level sparsity in the dense
layers. Experimental results show that BEAN not only enables
the formation of neuronal functional clusters that encode rich
semantic correlation, but also allows the model to achieve
state-of-the-art memory/computational efficiency without loss
of model performance.

• Improving model generalizability with few training

samples. Humans and animals can learn and generalize to
new concepts with just a few trials of learning, while DNNs
generally perform poorly on such tasks. Current few-shot
learning techniques in deep learning still rely heavily on
a large amount of additional knowledge to work well. For
example, transfer-learning-based methods typically leverage
a model pre-trained with a large amount of data (Socher
et al., 2013; Xian et al., 2018), and meta-learning-based
methods require a large number of additional side tasks
(Finn et al., 2017; Snell et al., 2017). Here we explore BEAN
with a substantially more challenging few-shot learning from
scratch task first studied by Kimura et al. (2018), where no
additional knowledge is provided aside from a few training
observations. Extensive experiments show that BEAN has
a significant advantage in improving model generalizability
over conventional techniques.

2. BIOLOGICALLY-ENHANCED ARTIFICIAL
NEURONAL ASSEMBLY REGULARIZATION

This section describes the overall objective of Biologically-
Enhanced Artificial Neuronal Assembly (BEAN) regularization
as well as the implementation of BEAN on DNNs, as Layer-wise
Neuron Correlation and Co-activation Divergence to model the
implicit dependencies between neurons within the same layer.

2.1. Layer-Wise Neuron Co-activation
Divergence
Due to the physical restrictions imposed by dendrites and axons
(Rivera-Alba et al., 2014) and for energy efficiency, biological
neural systems are “parsimonious” and can only afford to
form a limited number of connections between neurons. The
neuron connectivity patterns of BNNs are intertwined with their
activation patterns based on the principle of “Cells that fire
together wire together,” which is known as cell assembly theory.
It explains and relates to several characteristics and advantages
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of BNN architecture such as modularity (Peyrache et al., 2010),
efficiency, and generalizability, that are just the aspects in which
the current DNNs are usually struggling (LeCun et al., 2015). To
take advantage of the beneficial architectural features in BNNs
and overcome the existing drawbacks of DNNs, we propose
the Biologically-Enhanced Artificial Neuronal assembly (BEAN)
regularization. BEAN ensures neurons which “wire” together
with a high outgoing weight correlation also “fire” together with
small divergence in terms of their activation patterns.

An example of the artificial neuronal assembly achieved by
our method can be seen in Figure 1D. The regularization is
formulated as follows:

L
(l)
c = 1/(SN2

l )
∑

s

∑
i

∑
j
A
(l)
i,j × d(H

(l)
s,i ,H

(l)
s,j ) (1)

where Lc is the regularization loss; the term A
(l)
i,j characterizes

the wiring strength (the higher value, the stronger connection)

between two neurons i and j within layer l; the term d(H
(l)
s,i ,H

(l)
s,j )

models the divergence of firing patterns (the higher value, the
more different the firing) between two neurons i and j on input
sample s. Thus, by multiplying these two functions, we penalize
those neurons with strong connectivity but high activation
divergence, in line with the principles of cell assembly theory. S is
the total number of input samples while Nl is the total number of
hidden neurons in layer l.

Specifically, A
(l)
i,j defines the connectivity relation among

neuron i and neuron j in DNN, which is instantiated by our
newly proposed “Layer-wise Neuron Correlation” and will be
elaborated in sections 2.2 and 2.3. On the other hand, to model
the “co-firing” correlation, d(H

(l)
s,i ,H

(l)
s,j ) is defined as “Layer-wise

Neuron Co-activation Divergence” which denotes the difference

in the activation patterns in lth layer between H
(l)
s,i and H

(l)
s,j of

neuron i and neuron j, respectively. Here H
(l)
s,i represents the

activation of neuron i in layer l for a given input sample s. The
function d(x, y) can be a common divergence metric such as
absolute difference or square difference. In this study, we show
the results for a square difference in the Experimental Study
Section; the absolute difference results follow a similar trend.

Model Training: The general objective function of training
a DNN model along with the proposed regularization on fully

connected layer l can be written as: L = LDNN + αL
(l)
c , where

LDNN represents the general deep learning model training loss
and the hyper-parameter α controls the relative strength of the
regularization.

Equation (1) can be optimized with backpropagation
(Rumelhart et al., 1988) using the chain rule:

∂L
(l)
c

∂W(l+1)
=

∂A(l)

∂W(l+1)
D(l),

∂L
(l)
c

∂W(l)
= A(l) ∂D(l)

∂H(l)

∂H(l)

∂W(l)
, ... (2)

where D(l) ∈ R
S×Nl×Nl of which each element is D

(l)
s,i,j =

d(H
(l)
s,i ,H

(l)
s,j ).

Remark 1. BEAN regularization has several strengths. First, it
enforces interpretable neuronal assemblies without the need to
introduce sophisticated handcrafted designs into the architecture,

which is justified later in section 3.1. In addition, modeling the
neuron correlations and dependencies further results in sparse and
efficient connectivity in dense layers, which substantially reduced
the computation/memory cost of the model, as shown in section 3.2.
Besides, the encoding of rich semantic correlation among neurons
may improve the generalizability of the model when insufficient
data and knowledge are provided, which is demonstrated later
in section 3.3. Finally, the Layer-wise Neuron Correlation can be
efficiently computed with matrix operations, as per Equations (5,
7), which enables modern GPUs to boost up the speed during model
training. In practice, we observe negligible run time overhead of the
addition computation needed for BEAN regularization.

2.2. The First-Order Layer-Wise Neuron
Correlation
This section introduces the formulation of the layer-wise neuron

correlation A
(l)
i,j between any pair of neurons i and j.

In the human brain, the correlation between two neurons
depends on the wiring between them (Buzsáki, 2010) and hence
is typically treated as a binary value in BNN studies, with “1”
indicating the presence of a connection and “0” the absence, so
the correlation among a group of neurons can be represented by
the corresponding adjacency matrix. Although there is typically
no direct connection between neurons within the same layer of
DNNs, it is possible to model neuron correlations based on their
connectivity patterns to the next layer. This resembles a common
approach in network science, where it is useful to consider the
relationships between nodes based on their common neighbors
in addition to their direct connections. One classic concept
widely used to describe such a pattern is called triadic closure
(Granovetter, 1973). As shown in Figure 1B, triadic closure can
be interpreted here as a property among three nodes i, j, and k,
such that if connections exist between i−k and j−k, there is also
a connection between i− j.

We take this scheme a step further to model the correlations
between neurons within the same layer by their connections to
the neurons in the next layer. This can be considered loosely
analogous to the degree of similarity of the axonal connection
pattern of biological neurons in BNNs (Rees et al., 2017). To
simulate the relative strength of such connections in DNNs, we
introduce a function f (·) that converts the actual weights into a
relative connectivity strength. SupposematrixW(l+1) ∈ R

Nl×Nl+1

represents all the weights between neurons in layers l and l + 1
in DNNs, where Nl and Nl+1 represent the numbers of neurons,
respectively. The relative connectivity strength can be estimated
by the following equation2:

f (W(l+1)) = |tanh(γW(l+1))| (3)

where | · | represents the element-wise absolute operator; tanh(·)
represents the element-wise hyperbolic tangent function; and
γ is a scalar that controls the curvature of the hyperbolic
tangent function. The values of f (W(l+1)) ∈ R

Nl×Nl+1 will all
be positive and in the range of [0, 1) with the value simulating

2Similar to the ReLU activation function, our formulation introduces a non-

differentiable point at zero; we follow the conventional setting by using the

sub-gradient for model optimization.
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FIGURE 1 | An illustration of how the proposed constraint drew inspiration from BNNs and bipartite graphs. (A) neuron correlations in BNNs correspond to

connections between dendrites, which are represented by blue lines, and axons, which are represented by red lines. (B,C) analogy of figure (A) represented as

connections between layers in DNNs; although nodes i and j cannot form direct links, they can be correlated by a given node k as a first-order correlation, or by two

nodes k and m as a second-order correlation which is also equivalent to a 4-cycle in bipartite graphs. (D) an example of a learned neuronal assembly in neurons

outgoing weight space, with the dimensionality reduced to 2D with T-SNE (Maaten and Hinton, 2008). Each point represents one neuron and the neurons are colored

according to their highest activated class in the test data.

the relative connectivity strength of the corresponding synapse
between neurons.

Although there can be positive and negative weights in DNNs,
our assumption on connection strength follows the typical way
of BNN studies, which measures the presence and absence of the
connection as mentioned above. Moreover, since DNNs require
continuous values instead of discrete values to make the function
differentiable for optimization, we further use Equation (3) to
convert the concept of the presence/absence of the connections
to the relative strength of the connections. More specifically, the
difference is that instead of treating connection to be either “1”
(indicating the presence of a connection) or “0” (indicating the
absence of the connection), we treat the output of Equation (3) as
the strength of that connection, where high values (i.e., close to
“1”) indicate the presence of a strong connection and low values
(i.e., close to “0”) indicate weak or no connection.

Based on this, we can now give the definition for the layer-wise
first-order neuron correlation as:

Definition 1. Layer-wise first-order neuron correlation. For a
given neuron i and neuron j in layer l, the layer-wise first-order
neuron correlation is given by:

A
(l)
i,j = (1/Nl+1)

∑Nl+1

k=1
f (W

(l+1)
i,k

)× f (W
(l+1)
j,k

) (4)

The above formula can be expressed as the product of two
matrices:

A(l) = (1/Nl+1)f (W
(l+1)) · f (W(l+1))T (5)

where · represents the matrix multiplication operator.

The layer-wise neuron correlation matrix A(l) is a symmetric
squarematrix that models all the pairwise correlations of neurons
with respect to their corresponding outgoing weights in layer

l. Each entry A
(l)
i,j takes a value in the range [0, 1) and models

the correlation between neuron i and neuron j in terms of the
similarity of their connectivity patterns. The higher the value, the
stronger the correlation between the two.

In this setting, two neurons i and j from layer l will be linked
and correlated by an intermediate node k from layer l + 1 if and

only if both edges f (W
(l+1)
i,k

) and f (W
(l+1)
j,k

) are non zero, and the

relative strength can be estimated by f (W
(l+1)
i,k

)×f (W
(l+1)
j,k

), which

will be in the range [0, 1). Since there are Nl+1 neurons in layer
l + 1, where each neuron k can contribute to such connections,
running over all neurons in layer l+1 we obtain (Equations 4, 5).

2.3. The Second-Order Layer-Wise Neuron
Correlation
Although the first-order correlation is able to estimate the degree
of dependency between each pair of neurons, it may not be
sufficient to strictly reflect the degree of grouping or assembly
of the neurons. Thus, here we further propose a second-order
neuron correlation based on the first-order correlation defined
in Equations (4, 5), as:

Definition 2. Layer-wise second-order neuron correlation. For
a given neuron i and neuron j in layer l, the layer-wise second-
order neuron correlation is given by:

A
(l)
i,j = (1/N2

l+1)
∑

k,m
f (W

(l+1)
i,k

)×f (W
(l+1)
j,k

)×f (W
(l+1)
i,m )×f (W

(l+1)
j,m ) (6)

The above formula can be expressed as the product of four
matrices:

A(l) = (1/N2
l+1)(f (W

(l+1)) · f (W(l+1))T )⊙ (f (W(l+1)) · f (W(l+1))T ) (7)

where⊙ represents the element-wise multiplication of matrices.

The second-order correlation provides a stricter criterion
for relating neurons, as it requires at least two common
neighbor nodes from the layer above to have strong connectivity,
as compared to the first-order correlation that requires just
one common neighbor. Moreover, the second-order neuron
correlation is closely related both to graph theory concepts and
a neuroscience-inspired learning rule:

Remark 2. Graph theory and neuroscience interpretation.

Modeling the first-order correlation between two neurons within
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the same layer is based on the co-connection to a common neighbor
neuron from the layer above, which is closely related to the concepts
of clustering coefficient (Watts and Strogatz, 1998) and transitivity
(Holland and Leinhardt, 1971) in graph theory. On the other
hand, modeling the second-order correlation between two neurons
involves two common neighbor neurons in the layer above, which
is closely related to calculating the 4-cycle pattern where all 4
possible connections in between are taken into account, as shown
in Figure 1B. This 4-cycle pattern is linked to the global clustering
coefficients of bipartite networks (Robins and Alexander, 2004),
where the set of vertices can be decomposed into two disjoint
sets such that no two vertices within the same set are adjacent.
Similarly, if we consider neurons within one layer as the nodes
that belong to one set of the bipartite network between two
adjacent layers of the neural networks, forming this 4-cycle will
tend to increase the clustering coefficients of the network.Moreover,
the second-order correlation is also related to several cognitive
neuroscience studies, such as the BIG-ADO learning rule and the
principal semantic components of language (Samsonovich et al.,
2010; Mainetti and Ascoli, 2015) as well as the notion of discrete
neuronal circuits (Pulvermüller and Knoblauch, 2009). Figure 1A
illustrates a scenario of the BIG-ADO learning rule in BNNs.
The blue blobs represents a connection that was formed between
two neurons (i.e., a synapse), while the dashed circle between
neurons j and m represents an Axo-Dendritic Overlap (ADO)
(i.e., a potential synapse) between the two neurons. BIG-ADO
posits that in order to form a synapse, there must be a potential
synapse in place, and the probability of having a potential synapse
grows with the second-order correlation. Notably, both of the
neuroscience papers cited above relate such a learning mechanism
to the formation of cell assemblies in the brain, which parallels
our observation of neuronal functional clusters among neurons in
DNNs when BEAN was imposed, as shown in Figures 1C, 6B.

3. EXPERIMENTAL STUDY

Our description of the empirical analysis design and results
is organized in the following fashion. In section 3.1, we
first characterize the interpretable patterns from the learning
outcomes of BEAN regularization on multiple classic image
recognition tasks. We then further analyze in section 3.2 how
BEAN could benefit the model from learning sparse and efficient
neuron connections. Finally, in section 3.3 we study the effect
of BEAN regularization on improving the generalizability of the
model on several few-shot learning from scratch task simulations.
We refer to both distinct BEAN variations, BEAN-1 and BEAN-2,
based on the two proposed layer-wise neuron correlation defined
by Equations (5, 7) respectively. The value for γ (Equation 3)
was set to 1. This paper focuses on examining the effects of
the proposed regularization rather than the differences between
distinct types of neural network architectures. Hence, we simply
adopted several of the most popular neural network architectures
for the chosen datasets and did not perform any hyperparameter
or system parameter tuning using the test set; in other words, we
did not perform any “post selection” (i.e., selectively reporting
the model results based on testing set Zheng andWeng, 2016a,b).

All network architectures used in this paper are fully described
in their respective cited references, including the specification
of their system parameters. The regularization factor of BEAN
and other baseline methods were chosen based on the model
performance on the validation set. All the experiments were
conducted on a 64-bit machine with Intel(R) Xeon(R) W-2155
CPU 3.30 GHz processor and 32 GB memory and an NVIDIA
TITAN Xp GPU.

3.1. The Interpretable Patterns of BEAN
Regularization
Due to the highly complex computation among numerous
layers of neurons in traditional DNNs, it is typically difficult to
understand how the network learned what it remembers and
the system is more commonly treated as a black-box model
(Zhang et al., 2018). Here, to ascertain the effect of BEAN
regularization on the interpretability of network dynamics, we
analyze the differences in neuronal representation properties
of the DNNs with and without BEAN regularization. We
conducted experiments on three classic image recognition tasks
on the MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao
et al., 2017), and CIFAR-10 (Krizhevsky and Hinton, 2009)
datasets by starting with three predefined network architectures
as listed below:

1. An MLP with one hidden layer of 500 neurons with ReLU
activation function for MNIST and Fashion-MNIST datasets.

2. A LeNet-5 (LeCun et al., 1998) for MNIST and Fashion-
MNIST datasets.

3. ResNet18 (He et al., 2016) for CIFAR-10 dataset.

The Adam optimizer (Kingma and Ba, 2014) was used with a
learning rate of 0.0005 and a batch size of 100 for model training
until train loss convergence was achieved; BEAN was applied to
all the dense layers of each model.

3.1.1. Biological Plausibility of the Learned Neuronal

Assemblies
By analyzing the neurons’ connectivity patterns based on their
outgoing weights, we discovered neuronal assemblies in dense
layers where BEAN regularization was enforced. Specifically, for
both datasets, we found that the neuronal assemblies at the last
dense layer could be best described by 10 clusters with K-means
clustering (MacQueen, 1967) validated by Silhouette analysis
(Rousseeuw, 1987). Silhouette analysis is a widely-used method
for interpretation and validation of consistency within clusters of
data. The technique provides a succinct graphical representation
of how well each object has been classified. As shown in Figure 2,
we visualized the K-means clustering results in neurons’ weight
space of the dense layer on both MNIST (top) and CIFAR-10
(bottom) datasets. Each data point in the figure indicates one
single neuron and the color indicates its cluster assignment by the
clustering algorithm. The Silhouette value is further used to assess
the quality of the clustering assignment: high Silhouette values
support the existence of clear clusters in the data points, which
here correspond to neural assembly patterns among neurons.

Both BEAN-1 and BEAN-2 could enforce neuronal assemblies
for various models on several datasets, yielding Silhouette indices
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FIGURE 2 | Neuronal assembly patterns found in neurons’ weight space of the dense layer of different models on both MNIST (top) and CIFAR-10 (bottom) datasets,

along with clustering validation via Silhouette score on 10 clusters K-means clustering. The dimensionality of neurons’ weight space was reduced to 2D with T-SNE for

visualization.

FIGURE 3 | Neuron co-activation patterns found in the representation of the last dense layer of LeNet-5+BEAN-2 model on MNIST dataset. The dimensionality of

neurons’ weight space was reduced to 2D with T-SNE for visualization. Each point represents one neuron within the last dense layer of the model and is colored

based on its activation scale. The 10 subplots show the average activation heat-maps when each digit’s samples were fed into the model. The warmer color indicates

a higher neuron activation.

FIGURE 4 | The strong association between neuronal assemblies and neurons’ class selectivity index with BEAN regularization on both MNIST (left) and CIFAR-10

(right) datasets. Each point represents one neuron and the color represents the class where the neuron achieved its highest class-conditional mean activity in the test

data.

around 0.9, which indicates strong clustering patterns among
neurons in dense layers where BEAN regularization was applied.
On the other hand, training conventional DNN models with
the same architectures could only yield Silhouette indices near
0.5, which indicates no clear clustering patterns in conventional
dense layers of deep neuronal networks.

Moreover, we found co-activation behavior of neurons
within each neuronal assembly, which is both interpretable
and biologically plausible. Figure 3 shows the visualization
of neuron co-activation patterns found in the last dense

layer of LeNet-5+BEAN-2 model on MNIST dataset. For
the samples of each specific class, only those neurons
in the specific neuron group that is associated with that
digit class have high activation while all the other neurons
remain silent. This strong correlation between each unique
assembly and each unique class concept allows straightforward
interpretation of the neuron populations in the dense layers.
From the neuroscience perspective, those co-activation
patterns and the association between high-level concepts
and neuron groups may reflect similar co-firing patterns
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FIGURE 5 | The ablation study at the neuron population level of the last dense layer of LeNet-5 models. Each time, one distinct group of neurons were ablated based

on their most selective class and the model performance changes for each individual class were recorded.

observed in biological neural systems (Peyrache et al., 2010)
and underscore the strong association between neuronal
assembly and concepts (Tononi and Sporns, 2003) in biological
neural networks.

We also found a strong correlation between neuronal
assembly and class selectivity indices. Selectivity index was
originally proposed and used in systems neuroscience (De Valois
et al., 1982; Freedman and Assad, 2006). Recently, machine
learning researchers also studied unit class selectivity (Morcos
et al., 2018; Zhou et al., 2018) as a metric for interpreting
the behaviors of single units in deep neural networks.
Mathematically, it is calculated as: selectivity = (µmax −

µ−max)/(µmax + µ−max), where µmax represents the highest
class-conditional mean activity and µ−max represents the mean
activity across all other classes.

To better visualize how high-level concepts are associated with
the learned neuron assemblies, we further labeled each neuron
with the class in which it achieved its highest class-conditional
mean activity µmax in the test data. Figure 4 shows the results
for the last dense layer of the models trained with both datasets.
We found that the neuronal assembly could be well described
based on selectivity. The strong association between neuronal
assemblies and neurons’ selectivity index further demonstrated
the biological plausibility of the learning outcomes of BEAN
regularization. Moreover, the strong neuron activation patterns
toward each individual high-level concepts or classes could in
principle enable one to better understand what each individual
neuron has learned to represent. However, more relevant to
and consistent with our regularization, these selective activation
patterns reveal how a group of neurons (i.e., neuronal assembly)
together capture the whole picture of each high-level concept,
such as the ‘bird’ class in CIFAR-10 as shown in Figure 4.

In this subsection, we have demonstrated the promising
effect of the proposed BEAN regularization on forming the
neural assembly patterns among the neurons in the last layer
of the network and their correspondence with biological neural
networks. Although the effect of BEAN regularization is not yet

clear on the lower layers of the networks, it will be interesting in
the future to explore additional relations between computational
function and the architecture of earlier processing stations in
biological neural systems.

3.1.2. Quantitative Analysis of Interpretability
Experimental neuropsychologists commonly use an ablation
protocol when studying neural function, whereas parts of the
brain are removed to investigate the cognitive effects. Similar
ablation studies have also been adapted for interpreting deep
neural networks, such as understanding which layers or units
are critical for model performance (Girshick et al., 2014; Morcos
et al., 2018; Zhou et al., 2018).

To quantitatively evaluate and compare interpretability, we
performed an ablation study at the neuron population level, each
time ablating one distinct group of neurons and recording the
consequent model performance changes for each class. As shown
in Figure 4, we identified neuron groups via class selectivity
and performed neuron population ablation accordingly. Figure 5
shows the results of all 10 ablation runs for each class in
MNIST dataset. As also reported by Morcos et al. (2018),
for conventional deep neural nets, there is indeed no clear
association between neuron’s selectivity and importance to the
overall model performance, as revealed by neuron population
ablation. However, when BEAN regularization was utilized
during training, such association clearly emerged, especially for
BEAN-2. This is because BEAN-2 could enforce neurons to
form stricter neuron correlations than BEAN-1 with the second-
order correlation, enabling groups of neurons to represent
more compact and disentangled concepts, such as handwritten
digits. This discovery further demonstrated the interpretability
and concept level representation in each neuronal assembly
learned by applying BEAN regularization. Such compact and
interpretable structure of concept-level information encoding
could also benefit the field of disentanglement representation
learning (Bengio et al., 2013).
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TABLE 1 | Efficient model learning experiments on MNIST and Fashion-MNIST datasets.

Dataset Measure Vanilla ℓ1-norm Group sparsity Exclusive sparsity BEAN-1 BEAN-2

MNIST

Accuracy 0.9812 0.9835 0.9813 0.9824 0.9842 0.9823

FLOPs 1 0.8106 0.6098 0.4248 0.2212 0.1320

Parameter 1 0.2921 0.0982 0.1375 0.1496 0.0730

Fashion-MNIST

Accuracy 0.8986 0.8924 0.8925 0.8930 0.8960 0.8916

FLOPs 1 0.8011 0.5384 0.5320 0.2913 0.1622

Parameter 1 0.4357 0.1378 0.2257 0.2592 0.1259

The FLOPs and effective parameters (i.e., number of non-zero parameters) are normalized by the value of vanilla model. Performance is averaged over 20 runs. The best and second-best

results are highlighted in boldface and italic font, respectively.

TABLE 2 | Few-shot learning from scratch experiments on the MNIST (left), Fashion-MNIST (middle), and CIFAR-10 (right) datasets.

Dataset MNIST Fashion-MNIST CIFAR-10

Model 1-shot 5-shot 10-shot 20-shot 1-shot 5-shot 10-shot 20-shot 1-shot 5-shot 10-shot 20-shot

Vanilla 38.63 70.21 78.97 86.68 39.32 59.02 64.50 70.23 15.60 18.49 22.45 26.39

Dropout 40.13 72.45 82.04 89.22 40.78 60.04 65.40 71.83 15.10 18.85 22.73 26.01

Weight decay 39.51 71.76 82.87 90.15 41.31 61.98 67.25 71.88 15.47 19.17 23.74 26.77

ℓ1-norm 40.96 74.35 81.17 90.68 41.26 62.18 67.30 70.85 15.64 18.95 23.16 26.99

Imitation networks 44.10 70.40 80.00 86.70 44.80 62.10 68.00 72.50 -

BEAN-cos 54.05 80.16 86.28 92.22 42.48 65.49 68.97 74.20 18.23 21.45 24.66 28.74

BEAN-1 54.79 83.42 87.51 92.79 50.57 66.95 69.21 74.25 19.39 21.92 24.81 28.95

BEAN-2 53.75 80.76 88.08 92.97 49.94 65.98 70.21 75.06 19.28 21.28 25.04 29.23

Performance is averaged over 20 simulations of randomly sampled training data from the original training base. The best and second-best results for each few-shot learning setting are

highlighted in boldface and italic font, respectively.

TABLE 3 | Statistic of data values test set error rate-validation set error rate on 10-shot learning on the MNIST dataset from 20 random runs.

Model / Metric Max 75%-rank 50%-rank Mean 25%-rank Min

Vanilla 0.06% 0.01% –0.06% –0.30% –0.74% –0.81%

BEAN-1(α = 1) –0.04% –0.20% –0.62% –0.58% –0.93% –1.13%

BEAN-2(α = 100) 0.10% –0.02% –0.42% –0.48% –0.97% –1.35%

Other n-shot learning settings follow the same trend.

3.2. Learning Sparse and Efficient
Networks
To evaluate the effect of BEAN regularization on learning sparse
and efficient networks, we conducted experiments on two real-
world benchmark datasets, i.e., the MNIST (LeCun et al., 1998)
and Fashion-MNIST (Xiao et al., 2017) datasets. We compared
BEAN with several state-of-the-art regularization methods that
could enforce sparse connection of the network, including ℓ1-
norm, group sparsity based on ℓ2,1-norm (Yuan and Lin, 2006;
Alvarez and Salzmann, 2016), and exclusive sparsity based
on ℓ1,2-norm (Zhou et al., 2010; Kong et al., 2014). Notable
studies also investigated the combination of the sparsity terms
listed above, such as combining group sparsity and ℓ1-norm
(Scardapane et al., 2017), and combining group and exclusive
sparsity (Yoon and Hwang, 2017). The combinatorial study is
outside the scope of this work, as our focus is on showing and
comparing the effectiveness of the single regularization term to
the network. To keep the comparison fair and accurate, we use

the same base network architecture for all regularizationmethods
tested in this experiment, which is a predefined fully connected
neural network with three hidden layers, 500 neurons per layer,
and ReLU as the neuron activation function. The regularization
methods are applied to all layers of the network, except the
bias term. The regularization co-efficients are selected through
a grid search varying from 10−5 to 103 based on the model
performance on the validation set, as shown in Algorithm 1. To
obtain a more reliable and fair result, we ran a total of 20 random
weight initializations for every network architecture studied and
reported the overall average performance of all 20 results as the
final model performance of each architecture.

To quantitatively measure the performance of various sparse

regularization techniques, we used three evaluation metrics,

including the prediction accuracy on test data (i.e., measured by

the number of correct predictions divided by the total number

of samples in test data), the ratio of parameters used in the

network (i.e., total number of non-zero weights divided by the
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Algorithm 1: The pseudo code for searching for the best
α value in BEAN
func hyperparameter_tuner(training_data, validation_data, alpha_list =

[0.001, 0.01, 0.1, 1, 10, 100]) :

hp_perf = []

% train and evaluate on all hyper-parameter settings

foreach α in alpha_list :

m = train_model(training_data, alpha)

validation_results = eval_model(m, validation_data)

hp_perf.append(validation_results)

% find the best alpha on validation set

best_alpha = alpha_list[max_index(hp_perf)]

return best_alpha

total number of weights in the networks after training), and the
corresponding number of floating point operations (FLOPs). A
higher accuracy means that the model can train a better network
for the classification tasks. A lower FLOP indicates that the
network needs fewer computational operations per forwarding
pass, which reflects computation efficiency. Similarly, a lower
parameter usage indicates the network requires less memory
usage, which reflects memory efficiency.

The results are shown in Table 1. For each evaluation metric,
the best and second-best results are highlighted in boldface
and italic font, respectively. As can be seen, both BEAN-1 and
BEAN-2 can achieve high memory and computational efficiency
without sacrificing network performance for the classification
tasks. Specifically, BEAN-2 achieved the best memory and
computational efficiency, out-performing baseline models by
25–75% on memory efficiency and 69–84% on computational
efficiency on the MNIST dataset, and by 9–71% on memory
efficiency and 69–80% on computational efficiency on the
Fashion-MNIST dataset. BEAN-1 also achieved a good trade-
off between model performance and efficiency, being the
second-best on computational efficiency and the best on model
performance on both the MNIST and Fashion-MNIST datasets.
Comparing with BEAN-2, BEAN-1 leans more toward the model
performance side in such a trade-off. This is because the first-
order correlation used in BEAN-1 is less restrictive than a higher-
order correlation in BEAN-2, as only one support neuron in the
layer above is enough to build up a strong correlation. Thus, in
practice, using a higher-order correlation might be promising
when the objective is to learn a more efficient model.

Interestingly, BEAN regularization seemed to advance the
state-of-the-art by an even more significant margin in terms
of computational efficiency. In fact, BEAN regularization
reduces the number of FLOPs needed for the network by
automatically “pruning” a substantial proportion of neurons
in the hidden layers (whereas a neuron is considered pruned
if either all incoming or all outgoing weights are zero),
due to the penalization of connections between neurons that
encode divergent information. Although group sparsity and
exclusive sparsity are designed to achieve a similar objective
for obtaining neuron-level sparsity, they are less effective than
BEAN regularization. This is due to the fact that BEAN takes into
consideration not only the correlations between neurons via their

connection patterns but also the consistency of those correlations
with their activation patterns.

We have shown in Table 1 that the proposed BEAN
regularization can effectively make the connection sparser in the
dense layers of the artificial neural networks. In general, this
“sparsifying” effect can be beneficial for any models with at least
one dense layer in the network architecture. Most modern deep
neural networks (such as VGG Simonyan and Zisserman, 2014
and ImageNet Russakovsky et al., 2015) can enjoy this sparsity
benefit, as the dense layers typically contribute to the majority of
the model parameters (Cheng et al., 2015).

3.3. Toward Few-Shot Learning From
Scratch With BEAN Regularization
In an attempt to test the influence of BEAN regularization on
the generalizability of DNNs in the scenarios where the training
samples are extremely limited, we conducted a few-shot learning
from scratch task, i.e., without the help of any additional side
tasks and pre-trained models (Kimura et al., 2018). Notice that
in the few-shot learning setting, the model typically requires an
iterative learning process over the sample set. In other words, for
each individual few-shot learning experiment, only a few image
samples per digit are randomly selected to form the training set.
Themodel then iteratively learns from the selected image samples
until convergence is achieved. So far, this kind of learning task
has rarely been explored due to the difficulty of the problem
setup as compared to other conventional few-shot learning tasks
where additional data or knowledge could be accessed. Currently,
only (Kimura et al., 2018) carried out a preliminary exploration
with their proposed Imitation Networks model. We conducted
several simulations of the few-shot learning from scratch task on
the MNIST (LeCun et al., 1998), Fashion-MNIST (Xiao et al.,
2017), and CIFAR-10 (Krizhevsky and Hinton, 2009) datasets.
Besides Kimura’s Imitation Networks, we also compared BEAN
with other conventional regularization techniques commonly
used in the deep learning literature. Specifically, we compared
dropout (Srivastava et al., 2014), weight decay (Krogh and Hertz,
1992), and ℓ1-norm. Similarly to the description of section 3.2,
we kept the comparison fair and accurate by using a predefined
network architecture, namely LeNet-5 (LeCun et al., 1998), as the
base network architecture for all regularization methods studied
in this experiment. The regularization terms were applied to all
three dense layers of the base LeNet-5 network. Once again, the
hyperparameter of each regularization along with all other system
parameters were selected through a grid search and based on
the best performance on a predefined 10k validation set sampled
from the original training base and completely distinct from the
training samples used in the few-shot learning tasks and the
testing set.

Table 2 showsmodel performance on several few-shot learning
from scratch experiments on the MNIST, Fashion-MNIST, and
CIFAR-10 datasets. Performance is averaged over 20 experiments
of randomly sampled training data from the original training
base. The best and second-best results for each few-shot learning
settings are highlighted in boldface and italic font, respectively.
As can be seen, the proposed BEAN regularization advanced
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FIGURE 6 | Analysis and visualization of the last dense layer of LeNet-5+BEAN-2 model on the MNIST 10-shot learning from scratch task. (A) Heat-map of the

learned second-order neuron correlation matrix: neuron indices are re-ordered for best visualization of neuronal assembly patterns; BEAN is able to enforce plausible

assembly patterns that act as functional clusters for the categorical learning task. (B) Visualization of the parsimonious connectivity learned in the dense layer: both

neuron-level and weight-level sparsity are simultaneously promoted in the network after applying BEAN regularization. The neurons are grouped and colored by

neuronal assemblies. (C) Visualization of the scales of neurons’ outgoing weights: the weights of the neurons are colored to be consistent with the neuron group in (B).

FIGURE 7 | Parameter sensitivity study of BEAN regularization on 10-shot learning on the MNIST dataset. Each data point is centered by the mean value and the

error bar measures the standard deviation over 20 runs.

the state-of-the-art by a significant margin on all four few-
shot learning from scratch tasks tested among all three datasets.
Moreover, BEAN advanced the performance more significantly
when training samples were more limited. For instance, BEAN
outperformed all comparison methods by 24–42%, 13–29%,
and 24–28% on 1-shot learning tasks on the MNIST, Fashion-
MNIST, and CIFAR-10 datasets, respectively. This observation
demonstrates the promising effect of BEAN regularization on
improving the generalizability of the neural nets when the
training samples are extremely limited. Another interesting
observation is that BEAN-1 in general performed the best with
extremely limited training samples, such as the 1-shot and 5-
shot learning tasks, while BEAN-2 regularization in general
performed the best with slightly more training samples, such as
the 10-shot and 20-shot learning tasks. The reason behind this
observation might be related to the more stringent higher-order
correlation, which requires more common neighbor neurons that
appear to have strong connections with both neurons. Thus,
a modestly increased availability of sample observations could
enable BEAN-2 to form more effective neuronal assemblies,
further improving the model performance.

Furthermore, we studied an additional variant for BEAN, i.e.,
BEAN-cos, which calculates the layer-wise neuron correlation
via cosine similarity between the downstream weights of two
neurons. As shown in Table 2, we found that BEAN-cos can still
yield good performance and beat other existing regularization
methods, and getting competitive results as compared with
BEAN-1 and BEAN-2. However, it is inferior to BEAN-1
in 1-shot and 5-shot settings, and inferior to BEAN-2 in
10-shot and 20-shot settings. This is because BEAN-cos is
unable to handle the order of correlation between neurons,
as using cosine similarity requires us to treat the out-going
weights of a neuron as a whole (vector) to compute the pair-
wise similarity between neurons. Thus, doing this will lose
the ability to calculate higher-order correlation (such as the
second-order correlation), and consequentially lose the good
interpretation from graph theory and neuroscience (as described
in Remark 2).

To better understand why BEAN regularization could
help the seemingly over-parameterized model generalize
well on a small sample set, we further analyzed the
learned hidden representation of the dense layers where
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BEAN regularization was employed. We found that
BEAN helped the model gain better generalization power
in two aspects: (1) by automatic sparse and structured
connectivity learning and (2) by weak parameter sharing
among neurons within each neuronal assembly. Both
aspects enhanced the dense layers to promote efficient
and parsimonious connections, which consequently
prevented the model from over-fitting with a small training
sample size.

Figure 6 shows the learned parameters of the last dense layer
of LeNet-5+BEAN2 on the MNIST 10-shot learning task. As
shown in Figure 6B, instead of using all possible weights in the
dense layer, BEAN caused the model to parsimoniously leverage
the weights and even the neurons, yielding a bio-plausible
sparse and structured connectivity pattern. This is because the
learned neuron correlation helped the model disentangle the
co-connections between neurons from different assemblies, as
shown in Figure 6A. Additionally, BEAN enhanced parameter
sharing among neurons within each assembly, as demonstrated
in Figure 6C. For instance, neurons in the red-colored assembly
all had high positive weights toward class 4, meaning that
this group of neurons was helping the model identify Digit
4. Similarly, neurons in the green-colored assembly were
trying to distinguish between Digits 9 and 7. Such automatic
weak parameter sharing not only helped prevent the model
from over-fitting but also enabled an intuitive interpretation
of the behavior of the system as a whole from a higher
modularity level.

3.3.1. Parameter Sensitivity Study
There are two hyperparameters in the proposed BEAN
regularization: (1) α, which balances between the regularization
loss and DNN training loss, and (2) γ , which controls the
curvature of the hyperbolic tangent function as shown in
Equation (3). As already mentioned in the first paragraph of
section 3, γ was set to 1 for all experiments. Thus, the only
parameter we need to study is α.

Figure 7 shows the accuracy of the model versus α on
the few-shot learning setting on the MNIST dataset. Only the
results for the 10-shot learning task are shown due to space
limitations. By varying α across the range from 0.001 to 100,
the best performance is obtained when α = 1 for BEAN-
1 and α = 100 for BEAN-2. Specifically, for BEAN-1, We
can see a clear trend where the model performance drops
when α is too small or too big. Furthermore, the results show
that the performance of the validation set is well aligned with
the model performance on the test set, as also shown in the
statistical analysis results in Table 3. This demonstrates the
superior generalizability of the model when applying BEAN
regularization. Notably, although in Figure 7 we accessed the
model performance on multiple settings of α, we did not use
any of the results on the test set to choose any parameters of the
model, i.e., no post-selection was performed. We believe post-
selection should be completely avoided and it can cause the test
set to lose its power to test the model’s generalizability to future
unseen data.

4. CONCLUSION

In this paper, we propose a novel Biologically Enhanced Artificial
Neuronal assembly (BEAN) regularization to model neuronal
correlations and dependencies inspired by cell assembly theory
from neuroscience. We show that BEAN can promote jointly
sparse and efficient encoding of rich semantic correlation
among neurons in DNNs similar to connection patterns in
BNNs. Experimental results show that BEAN enables the
formations of interpretable neuronal functional clusters and
consequently promotes a sparse, memory/computation-efficient
network without loss of model performance. Moreover, our
few-shot learning experiments demonstrated that BEAN could
also enhance the generalizability of the model when training
samples are extremely limited. Our regularization method has
demonstrated its capability in enhancing the modularity of
the representations of neurons for image semantic meanings
such as digits, animals, and objects on image datasets. While
the generality of the approach introduced here is at this time
evaluated on MNIST and CIFAR datasets, future studies might
consider additional experiments on other datasets such as texts
or graphs to demonstrate the broader effectiveness of the
proposed method. Another direction to further enhance the
model might be to include separate excitatory and inhibitory
nodes, as in BNNs, which would allow implementation of specific
microcircuit computational motifs (Ascoli and Atkeson, 2005).
Furthermore, since there are other choices for defining the
affinity matrix between neurons in a certain layer based on
their downstream weights, answering the question about “what
is the best way to compute affinity matrix” can be an interesting
direction to be more comprehensively studied in future works.
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