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Due to the rapid development of human–computer interaction, affective computing

has attracted more and more attention in recent years. In emotion recognition,

Electroencephalogram (EEG) signals are easier to be recorded than other physiological

experiments and are not easily camouflaged. Because of the high dimensional nature

of EEG data and the diversity of human emotions, it is difficult to extract effective EEG

features and recognize the emotion patterns. This paper proposes a multi-feature deep

forest (MFDF) model to identify human emotions. The EEG signals are firstly divided into

several EEG frequency bands and then extract the power spectral density (PSD) and

differential entropy (DE) from each frequency band and the original signal as features. A

five-class emotion model is used to mark five emotions, including neutral, angry, sad,

happy, and pleasant. With either original features or dimension reduced features as

input, the deep forest is constructed to classify the five emotions. These experiments are

conducted on a public dataset for emotion analysis using physiological signals (DEAP).

The experimental results are compared with traditional classifiers, including K Nearest

Neighbors (KNN), Random Forest (RF), and Support Vector Machine (SVM). The MFDF

achieves the average recognition accuracy of 71.05%, which is 3.40%, 8.54%, and

19.53% higher than RF, KNN, and SVM, respectively. Besides, the accuracies with the

input of features after dimension reduction and raw EEG signal are only 51.30 and

26.71%, respectively. The result of this study shows that the method can effectively

contribute to EEG-based emotion classification tasks.

Keywords: electroencephalogram (EEG), machine learning, feature exaction and selection, deep forest, emotion

feelings-as-information

1. INTRODUCTION

Emotions occupy a very important position in human communication and personal
decision-making. Although the existence of emotion is well-known, human knows very little
about the mechanism behind it. Traditionally, human–computer interaction (HCI) for emotion
recognition is carried out by using voice and facial expression signals (Fan et al., 2003; Sidney
et al., 2005; Zeng et al., 2008). But these external signals have a certain degree of camouflage. Using
voice and facial expression signals as the basis for emotion recognition is therefore not convincing.
EEG physiological signals are directly produced by the central nervous system of human body,
and the central nervous system is closely related to human emotions. Zheng et al. (2017) proved
that the neural characteristics and stable EEG patterns are related to positive, neutral, and negative
emotions. It indirectly proves that the use of EEG signals for emotion recognition is reliable.
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Emotion recognition becomes a hot research topic regarding
the development of basic emotional research theories and
applications of emotional brain–computer interactions (aBCIs)
(Nijboer et al., 2009; Garcia-Molina et al., 2013), such as emotion
recognition with human brain-activity sensors is used for the
treatment of patients with mental disorders (Mehmood et al.,
2017).

In the field of EEG-based emotion recognition, traditional
classifiers, such as K-Nearest Neighbor (KNN), Random Forest
(RF), GaussianNaive Bayes (GNB), Linear Discriminant Analysis
(LDA), and Support Vector Machine (SVM), have been widely
used. Heraz and Frasson (2007) used KNN to classify the
intensity of each emotion (i.e., pleasure, arousal, and dominance)
into two classes (high or low). With the database collected by
themselves, the experimental accuracy reaches 73.5, 74.6, and
74%, respectively. He et al. (2017) proposed a feature extraction
method based on multiple empirical mode decomposition
(MEMD). The emotional state is identified as high/low arousal
and high/low valence for the recorded eight-channel EEG
signals on the DEAP database. The accuracy of SVM for
arousal and valence is 67.9 and 70.9%, respectively. Veeramallu
et al. (2019) utilized empirical mode decomposition (EMD) to
classify automatic emotion classification based on EEG. This
method uses the random forest classifier to classify positive,
neutral, and negative emotions on the SJTU emotional EEG
database (SEED) and obtains the highest recognition accuracy
of 89.59, 91.45, and 93.87%, respectively. With the development
of neural networks, deep learning based on neural networks
and convolutional neural networks (CNN) have widely used in
emotion recognition. Yang et al. (2018b) design a novel emotion
recognition system which combines recurrence quantification
analysis (RQA) with channel-frequency convolutional neural
network (CFCNN). With the database collected by themselves,
they classify the three specific emotions: happiness, sadness, and
fear. The average recognition accuracy is 92.24%. Mehmood and
Lee (2015) use KNN and SVM to classify four emotions: scared,
sad, happy, and calm. With the database tested by themselves,
the accuracy of emotion in valence and arousal dimensions is
32 and 37%, respectively by SVM, and the highest accuracy of
KNN is 61%. Zheng et al. (2017) used discriminative Graph
regularized Extreme Learning Machine (GELM) to perform
LALV, HALV, LAHV, and HAHV (low arousal/low valence,
high arousal/low valence, low arousal/high valence, and high
arousal/high valence), four-classes classification experiments on
valence-arousal (VA) space on the DEAP database, and achieve
average recognition accuracy of 69.67%. The above results show
that the accuracy of valence and arousal (two classes) have
achieved good results. However, for the classification of 3 or 4
emotions, the recognition accuracy is generally not acceptable
and needs to be improved. Therefore, how to improve the
recognition accuracy of emotion classification for more classes
and how to recognize the relationship between the generation
of emotion and the corresponding physiological mechanism
are the problems that need to be solved urgently in the field
of BCI. This study aims to apply the deep forest technology
to recognize human emotion from EEG signals, and improve
the accuracy.

The layout of the paper is as follows. Section 2 introduces
the development of multi-Grained Cascade Forest (gcForest) and
its application in image classification and emotion recognition.
In section 3, the DEAP dataset, the preprocess of EEG emotion
recognition, the method of extracting features, the realization of
the MFDF method, and the confirmation of hyper-parameters
of deep forest are introduced. Section 4 demonstrates the
experiment and experimental results, and section 5 analyzes
and discusses the experimental results. Section 6 gives some
conclusions and future work.

2. RELATED WORK

GcForest is a highly competitive decision tree integrationmethod
for deep neural networks (Zhou and Feng, 2017). The gcForest
consists of multi-grained scanning and cascade Forest. It employs
a cascade structure to realize layer-by-layer processing. Through
multi granularity scanning, they increase the diversity of features
to enhance the cascade forest. In addition, the gcForest is a deep
model based on decision trees, and the training process does not
rely on back-propagation and gradient adjustment. Compared
with deep neural networks, gcForest has fewer hyper-parameters
and achieves excellent performance across various domains by
using even the same parameter setting. In the study of Cao et al.
(2019b), the rotation-based deep forest (RBDF) is proposed for
the classification of hyper-spectral images (HSIs). Experimental
results based on three HSIs demonstrate that the proposed
method achieves the state-of-the-art classification performance.
Cao et al. (2019a) propose a new deep model–densely connected
deep random forest (DCDRF) to classify the HSIs. Experimental
results prove that the proposed method can achieve a better
classification performance than the conventional deep-learning-
based methods. A deep multigrained cascade forest (dgcForest)
was proposed by Liu et al. (2019). Experimental results testify that
their proposed algorithm presents a good performance on the
hyper-spectral image (HSI). Zhou et al. (2019) proposed a deep-
forest-based method for hashing learning. The experimental
results show that the proposed method has better performance
with shorter binary codes than other corresponding hashing
methods. In conclusion, in image detection, voice detection,
and other fields, the gcForest has been applied and achieved
excellent results.

Each cascade layer of gcForest is composed of random forest.
Random forest is an algorithm that integrates multiple decision
trees based on the idea of ensemble learning. Its basic unit
is the decision tree, and these decision trees are independent
of each other and have no relationship (Ho, 1995; Breiman,
2001). The integrated learning feature of random forest enables
it to obtain better results even if each tree does not have high-
precision decision-making. Random forest is utilized by Memar
and Faradji (2017) to classify the sleep stage based on EEG signals,
which is one of the most critical steps in effective diagnosis
and treatment of sleep-related disorders. Random forest consists
of decision trees. Decision tree is a shortcut mode of attribute
classification (Janikow, 1998). Additionally, decision tree is a
kind of white box method, and it is more convincing than other
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FIGURE 1 | The flow chart of EEG-based emotion recognition.

classifiers. In dealing with the undefined problem of emotion
recognition, the results obtained by the decision tree help us
understand the physiological mechanism behind the data that
generates emotion. Since decision tree is proposed, it has been
widely used in the treatment of diseases with EEG signals.
According to previous studies, the induction of decision trees
from data has been applied in various medical domains, and
Hetmerova et al. (1997) argued that it is interesting to use
decision tree to extract useful rules for disease judgments. For
example, Rajaguru and Prabhakar (2017) proposed a soft decision
tree classifier in the EEG seizure classification, and Sukanesh and
Harikumar (2008) proposed hierarchical aggregation functions
decision trees to classify epilepsy risk classification based on EEG
signals. Based on the above studies, it is feasible to use gcForest
based on decision tree for emotion recognition.

Multi-grained scanning is usually used to process the original
data. For example, Cheng et al. (2020) propose a method for
multi-channel EEG-based emotion recognition using deep forest.
On the DEAP database, the average accuracy reaches 97.69 and
97.53% for valence and arousal, respectively. Yao et al. (2019)
used deep forest with multi-scale window (MSWDF) to identify
EEG emotions, and the average recognition accuracy in the
classification of pleasure, relaxation, sadness (three classes) is
84.90%. These studies directly use multi-grained scanning on the
original data to conduct experiments instead of using the feature
extraction method. This paper proposes an emotion recognition
algorithm model, the multi-feature deep forest (MFDF), on the
basis of gcForest. The algorithm extracts effective features from
the original data and inputs the features into the deep forest for
emotion classification and recognition. The experimental results
show that the average accuracy of MFDF reaches 71.05%, and the
highest accuracy can reach 87.10% on the DEAP database. The
experimental results prove our model is valid.

3. METHOD

The MFDF algorithm is shown in Figure 1. Firstly, the original
data is preprocessed, including emotion label processing and

TABLE 1 | Data organization for one subject.

Identification Size Content

Data 40× 40 × 8,064 Video/trial × channel × data

Label 40 × 4
Video/trial × label (valence,

arousal, dominance, liking)

frequency band division. Secondly, affective computing is
performed on the data to obtain two types of features: PSD and
DE. Thirdly, data smoothing and dimensionality reduction are
performed on the features. Finally, the original data is converted
into feature vectors, and the feature vectors are input to the deep
forest for emotion recognition and classification.

3.1. Introduction to DEAP Dataset
The public dataset DEAP (Koelstra et al., 2011) is utilized
to validate our proposed approach in this study. The dataset
contains 32 channel EEG signals and eight-channel peripheral
physiological signals recorded from 32 subjects watching 40
music videos. Each video is rated to the levels of arousal, valence,
liking, and dominance of each subject. The rating scores are
closely related to emotions. In the current study, only the EEG
signals are used for emotional recognition. The EEG signals are
sampled at the frequency of 128Hz, and then are preprocessed by
a bandpass filter with a bandwidth ranging from 4.0 to 45.0 Hz.
The recorded EEG data contains 60 s video-induced EEG data
and 3 s baseline data without watching video. The EEG data from
each subject are organized as shown in Table 1.

3.2. Data Pre-processing
For the study of EEG signals, five frequency bands are normally
separated with different frequency ranges: delta (1–4 Hz), theta
(4–7 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (31–
47 Hz). Except for the delta signal, which is generally generated
during deep sleep, the theta, alpha, beta, and gamma signals are
closely related to emotions (Aftanas et al., 2001; Balconi and
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FIGURE 2 | The emotion model for relabeling five emotions, including neutral,

angry, happy, sad, and pleasant.

Lucchiari, 2008; Balconi and Mazza, 2009); the theta, alpha, beta,
and gamma signals are thus extracted in the current study.

This study marks angry, happy, sad, pleasant, and neutral
according to the following rules.

Angry: Valence < 4.5 and Arousal > 5.5
Happy: Valence > 5.5 and Arousal > 5.5
Sad: Valence < 4.5 and Arousal < 4.5

Pleasant: Valence > 5.5 and Arousal < 4.5
Neutral: 4.5 ≤ Valence ≤ 5.5 and 4.5 ≤ Arousal ≤ 5.5

Related studies tend to classify the level of arousal and valence
as two-class or three-class classification problems. Few studies
provide emotional labels according to the scores of valence and
arousal. Lan et al. (2016) mark the EEG signals with the labels
of pleasant, happy, frightened, and angry. Zheng et al. (2017)
proposed an emotion representationmodel based on the valence-
arousal (VA) level and mark four quadrants of the VA space
with four types of emotions. On the basis of these studies, the
current study labels the data with five emotional classes, with an
additional emotion type neutral, as shown in Figure 2. The data
of subject S3, S12, S13, S14, S23, S26, S27, S30, and S31 are not
used in this study for evaluation because some labels are absent
after remarking by the proposed five-class emotion model.

3.3. Feature Extraction
Several features are extracted from the EEG signals for analysis,
including power spectral density (PSD) and differential entropy
(DE). Naderi and Mahdavi-Nasab (2010) found that the power
spectral density (PSD) estimation of the Welch method can
provide very strong features, and it is also a good representation
of the EEG signal. DE has proven to be the most accurate and

stable EEG feature that reflects the change of vigilance (Duan
et al., 2013; Shi et al., 2013).

The PSD can be defined as follows,

Pi(f ) =
1

L
|
L−1
∑

n=1

xi[n]e
j2π fn|2, (1)

where L is the length of the signal, and Pi(f ) is the fast Fourier
transform of the signal xi[n]. The PSD feature [P(xi)] of the signal
xi[n] can then be obtained by Equation (2).

P(xi) =
1

K
(

K
∑

i=1

Pi(f)), (2)

where, K is number of frequency points used to calculate the
discrete Fourier transforms.

Feature DE can be defined as follows,

h(xi) = −
∞
∫

−∞

1√
2πσ 2

e
−(x−µ)2

2σ2 log 1√
2πσ 2

e
−(x−µ)2

2σ2 dx

= 1
2 log(2πeσ

2),

(3)

where, xi[n] is assumed to satisfy the Gaussian distribution of
N(µ, σ 2) (Shi et al., 2013).

Sliding window technology is applied for feature extraction
in this study. The Hanning window with a length of 1 s and an
increment of 1 s increment without overlap is taken to segment
the EEG signal for feature extraction.

In order to remove the noise which has nothing to do with
the emotional states, this paper uses Savitzky-Golay method with
span of 5 and degree of 3 to smooth the data. Dimensionality
reduction could reduce the computational burden and increase
the stability of the computation (Duan et al., 2013). Moreover,
it is a practical solution to avoid “dimension disaster” (Duan
et al., 2013). Popular dimensionality reduction methods include
principal component analysis (PCA), minimum-redundancy-
maximum-correlation (MRMR), and so on (Peng et al., 2005).
Although PCA can reduce the feature dimensions, it cannot
preserve the original domain information, such as channel and
frequency after the transformation. Hence, this paper chooses the
MRMR algorithm to select a feature subset from an initial feature
set (Zheng et al., 2017). The MRMR algorithm utilizes mutual
information as the relevance measure with the max-dependency
criterion and minimal redundancy criterion. The max-relevance
criterion searches for features satisfying with the mean value of
all the mutual information values between the individual feature
xi and class c as follows,

maxD (S, c) , D =
1

|S|
∑

xi∈S
I (xi; c) (4)

When two features are highly dependent on the same class, if one
of the features is removed, the overall class distinction ability does
not change much. The following minimal redundancy condition
can thus be added to select for mutually exclusive features,

min (S) , R =
1

|S|2
∑

xi ,xj∈S
I
(

xi; xj
)

(5)
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The above two constraints are termed as “minimum-
redundancy-maximum-correlation” (MRMR). We define
the operator ∅(D, R) to combine D and R, and the simplest
definition can be expressed as.

max∅(D, R),∅ = D− R (6)

3.4. Multi-Feature Deep Forest Method
As an extension of random forest, deep forest is different from
general random forest. Random forest is based on decision
trees and uses the idea of ensemble learning to classify
data. Deep forest adopts cascade structure which combines
the characteristics of the neural network to further improve
the recognition of random forest, and the cascade layer
can automatically adjust the optimal number of classification
layers (Xu et al., 2019). Deep forest automatically optimizes
the structure of deep forest by comparing the classification
performance of adjacent layers.

The structure of the proposed MFDFmethod is demonstrated
in Figure 3. It includes two parts. One is multi-feature extraction,
and the other is deep forest architecture. In the multi-feature
extraction stage, PSD and DE features are extracted from
different wave bands of EEG signals or original signals for each
EEG channel. The size of the extracted feature is 320 × 1
(32 channels and 10 types of feature for each channel). The
architecture of the deep forest can be found in the right panel
of Figure 3. In each layer, four random forests are included. Two
of random forest set the number of tree node’s split feature by the
number of square root for the total number of features, and rest

two forests set it by the logarithm for the total number of features
(Zhou and Feng, 2017; Yao et al., 2019; Cheng et al., 2020). A
Iterative Dichotmizer 3 (ID3) decision tree is utilized in this study
(Zhou and Feng, 2017; Yao et al., 2019; Cheng et al., 2020).

In the deep forest, the output vector of the current layer
is taken as enhancement features that is further used to
combine original data as the new input of the next layer,
as seen in the right panel of Figure 3. The output vector is
actually a vector of classification probability for each class.
The classification probability is statistically calculated from the
output of each decision tree. In the current study, five classes
of emotions are investigated. Each layer would thus generate
20 enhancement features by four random forests. The number
of layers is not fixed in this study, and it is determined by the
algorithm via evaluate whether additional layer could improve
the classification performance.

3.5. Confirmation of Hyper-Parameters of
Deep Forest
It is well-known that the number of trees of a random forest
would influence its classification performance, and a large
number of trees would increase computing burden. To determine
the number of trees in a forest, subject’s (S5) data are used to
evaluate how the number of trees influence the classification
accuracy. Figure 4 shows the accuracy change along the increase
of the number of trees. It can be found that with the increase
of tree number, the accuracy shows a clear improvement. When
the number of trees increases to 200, accuracy enhancement
becomes stable. In order to balance computing resources and
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classification accuracy, this study sets the number of trees in each
random forest to 120 trees, which is the 97% turning point of the
highest accuracy. Other parameters of random forest are set as
follows. The maximum depth of decision tree is set to 14. The
minimum number of samples required to split middle nodes is
set to five. This paper also uses out-of-bag samples to estimate the
generalization accuracy. To tackle the problem of data imbalance,
the samples in a small group would be more frequently chosen
during the training stage.

4. EXPERIMENTAL RESULT

The proposed MFDF is compared with three traditional
classifiers (i.e., RF, SVM, and KNN), and 5-fold cross-validation
is applied to obtain the classification accuracy. For SVM classifier,
linear kernel is applied with the penalty coefficient at 0.8. The K
coefficient is set to 5 for KNN classifier. In the random forest,
100 decision trees are included, and ID3 algorithm is used for
training. The average accuracy and the accuracy for different
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subjects are demonstrated in Figure 5. It can be found that the
average accuracy is around 71, 68, 52, and 63% for MFDF, RF,
SVM, and kNN, respectively. The average recognition accuracy
of the proposed model is 19.53% higher than SVM, 3.4% higher
than RF, and 8.54% higher than KNN in Table 2. Besides, the
proposed MFDF attains the highest accuracy up to 86% for
subject s7 and s16.

The reliability and effectiveness of the MFDF are also
evaluated through investigating different types of data as input
(i.e., raw data, features, and features after dimension reduction).
The experimental results with dimension reduced feature as
input are demonstrated in Figure 6. The average recognition
accuracy of the proposed method is 51.30%. Although it is much
lower than that without dimensionality reduction, this accuracy
is still higher than that of the compared classifiers. Table 3 shows
that the average recognition rate of the model is 5.76% higher
than SVM, 1.19% higher than RF, and 11.21% higher than KNN.

This study also takes raw data without feature extraction as the
input for deep forest and investigates the accuracy. The results

TABLE 2 | A comparison of classification accuracy by four classifiers with original

feature as input.

Highest

recognition

accuracy (%)

Lowest

recognition

accuracy (%)

Average

recognition

accuracy (%)

MFDF 87.90 52.54 71.05 ± 10.61

RF 85.87 51.00 67.65 ± 9.72

SVM 61.71 35.23 51.52 ± 6.41

KNN 83.69 40.96 62.51 ± 10.30

are demonstrated in Figure 7. The average accuracy without
dimensionality reduction processing is 71.05%, and the average
accuracy for dimensionality reduction processing is 51.30%.
The average accuracy of the original data is 26.71%. It can be
found that using original feature as input obtains the highest
classification accuracy, which indicates that deep forest can deal
with features rather than original data more successfully in the
current case study.

In addition, for real-time application, the computing cost is
very important. Table 4 demonstrates the computational cost
for feature extraction with or without dimension reduction,
and the corresponding accuracy of subject S1. It can be found
that feature extraction takes a large amount of time, which
is much longer than the time cost of classification. The total
time of MFDF, SVM, KNN, and RF for feature extraction
and classification of a sample is 38, 25.56, 25.22, and 25.65
ms, respectively. Although MFDF takes more time than the
other three traditional classifiers, it achieves the relative higher
classification accuracy.

TABLE 3 | A comparison of classification accuracy by four classifiers with

dimension reduced feature as input.

Highest

recognition

accuracy (%)

Lowest

recognition

accuracy (%)

Average

recognition

accuracy (%)

MFDF 62.50 38.17 51.30 ± 7.02

RF 62.67 40.17 50.11 ± 6.73

SVM 59.33 34.67 45.54 ± 5.75

KNN 53.83 32.33 40.09 ± 5.54
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FIGURE 6 | The classification accuracy across different subjects under the input of PSD and DE feature with dimension reduction across different subjects, in which

the classifiers of MFDF, RF, SVM, and KNN are compared.
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FIGURE 7 | A comparison of MFDF with different input of raw EEG signal, original features, and dimension reduced features.

TABLE 4 | The computational cost for feature extraction and classification per

sample.

Features extraction (ms) Classification (ms) Accuracy (%)

MFDF(1) 25 13 71.05

MFDF(2) 44 11 51.30

SVM 25 0.56 51.52

RF 25 0.65 67.65

KNN 25 0.22 62.51

The reported accuracy is from subject S1. MFDF(1) indicates the results without

dimensionality reduction, and MFDF(2) is the ones after dimensionality reduction. The

compared SVM, RF, and kNN classifier takes original feature as input.

5. DISCUSSION

EEG-based emotion recognition is a hot-spot in recent years.
Many researchers have proposed effective classification models
to improve emotion recognition accuracy (Huang et al., 2019;
Yao et al., 2019). The extraction of distinguish and consistent
EEG features are critical for classification systems. PSD and DE
are two classic features set for EEG-based emotion recognition
(Naderi and Mahdavi-Nasab, 2010; Duan et al., 2013; Shi et al.,
2013), which are selected as the input feature for the proposed
MFDF method. This study also finds that the implementation
of dimensionality reduction would negatively influence the
classification accuracy, which is inconsistent with the results
obtained by Zheng et al. (2017) who find that dimensionality
reduction does not affect the performance of our model greatly.
Additionally, it is also found that deep forest cannot achieve
acceptable classification accuracy with raw EEG signal as input,
although recent studies show a tendency to use original data as
input for deep forest. For instance, Cheng et al. (2020) utilized

TABLE 5 | The reported accuracy by the literatures with DEAP database.

Study Results

Koelstra et al. (2011)

62.0, 57.6% for valence and arousal

(two-classes) with all 32 participants.

Xie et al. (2018)

79.06 and 77.19% for valence and arousal

(two-classes) with all 32 participants.

Yang et al. (2018a)

90.80 and 91.03% for valence and arousal

(two-classes) with all 32 participants.

Chung and Yoon (2012)

66.6, 66.4% for valence and arousal

(two-classes), 53.4, 51.0% for valence and arousal

(three-classes) with all 32 participants.

Yao et al. (2019)

84.90% for pleasure, relax, sadness

(three-classes)with all 32 participants

Liu and Sourina (2013)

63.04% for arousal-dominance recognition

(four-classes) with the selected 10 participants.

Zheng et al. (2017)

69.67% for quadrants of VA space

(four-classes) with all 32 participants.

Huang et al. (2019)

73.76% for relax, depression, excitement, fear

(four-classes) with all 32 participants

Our method
71.05% for angry, happy, sad, pleasant, and neutral

(five-classes) with the selected 23 participants

the raw multi-channel EEG data as 2D input and achieved more
than 97% classification for a two-class classification problem of
the state of valence and arousal; it is not clear, however, whether
the extraction of feature can further improve the classification
accuracy. In sum, the result of the current study indicates that
it is rational to use PSD and DE feature as input for deep forest.

Table 5 lists related studies that used the DEAP dataset for
pattern recognition. The baseline accuracy for DEAP is only
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FIGURE 8 | The accuracy for the classification of 4 types of emotions by MFDF. The error bar is obtained by 5-fold cross validation.

about 60% for two-class classification problems, and this was
published together with DEAP by Koelstra et al. (2011). In the
two-class classification problem, Yang et al. (2018a) obtained the
accuracy of 91% via the parallel convolutional recurrent neural
network, which is the highest classification accuracy within
these studies on two-class classification. For three-class emotion
classification, Yao et al. (2019) used deep forest with multi-
scale window (MSWDF) to identify the emotions of pleasure,
relaxation and sadness and achieved an accuracy of 84.90%.
The proposed method achieved an accuracy of 76.8% for four
emotions (shown in Figure 8, which is higher than the ensemble
convolutional neural network (ECNN) approach that obtained
the accuracy of 73.76% (Huang et al., 2019). Besides, the current
study takes five emotions for classification, including a neutral
emotion, and achieved an average accuracy of 71.05%.

6. CONCLUSION

This paper proposes an emotion recognition method based on
gcForest (MFDF) for emotion recognition, which takes human-
crafted features (i.e., PSD and DE) as the input for deep forest.
The proposed methods demonstrate a competitive performance
(71% accuracy for five types of emotions) in the comparison
with traditional classifiers. The results indicate that using feature
as input can obtain much higher accuracy than using raw EEG
signals. In the future, deep forest will be further optimized
through the combination of raw EEG data together with EEG
features as input for deep forest. The issue of cross-subject
emotion recognition will be investigated to establish a more
general classification model.
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