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To improve the fast and stable walking ability of a humanoid robot, this paper proposes

a gait optimization method based on a parallel comprehensive learning particle swarm

optimizer (PCLPSO). Firstly, the key parameters affecting the walking gait of the

humanoid robot are selected based on the natural zero-moment point trajectory planning

method. Secondly, by changing the slave group structure of the PCLPSO algorithm,

the gait training task is decomposed, and a parallel distributed multi-robot gait training

environment based on RoboCup3D is built to automatically optimize the speed and

stability of bipedal robot walking. Finally, a layered learning approach is used to optimize

the turning ability of the humanoid robot. The experimental results show that the PCLPSO

algorithm achieves a quickly optimal solution, and the humanoid robot optimized

possesses a fast and steady gait and flexible steering ability.

Keywords: RoboCup3D, humanoid robot, PCLPSO, parallel distributed, layered learning

INTRODUCTION

Gait planning is a research hotspot for humanoid robots, and it provides some technical support
for humanoid robots walking like humans. The methods of gait planning can be broadly divided
into three categories: human walking parameter-based methods (Baoping et al., 2015; Hereid
et al., 2018), humanoid walking model-based methods (Sato et al., 2010; Winkler et al., 2018), and
intelligent algorithm-based methods (Huan and Anh, 2015; Elhosseini et al., 2019). The method
based on human walking parameters makes the gait of humanoid robots more similar to the way
humans walk, but it costs a lot of time to find suitable gait parameters from humanwalking data and
apply them to humanoid robots. Paparisabet et al. (2019) proposed a similar function for human-
likemotion, formulated kinematic constraints for humanoid robots in contact with the ground, and
finally proposed humanoid walking with very high similarity to human motion. In Weon and Lee
(2018), Weon et al. proposed a method for generating humanoid robot motion based on motion
capture data, which corrects extracted joint trajectories based on a reprogrammed zero-moment
point (ZMP) trajectory. Researchers have extensively investigated bipedal walking model-based
approaches. In Graf and Röfer (2011), the three-dimensional linear inverted pendulummodel (3D-
LIPM) proposed is one of the most widely used simplified dynamics models for humanoid robots.
The 3D-LIPM approximates the humanoid robot in the three-dimensional space to an inverted
pendulum model composed of mass points and massless legs connecting the points to the support
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points and constrains the center of mass to move on the
constrained plane. Jadidi and Hashemi (2016) proposed a
closed-loop 3D-LIPM gait for RoboCup standard platform and
implemented a full range of walking on the NAO robot. The
25 degrees of freedom of the NAO robot make it have excellent
omnidirectional walking and full-bodymotion performance. The
RoboCup 3D simulation team uses the NAO robot as a reference
model. At the same time, this model is also widely used in
robot simulation competitions at all levels at home and abroad.
Astudillo et al. (2018) used the 3D-LIPM as amodel for robot and
ZMP tomap joint angles to achieve a humanoid robot walking on
a slippery platform.

As the degrees of freedom of humanoid robots increase, the
complexity of systems will increase as well. Bipedal walking
model-based methods will not be sufficient for the development
of humanoid robot control (Fayong et al., 2014). Besides, a
variety of intelligent control methods are developed, which do
not require accurate modeling (MacAlpine et al., 2015; Hong
and Lee, 2016; Bonyadi and Michalewicz, 2017). However, the
process of adjusting motion parameters and posture based on
various models is very tedious and time-consuming. When the
given parameters are not reasonable, walking instability and
robots moving at a low speed may occur. This shortcoming
can have a significant impact on the coordination between
the needs of speed, stability, and flexibility. Therefore, various
intelligent algorithms are used for robot gait planning. Many
researchers have applied the central pattern generator (CPG)
to generate gait trajectories, but the parameter optimization of
this method is a challenge (Bai et al., 2019). Zhong et al. (2017)
transformed phase signal from CPG output into a trajectory
signal for the legs of a six-legged robot by adjusting it. Wang
et al. (2019) proposed a gait planning method based on a
reactive neuromuscular controller and CPG to achieve a power-
saving human-like large walk, and the controller parameters
were optimized based on an optimization algorithm in the
paper. Common optimization algorithms such as central force
optimization (CFO) and genetic algorithm (GA) have also been
successfully used for the gait planning of humanoid robots.
Kumar et al. (2018) applied GA to optimize parameters for a
triple-linked humanoid robot to achieve numerical simulation
of energy-controlled stable walking. Huan et al. (2018a) used
CFO to optimize the foot lift amplitude of a humanoid
robot, which caused an efficient and stable gait. PSO is a
common intelligent optimization algorithm that solves global
optimization problems simply and efficiently (Kennedy and
Eberhart, 1995). Huan et al. (2018b) applied PSO to optimize
joint angles to achieve stable walking for a humanoid robot
with 10 degrees of freedom. Mandava et al. proposed a multi-
objective particle swarm optimization algorithm method for
the gait optimization of humanoid robots for the trolley table
model. This method uses a sliding mode controller to optimize
robust tracking control and realizes the 3D simulation walking
of a humanoid robot (Mandava and Vundavilli, 2018). Gülcü
and Kodaz (2015) improved the performance of comprehensive
learning particle swarm optimizer (CLPSO) through parallel
computation and proposed PCLPSO. Most of the studies
mentioned earlier are devoted to single movements such as

straight, rotating, and going up and down stairs (Faraji et al.,
2019). There are relatively few studies that comprehensively
consider bipedal robot forward and rotation and their arbitrary
motion connection transitions. Also, during the simulation
process, the individual simulation platforms always add noise
in the same way, resulting in similar movements of the bipedal
robots. Parallel optimization algorithms can be a good solution
to this problem. Muniz et al. (2016) optimized the keyframe
movements of a humanoid robot (getting up, kicking, etc.)
through parallelization to improve the motion performance of
the robot. However, parallel algorithms suffer from low fault
tolerance when dealing with distributed tasks in RoboCup3D,
and it is difficult to ensure the correctness and stability of the
running process.

Based on the considerations mentioned earlier, this paper
selects 13 key parameters that affect speed and stability based
on the gait planning method of natural ZMP trajectories and
designs two evaluation functions to address the problems of
humanoid robot walking. By changing the cluster structure of
the PCLPSO algorithm, a parallel distributed multi-robot gait
training environment is established by using the RoboCup3D
simulation platform. The training environment consists of
multiple computers that can operate independently. The nodes
use the computer network for information transfer to achieve
a common task (gait optimization for humanoid robots). The
computational efficiency is improved by running in parallel
in a distributed environment. A layered learning approach
is used to optimize the evaluation function layer by layer.
Experimental results show that the optimized humanoid robot
has a faster and more stable straight gait and excellent turning
ability and has less wobble when switching between straight
and turning.

GAIT PARAMETER SELECTION BASED ON
NATURAL ZERO-MOMENT POINT
TRAJECTORY PLANNING

In this paper, after setting a natural ZMP trajectory from
heel to toe movement based on a 3D-LIPM in the single-leg
support phase, a mass-centered trajectory equation is obtained
(Graf and Röfer, 2011). In the double-leg support phase, a
linear pendulum model was used to generate mass-centered
trajectory equations. Equations for multistep planning of mass-
centered trajectories in a unified coordinate system are also
given. After planning the walking trajectory by natural ZMP-
based mass-centered trajectory planning method, the key gait
parameters are selected and optimized based on the experience
of manual tuning.

Multistep Trajectory Planning in a Unified
Coordinate System
During the movement of the humanoid robot, if only the
front and back and up and down movements are considered
and the left and right movements are ignored, it is easy to
cause the robot to lose its balance and fall. Therefore, it is
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necessary to extend the linear inverted pendulum to a three-
dimensional environment and model the robot with a three-
dimensional linear inverted pendulum. However, the process of
directly analyzing and researching the multi-link structure of
biped robots is often cumbersome, so this article equivalently
simplified the robot to a reasonable mathematical model, which
is convenient for research. Regarding the body of the robot as
a mass point and the legs as massless support rods, a three-
dimensional linear inverted pendulum model can be built. It
does not need to know the parameters of the robot, such
as the mass and the inertia of each joint, but is derived
from the model for easy calculation. According to 3D-LIPM,
a humanoid robot is simplified to an inverted pendulum with
only a center of mass and a retractable massless pendulum, and
the height of mass is assumed to remain constant, as shown
in Figure 1A.

Assume that the height of the center of mass is fixed at zs
and the acceleration of gravity is g, the equation of motion
between ZMP trajectory psx(t) and the center of mass in the x-axis
direction is:

psx (t) = xs (t) −
zs

g
ẍs(t) (1)

To make the ZMP trajectory of humanoid robot walking
similar to that of human walking, this paper uses a linear
equation to represent the ZMP trajectory, as shown
in Figure 1B. Assuming that in the single-leg support
phase, ZMP moves in the x-axis direction in the range
of [psx min, psx max], the walking period of the single-leg
support phase is Ts; the center of the foot is the origin of a
coordinate system, and the trajectory of ZMP is given by the
following equation:

psx (t) = b1t + b0 (2)

where, t ∈ [0,Ts], b0 = psx min, b1 = (psx max − psx min)/Ts.

By defining ws =
√

zs
g by substituting Equation (1) into

Equation (2) and solving a differential equation, one has:

xs (t) = C1e
t/ws + C2e

−t/ws + b1t + b0 (3)

ẋs (t) = C1e
t/ws/ws − C2e

−t/ws/ws + b1 (4)

If the position and velocity xs (0) of the center of mass at the
initial moment of the single-leg support phase and ẋs (0) are
known, then one has:

C1 = (
(

xs (0) − b0
)

+
(

ẋs (0) − b1
)

ws)/2 (5)

C2 = (
(

xs (0) − b0
)

−
(

ẋs (0) − b1
)

ws)/2 (6)

If the positions of the center of mass at the initial moment
of single-leg support phase and the positions of the center of
mass at the moment of termination xs (0) and xs (Ts) are known,
there are:

C1 = (
(

xs (0) − b0
)

e−Ts/ws − (xs (Ts) − b1Ts − b0)/

(e−Ts/ws − eTs/ws ) (7)

C2 = (
(

xs (0) − b0
)

eTs/ws − (xs (Ts) − b1Ts − b0)/

(eTs/ws − e−Ts/ws ) (8)

According to Equations (2–4), the centroid trajectory planning
based on natural ZMP can be realized in the single-leg
support phase.

The direct application of the single-leg support phase method
for walking requires the assumption that the support leg switch
is instantaneous. This will cause the center of mass acceleration
to jump from the maximum to the minimum. To obtain a
smooth center-of-mass velocity trajectory, the legs support phase
is introduced. In this paper, a linear pendulum model is used
to realize natural ZMP trajectory planning of the double-leg
supporting phase.

In the double-leg support phase, according to the
linear pendulum model, as shown in Figure 1C, the
equation of the relationship between the position
of robot center of mass and acceleration is given
as follows:

xd (t) − D =
zd

g
ẍd(t) (9)

where zd < 0, t ∈ [0,Td], Td is double-leg support phase walk
period, and D is an x-axis coordinate of the fixed end of the
linear pendulum.

With wd =

√

−zd
g , from Equation (9) can have:

xd (t)= (xd (0)− D) cos (t/wd) + ẋd (0)wd sin (t/wd)+D(10)

ẋd (t) = ẋd (0) cos (t/wd) −
xd (0) − D

wd
sin(t/wd) (11)

In the double-leg support phase, the starting position and speed
and the ending position and the speed of the center of mass
can be known, that is, xd (0), ẋd (0), xd (Td), and ẋd (Td) can
be known.

D =
ẋd(0)

2w2
d
− ẋd(Td)

2w2
d
+ xd(0)

2−xd(Td)
2

2(xd (0) − xd (Td))
(12)

Td = wd arccos
(xd (Td) − D)(xd (0) − D)+ ẋd (0) ẋd (Td)w

2
d

(xd (0) − D)2 + ẋd(0)2w
2
d

(13)

A smooth center-of-mass trajectory based on natural ZMP
trajectory can be achieved in the double-leg support phase
according to Equations (10–13).

The methods mentioned earlier have their own coordinate
systems in the single-leg support phase and double-leg support
phase, which do not facilitate multistep planning calculations
for footprint planning. To do so, the equations mentioned
earlier need to be unified in the same coordinate system.
The equation for the position and velocity of the center
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FIGURE 1 | (A) Three-dimensional linear inverted pendulum model. (B) Diagram of natural zero moment point. (C) Linear pendulum model.

of the mass in multistep planning can be expressed by the
following equation:

x (t) =

n
∑

i=0

(xsi (t) + xdi (t)) (14)

ẋ (t) =

n
∑

i=0

(ẋsi (t) + ẋdi (t)) (15)

The robot gait realized by Equations (14, 15) yields a natural ZMP
trajectory.

Swing Leg Trajectory Planning
Cosine functions and Bessel curves can all be used to plan
swing-leg trajectories (Kajita et al., 2002; Grzelczyk et al., 2016).
However, the humanoid robot is divided into two phases of
single-leg support phase and double-leg support phase during
walking, and only when the speed and acceleration of swing-
leg start and landing are zero can the humanoid robot maintain
stability when switching between single-leg support and double-
leg support (Tang et al., 2003). To obtain a smoother trajectory
of the oscillating leg, this paper chooses the method of simple
harmonic motion synthesis:

zsw (t) =







Hsw

(

2
Ts
t − 1

2π sin ( 4πTs t)
)

, tǫ[0,Ts/2]

Hsw

(

− 2
Ts
t + 1

2π sin ( 4πTs t)+ 2
)

, tǫ[Ts/2,Ts]
(16)

xsw (t) = Dsw(
t

Ts
−

1

2π
sin (

2π

Ts
t)) (17)

where Dsw and Hsw are the maximum height of step length and
leg lift, respectively.

Selection of Gait Parameters
There are two kinds of bipedal walking pattern generation
methods. The first method uses precise knowledge of robot
dynamics parameters, such asmass, centroid position, and inertia
of each joint to configure walking mode. Therefore, the method
mainly depends on the accuracy of the model data. In contrast,
the second method uses limited knowledge of dynamics, such
as the total position of the center of mass, the total angular
momentum, etc. The simplified model method (3D-LIMP) used
in this paper belongs to the second type. After the optimized
trajectory is obtained, the robot can execute according to the
corresponding trajectory, and an excellent walking gait can be
obtained. By means of a gait generation method based on
natural ZMP trajectory planning, humanoid robot walking is
summarized in the following algorithmic steps.

Algorithm 1

1.Set the walking cycle Ts and walking parameters (Dsw, Hsw ), initial

foothold (p
(0)
x , p

(0)
y );

2.Initialization time T = 0, number of walking units n = 0;

3.Calculate the inverted pendulum equation from time T to T + Ts and get

the equation of mass center trajectory;

4. T = T + Ts, n = n + 1;

5. Calculate and determine the next foothold of the biped robot (p
(n)
x , p

(n)
y );

6. Give the next position of the bipedal robot;

7. Return to step 3.

The RoboCup3D server communicates with the robot once every

20ms. In this article, the robot is also controlled once in 20ms.

One step is eight times, so the walk period Ts is 0.16 s. As
algorithm 1 only considers the robot walking in a straight line, for
the case of steering walk. If the step length is set to zero, the robot
will only walk laterally, and if the step width is set to zero, the
robot will only walk in a straight line. However, in a simulation
match, the flexibility of the player is enhanced by changing the
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FIGURE 2 | Diagram of turning parameters.

TABLE 1 | Optimized gait parameters.

Parameter Description

FootLength Step size of one step (Dsw )

FootWidth Step width of one step

FootHeight Maximum height of swinging leg (Hsw )

sθ One step turning angle

Ts One step time

BodyHeight Body height in walking

Thigh Leg length

Hip Hip height

Comoff (x,y) Deviation of centroid

Commax Offset of maximum center of mass

Comnext Next centroid position

Arm(x,y) Amplitude of arm swing

Zmpoff Lateral offset of zero moment point

direction of travel while walking quickly. To be able to walk at
any angle, additional information about the direction is required.
The direction of each step is specified as sθ , as shown in Figure 2.

Equation (18) represents the position of the nth step foothold

of a humanoid robot (p
(n)
x , p

(n)
y )

[

p
(n)
x

p
(n)
y

]

=

[

p
(n−1)
x

p
(n−1)
y

]

+

[

cos s
(n)
θ -sin s

(n)
θ

sin s
(n)
θ cos s

(n)
θ

][

1x
(n)
x

−(−1)ns
(n)
y

]

(18)

Therefore, only important parameters such as step length, step
width, and directional angle of humanoid robot need to be
controlled to enable robot to walk. The gait parameters of the
biped robot are as many as 40. If each parameter is optimized,
it will inevitably affect the convergence speed because of the
huge state space. And different gait parameters bias the focus
of walking differently. According to natural ZMP-based mass-
centered trajectory planningmethod and the previous experience
of manual debugging, 13 key parameters affecting the gait of
humanoid robot were selected, as shown in Table 1.

GAIT OPTIMIZATION BASED ON
PARALLEL MULTIGROUP PARTICLE
SWARM ALGORITHM

Aiming at the problem that a lot of manual debugging time is
required when planning the robot trajectory by directly using a
simplifiedmodel, this paper proposes a machine learningmethod
based on the PCLPSO algorithm to optimize gait parameters.
First, the important parameters are extracted according to
the centroid trajectory planning method based on natural
ZMP. Secondly, in the optimization of walking mode, different
evaluation functions are set according to the requirements of
game gait mode, and the PCLPSO algorithm is used to optimize
the omnidirectional walking ability of a humanoid robot.

Parallel Comprehensive Learning Particle
Swarm Optimizer Algorithm
PSO algorithm is a fast and efficient optimization algorithm
(Kumar et al., 2018). Multiple individuals search for the target
in the search area. It is a parallel and random optimization
algorithm. Compared with other intelligent algorithms, it has a
faster convergence speed and robustness. Each particle in PSO
calculates the evaluation value based on the evaluation function.
During the search of each particle, two extreme values are
compared: the first is the optimal solution pbest of a particle; the
other is the global optimal solution gbest. The speed and position
updates of PSO are shown in Equations (19, 20):

vk+1
i = vki + c1∗r1∗(pbest

k
i − xki )+ c2∗r2∗(gbest

k − xki ) (19)

xk+1
i = xki + vk+1

i (20)

where i = 1, . . . ,N is the number of populations and k =

0, . . . ,Niter is the number of iterations; pbestki represents the

local optimal solution found by the particle itself, whereas gbestk

represents the global optimal solution for all current particles;
c1 and c2 are two constants greater than zero, which are used
to adjust the degree of attraction of local and global optimal to
the particle; r1 and r2 are both uniformly distributed random
numbers in the interval [0,1], which affects the random nature
of the algorithm. CLPSO is a valid variant of PSO (Liang et al.,
2006). The main difference between CLPSO and PSO is that the
original PSO requires the use of pbest and gbest, whereas for
CLPSO, updating the location only requires pbest. For PSO, pbest
only needs its own pbest in CLPSO update, which can come from
other individuals. The speed update formula is shown as follows:

vk+1
i = vki + c∗r∗(pbestkfi(d) − xki ) (21)

where c is the acceleration factor. r is also uniformly
distributed random numbers in the interval [0,1]. fi =

[fi (1) , fi (2) , · · · , fi (D)] is determined by the probability of
population Pc of randomly selected particles i. pbestk

fi(d)

represents the pbest value of particle, which is stored in the list
fi of the particle i of the dth dimension. Pc is calculated, as
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shown in Equation (22); 0.05 and 0.45 are the optimal values of
hyperparameters set by Liang et al. (2006) based on experience.

Pc = 0.05+ 0.45∗
e
( 10(i−1)

ps−1 )

e10 − 1
(22)

where ps is the population size.
In PCLPSO, the particle population is divided into multiple

groups, including a master group and several slave groups. All
clusters run PCLPSO in the cluster environment at the same
time. The gbest, lbest, and pbest in PCLPSO are defined as
follows: gbest is the global optimal solution for all groups, lbest
is the local optimal solution for populations, and pbest is the
optimal solution for particles. Each slave group sends its lbest to
the master group. The master group chooses the best solution
from all lbest as gbest and sends gbest to all slaves. Each slave
group randomly selects a particle to receive gbest to update
its own pbest. PCLPSO algorithm updates its own pbest by a
parallel distributed collaborative strategies. They are improving
the quality of the solution and the rate of solving. Each particle in
the PSO algorithm is updated by updating pbest and gbest values.
The gbest affects the direction of population, and when it falls into
a local minimum, the swarm particles tend to fall into this local
minimum. PCLPSO adopts a comprehensive learning strategy,
and the speed and position of the updated particles depend on
all other particles. The lbest is selected from the pbest of the slave
group, and themain group selects the optimal solution gbest from
all the lbest of the slave group to ensure that it will not fall into a
local minimum.

Construction of a Parallel Distributed
Training Environment
The particles in the group in the PCLPSO algorithm are
all running on a single computer, but each football robot
in a RoboCup3D match is controlled by a separate client.
Therefore, the PCLPSO algorithm cannot be directly applied
to the RoboCup3D simulation platform. Because all clients are
connected to the RoboCup3D simulated football server, the client
and server can run on multiple computers in a distributed
environment. Therefore, the PCLPSO algorithm is decomposed
into three algorithms by changing the cluster structure to
accommodate the RoboCup3D simulation platform in this paper.

In the new cluster, the structure is still based on the master–
slave model of parallel computing; only one is a master cluster;
the others are slaves, as shown in Figure 3. The gait training task
of the humanoid robot is decomposed into multiple processes
in the slave cluster, and a distributed training system is built
to run on multiple computers. The parallel and distributed
optimization framework can reduce the scale of solving gait
problems. When all slaves are started and connected to the
master group, and the master group sends parameters to the
slave group, the communication cycle begins. Communication
takes place only between the master group and slave groups;
there is no communication between slave groups. In the cluster
structure of this paper, the master node has no group, and its
main function is to send initial parameters to the group of slave
nodes (Algorithm 2, line 6), and the slave group sends its own

lbest to the master group (Algorithm 2, line 8). The master group
collects the received lbest, including its own lbest, into a pool
called Elite Pool (EP). The master group finds gbest from the
EP and eventually sends gbest to the slave group (Algorithm
2, lines 9, 10, and 11). The detailed algorithm of the master is
shown in Algorithm 2. The slave group exchange algorithm is
shown in Algorithm 3. Add an exchange program to slave group
clients for exchanging data between the master client and all the
clients of the slave group. In this paper, Local Pool (LP) is added
to the slave group to collect all pbest in the group. The slave
group finds lbest among all pbest and sends its own lbest to the
master group. The master server adds them to EP, finds gbest, and
shares it with the slave server. A robot is a member of a group
during gait optimization training, a slave group has seven clients,
and a client controls a humanoid robot, and eventually, multiple
humanoid robots are trained in a RoboCup3D simulation court.
The group client is used to calculate ZMP trajectory, COM
trajectory, and swing leg trajectory when a humanoid robot
is trained by the PCLPSO algorithm to walk. This part also
calculates joint angle information and adaptation values for a
cycle of humanoid robot walking. The detailed algorithm from
the group client is shown in Algorithm 4. The gait optimization
process for the client-based PCLPSO algorithm is shown
in Figure 4.

Algorithm 2 Master algorithm

1. int n, k, P, m

2. double w, c1, c2

3. Array EP

4. Initialize the parameters n, k, P, m, w, c1, c2

5. Wait until all slave swarms have been launched and connected to this Master

6. The master sends the parameters to the slaves

7. repeat

8. Wait until all slave swarms have sent lBest to the master

9. The master stores the lBests into the EP

10. The master finds the gBest in the EP and empties the EP

11. The master sends the gBest to the slaves

16. until the stopping criterion is met

17. return

Algorithm 3 Switching algorithm of a slave swarm

1. int n, k, P, m

2. double w, c1, c2

3. Array LP

4. Connect to the Master until the parameters are received from the master

5. int d = 0

6. repeat

7. d++

8. Store the pBests into the LP until all pBests in this slave swarm are received

9. if d mod P==0 then

10. Find the lBest in the LP

11. Send the lBest to the master

12. Wait until the gBest is received from the master

13. Randomly update a lBest with the gBest in the LP

14. end if

15. Send the LP to the all clients in this swarm

16. until the stopping criterion is met

17. return
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FIGURE 3 | Cluster structure.

FIGURE 4 | Flowchart of PCLPSO-based gait optimization.
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Algorithm 4 Algorithm in a client of a slave swarm

1. int n, k, P, m

2. double w, c1, c2

3. Array LP

4. Connect to the swap program in a swarm

5. Wait until the parameters are received from swap program in a

swarm

6. Initialize the parameters′ and velocity

7. Calculate Swing leg Trajectory and all joint angles of Robot NAO in

a walk cycle

8. Humanoid robot performs a walking training and calculates the

fitness value

9. Update pBest

10. Send the pBest to the swap program until the LP is received from

the swap program

11. Update the LP and find the lBest in the LP

12. repeat

13. Update the velocity and position

14. Calculate Swing leg Trajectory and all joint angles of Robot NAO

in a walk cycle

15. Humanoid robot performs a walking training and calculates the

fitness value

16. Update pBest

17. Send the pBest to the swap program until the LP is received from

the swap program

18. Update the Local Pool and find the lBest in the LP

19. until the stopping criterion is met

20. return

Design of Evaluation Functions
The design of evaluation criteria is critical to achieving an
excellent result (MacAlpine and Stone, 2018). In this paper, gait
optimization results are judged based on the following criteria:

1. The distance the humanoid robot travels per unit time.

fdis = a1∗ ‖ϕend − ϕstart‖ (23)

where ϕstart and ϕend are the coordinates of start and end of the
training, respectively, and a1 is the weight.

2. Whether zero force matrix is always within the supported
polygon and robot walks without falling all the time. in this paper,
the zmp coordinates of the walking action sequence are chosen as
the basis for calculation.

fzmp = a2∗

N
∑

k=1

√

(Px
(

k
)

)2 + (Py(k))2 (24)

where Px
(

k
)

and Py
(

k
)

are the ZMP coordinates for each gait
action sequence, and a2 is the weight.

3. Humanoid robot in the fast walking process torso always
maintains stability; body torso does not shake. In a simulation
match, the body of players is in frequent contact with each other,
and it is very easy to be knocked down by the opponent if the
torso is not stable. At the initial time of double-support phase,
the expected com coordinates are 2 ft on the center. In this
paper, torso sway is detected by comparing the two coordinates
of com and the center of feet during the initial stage of the dual
support phase.

xf = cx −
xfootR+ xfootL

2
(25)

fshake =

{

0 fabs
(

xf
)

< thθ

c otherwise
(26)

where xfootR and xfootL are the coordinates of initial time 2 ft of
the double support phase, thθ is the set threshold, and fshake and c
are penalty and normal numbers, respectively.

If the robot falls during training, a constant ffalling will be given
as a penalty value. The evaluation function for speed and stability
training is shown in Equation (27).

F1 = fdis − fzmp − ffalling − fshake (27)

Add the lateral walking and the turning angles of the humanoid
robot to the above, and the maximum distance of lateral walking
for each step is limited to 0.04m, and themaximum turning angle
is 15◦. In the optimization process, two different target points are
set for the bipedal walking robot to train its gait. If the target point
is reached, then the training of the next target point is quickly
stopped. The evaluation function is as follows:

F2 = fdis − ffalling − fpunish + freward (28)

where fpunish is the penalty for not completing the task within the
specified time, and freward is the reward for completing the task.

Layered Learning
In the RoboCup3D simulation game, players can be roughly
divided into two categories. The first category is to hold the
ball, avoid the defense of the opponent, intercept the ball in the
shortest time, and send the ball to the goal of the opponent;
the second category is to run according to the situation on
the field players and walk to the designated location as soon
as possible. Players without the ball often complete tasks such
as running and intercepting opposing players with the ball up
and down. For players to complete the tasks assigned by their
superiors in the shortest possible time, the walking speed of
robots is very important. The player is the defensive object
of an opponent after getting the ball, so frequent collisions
and turns are inevitable. Improve the stability of the robot
and steering ability to avoid falling and taking advantage of
collisions. The omnidirectional walking of a biped robot can
be decomposed into forward walking and steering motion.
This paper uses a layered learning method to optimize each
decomposition action of omnidirectional walking, and the final
omnidirectional walking optimization is shown in Figure 5. Each
sub-module requires the optimization algorithm to be trained
through the corresponding evaluation function. Use manually
adjusted parameters to drive the robot to walk, and then learn
to get a fast mode with speed and stability as the goal. The final
optimized parameters of the fast and stable mode are used as the
initial state of the steering mode, and the learning is continued
with the goal of steering stability. Through hierarchical learning
of the humanoid robot, two different walking parameter sets
(straight and turning) can be obtained. When different walking
tasks are to be completed, the parameter sets can be switched at
any time, and the flexible connection transition during switching
is also obtained through learning.

Frontiers in Neurorobotics | www.frontiersin.org 8 January 2021 | Volume 14 | Article 600885

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Tao et al. Gait Optimization Method

FIGURE 5 | Layered learning for omnidirectional walking process.

FIGURE 6 | Number of clients from the group and training speed.

EXPERIMENTAL RESULTS AND ANALYSIS

This article uses a 3D-LIMPmodel to generate gait and opens the
function of adjusting walking engine parameters to the public.
OpenAI Gym acts as a bridge between optimization algorithm
and environment and accepts the gait parameters computed by
an optimization algorithm, performs a training session in the
environment, and then provides the necessary information back
to the optimization algorithm. To verify the effectiveness of the
PCLPSO algorithm for gait optimization, this paper compares
PCLPSO with three commonly used optimization algorithms,
GA, CFO, and CMA-ES (Rongyi and Chunguang, 2018), in terms
of the speed, stability, and turn capability of gait. The angle of
view of players is only−120–120◦. To get accurate data during
training, the value of setViewCones in the server is changed from
120 to 360◦. It is also necessary to change the game mode to
fast mode during training so that the training is not limited
by time. The mathematical properties of the four optimization
algorithms of GA, CFO, CMA-ES, and PCLPSO are evolutionary
algorithms. Each training uses the same population size (10)
and the same number of variables (13). First, randomly produce
10 sets of parameters. The humanoid robot walks according
to the 10 sets of parameters. The walking speed and stability
will be different. Choose the optimal one, and then iterate the
formula. Generate the next generation, and repeat the execution
with 10 iterations. In this article, the coding method of the GA
algorithm is standard binary coding. The number of parameters
determines the length of a chromosome. When calculating the
evaluation function value, the binary chromosome string should

FIGURE 7 | Training scenario diagram.

be decomposed and decoded to get the real number parameters.
The specific parameters of the GA algorithm are as follows: take
population size Np = 40, evolutionary algebra T = 200, and
crossover probability Pc = 0.7, and variation probability Pm =

0.05. The specific parameters of the CFO algorithm are as follows:
α = 0.3,β = 0.3,γstart = 0, γstop = 1, and γ = 0.1.

Firstly, Equation (27) is chosen as an evaluation function to
optimize the speed and stability of the robot. The relationship
between the number of clients in a single slave group and training
speed is shown in Figure 6. The training speed of multiple clients
is compared to a single client when it takes a single client to
train to an optimal value 1. The training speed increases linearly
between 1 and 7 clients. The training speed reaches its maximum
when the slave group contains seven clients. So, in the following
comparison experiment, the slave group structures of PCLPSO
are trained by seven clients controlling seven humanoid robots.
The training scenario of a humanoid robot in the RoboCup3D
scenario is shown in Figure 7.

Figure 8A shows the current optimal fitness values of four
algorithms, all of which increase with the increase in the number
of training. The evaluation function of the PCLPSO algorithm
reaches the optimal value after 6,500 trainings, and the optimal
value is 5.86. The evaluation function of the CMA-ES algorithm
reaches the optimal after 14,000 trainings, and the optimal
value is 4.73. GA algorithm reaches the optimal evaluation
function after 17,500 trainings, and the optimal value is 3.92.
The evaluation function of the CFO algorithm reaches the
optimal after 16,000 trainings, and the optimal value is 4.2. The
evaluation function value is averaged every 50 times of training,
as shown in Figure 8B. As the number of iterations increases,
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FIGURE 8 | Comparison of evaluation function values of four algorithms. (A) Current optimal evaluation function value. (B) Average function value.

FIGURE 9 | (A) x-axis trajectory. (B) z-axis trajectory.

the evaluation function of all four algorithms increases steadily.
One hundred twelve iterations for PCLPSO, 146 iterations for
CMA-ES, 176 iterations for GA, and 148 iterations for CFO are
stable. When the parallel distributed optimization framework
interacts with RoboCup3D, many low-cost data samples can be
obtained. Decomposition of gait problems can reduce the scale
of problem-solving. Make sure to get a better solution faster.

The walking stability measured by Equation (25) shows that
the xf fluctuation range of the PCLPSO algorithm is−0.2 to
0.2mm. The CMA-ES algorithm fluctuates between - 0.3 and
0.5. The xf range of GA is−0.7 to 1.4mm, and that of the CFO
algorithm is−1.3 to 0.8mm. The PCLPSO algorithm has the
smallest xf fluctuation range, and the humanoid robot is more
stable. The optimized trajectories of swing leg x-axis and z-axis
of four algorithms are shown in Figures 9A,B. At the moment of

takeoff and landing, the optimized trajectory of the swing leg of
the PCLPSO algorithm is parallel to the ground, which ensures
stability when switching between the single-support phase and
double-support phase.

The real-time changes of hip deflection pitch joint angle, hip
transverse roll joint angle, and hip pitch joint angle for four
algorithms are shown in Figure 10. The hip angle changes of the
PCLPSO algorithm are very stable and better than those of the
CMA-ES, CFO, and GA algorithms.

A comparison of changes in the center of mass landing points
for four methods is shown in Figure 11A. The landing point of
the center of mass in the double-leg support phase of the robot
using the parameters optimized by the PCLPSO algorithm is
always on the center of two-legged linkage and remains stable,
whereas the landing point of the robot center of mass using
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FIGURE 10 | Changes in hip angle for four algorithms. (A) Hip angle variation of PCLPSO algorithm. (B) Hip angle variation of CFO algorithm. (C) Hip angle variation

of GA algorithm. (D) Hip angle variation of CMA-ES algorithm.

the parameters optimized by CFO and GA is unstable. CMA-
ES algorithm optimized humanoid robot mass center fallout is
more stable than the CFO and GA algorithms but inferior to
the PCLPSO algorithm. ZMP trajectory after the optimization
of three algorithms is shown in Figure 11B. The ZMP trajectory
of the CMA-ES, GA, and CFO algorithms is close to the edge
of the support polygon, whereas the whole trajectory curve of
the PCLPSO algorithm moves toward the middle of the support
polygon, in which case the stability margin of humanoid robot
ZMP point is larger.

After the training mentioned earlier, it can be seen in
humanoid robot gait optimization, and PCLPSO algorithm

optimization of humanoid robot already has a fast and stable
gait, but in simulation competition in a humanoid robot, the
target point is constantly changing. When changing from a linear
to a rotating state, the average speed decreases again when the
rotation angle is small, and the humanoid robot is extremely
unstable during rapid stops. In this paper, to better adapt to
dynamic walking, layer learning is used to further optimize gait.
The robot not only has a fast and stable gait but also has excellent
steering ability. Next, the steering ability of the humanoid robot
is optimized using Equation (28) as an evaluation function. Test
experiments on the turning ability of humanoid robots were
conducted under the SimSpark platform of RoboCup3D, and the
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FIGURE 11 | (A) Humanoid robot center of mass landing point pshake variation. (B) ZMP trajectory after optimization of four algorithms.

FIGURE 12 | (A) Body rotation angle. (B) Turning performance test.

walking path was recorded byMatlab using RoboViz observation.
As shown in Figure 12A, the body rotation of four algorithms
when the robot is optimized to make it turn continuously. The
body rotation angle of robots using the PCLPSO algorithm
with optimized parameters reaches a maximum of−1.19◦ during
support leg switching, which shows that the robot is very
stable during the switching process of walking and turning.
Preplanning the walking path of the robot, the trajectory after
layer learning using three algorithms is shown in Figure 12B. The
GA algorithm walks a trajectory that cannot be flexible enough to
maintain stability when turning. The humanoid robot optimized

with the CMA-ES and CFO algorithms can turn flexibly but
requires some adjustment time when turning, and the PCLPSO
algorithm walks on a smooth trajectory that is almost identical to
the planned path.

Let humanoid robot go straight for 15m, test each algorithm
100 times, and take the average value. The results are shown in
Table 2. The PCLPSO algorithm is used to walk with less time
and faster speed under the same walking distance. The steering
angle represents the angle between the body orientation of the
initial position of the humanoid robot and the target point. The
four algorithms are tested 100 times when the steering angle is
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TABLE 2 | Straight speed comparison.

Algorithm Walking distance (m) Average time (s) Average speed (m/s)

PCLPSO 15 16.83 0.89

CMA-ES 15 21.02 0.71

CFO 15 21.05 0.71

GA 15 25.03 0.60

TABLE 3 | Steering performance test.

Angle(◦)

time (s)

Algorithm

PCLPSO CMA-ES CFO GA

30◦ 21.07 21.32 21.37 22.47

45◦ 21.45 22.01 22.38 22.58

60◦ 21.75 22.45 22.67 23.07

90◦ 22.40 22.73 22.85 23.39

30, 45, 60, and 90◦. The average time to reach the target point of
each algorithm is shown in Table 3. The PCLPSO algorithm has
the shortest average time to reach the target point at four angles.

CONCLUSION

This paper has built a RoboCup3D parallel distributed multi-
robot gait training environment based on PCLPSO. A layer
learning approach was used to optimize the existing problems
in layers. It effectively reduces the influence of similar noise of
a single simulation platform and has a faster optimization speed
than common optimization algorithms. The final experimental

results show that the PCLPSO algorithm optimizes faster and
walks more quickly and steadily. During turning motion, the

PCLPSO algorithm walks with a smoother trajectory and a
smaller body rotation angle when switching between straight
motion and turning motion, enabling stable, and flexible turning
of a humanoid robot. This algorithm can also be extended to
other aspects of RoboCup3D, such as the optimization of basic
movements of humanoid robots such as goal shooting.
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