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In this paper, a three-order Taylor-type numerical differentiation formula is firstly utilized to

linearize and discretize constrained conditions of model predictive control (MPC), which

can be generalized from lower limb rehabilitation robots. Meanwhile, a new numerical

approach that projected an active set conjugate gradient approach is proposed,

analyzed, and investigated to solve MPC. This numerical approach not only incorporates

both the active set and conjugate gradient approach but also utilizes a projective

operator, which can guarantee that the equality constraints are always satisfied.

Furthermore, rigorous proof of feasibility and global convergence also shows that the

proposed approach can effectively solve MPC with equality and bound constraints.

Finally, an echo state network (ESN) is established in simulations to realize intention

recognition for human–machine interactive control and active rehabilitation training of

lower-limb rehabilitation robots; simulation results are also reported and analyzed to

substantiate that ESN can accurately identify motion intention, and the projected active

set conjugate gradient approach is feasible and effective for lower-limb rehabilitation

robot of MPC with passive and active rehabilitation training. This approach also ensures

computational when disturbed by uncertainties in system.

Keywords: rehabilitation robot, model predictive control, intention recognition, conjugate gradient approach,

projected operator

1. INTRODUCTION

The number of limb impairment patients whowere injured by stroke has increased year by year, and
this disease has also been developing in the direction of youth, seriously endangering the health of
patients (Zorowitz et al., 2013). Recently, researchers have paid a great deal of attention to robotics
to promote the development of scientific and engineering fields (Jin et al., 2017; Jin and Li, 2018;
Xie et al., 2019, 2020; Zhang et al., 2020). Compared to traditional rehabilitation training methods
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that see problems like resource consumption, high costs, and
long rehabilitation period, lower-limb rehabilitation robots
can be deemed as a more effective method for recovering
patients’ movement function. In virtue of interaction generally
existing between the lower-limb rehabilitation robot and the
patient, to avoid the a second injury in the patient during
rehabilitation training, it is essential to propose a human–
machine interactive control method, which can be utilized
to investigate and analyze the lower-limb rehabilitation robot
(Fleischer and Hommel, 2008).

Intention recognition is one of the key points for realizing
human–machine interactive control methods with lower-limb
rehabilitation robots. Generally, motion intentions include joint
angles and angular velocities, which can be recognized by
decoding bioelectrical signals. Afterwards, the intentions are
referenced by the lower-limb rehabilitation robot to complete
interaction (Ding et al., 2016; Peng et al., 2018). An appropriate
alternative is to establish a relationship between biological signals
and movements for the patient. The surface electromyography
(sEMG) can be regarded as the biological signals, which is
a micro-electrical signal that appears 20–80 ms before the
muscle contraction (Fleischer and Hommel, 2008). Involving
two approaches to construct the relationship, one of which is a
physiological muscle model, such as the Hill muscle model and
the Hammerstein muscle model (Hunt et al., 1998; Buchanan
et al., 2004), muscle forces and joint motions can be estimated
by those models from sEMG signals; meanwhile, the unidentified
physiological parameters of those models affect their applications
in rehabilitation systems (Han et al., 2015). Another is the
regression model, which can be established to connect sEMG
signals to indicate intentions in a straightforward manner, rather
than considering physiological parameters (Ding et al., 2016).
For instance, a BP neural network was exploited to describe the
relationship between sEMG signals andmotion intentions, which
was verified on able-bodied subjects and patients (Zhang et al.,
2012); least squares support vector regression was proposed to
predict periodic lower-limb motions from multi-channel sEMG
signals (Li et al., 2015). Those approaches constitute a connection
between human’s bioelectrical signals andmotion intentions, and
intention recognition can thus be realized effectively.

During the rehabilitation training, the motion trajectory,
which is a predetermined curve or recognized by sEMG signals,
is known to the rehabilitation device, and the patient is assisted
by the lower-limb rehabilitation robot to recover. However, it is
very important to avoid the risk of second injury for patients
in rehabilitation, and a human–machine interactive control
method should therefore be considered to increase security and
stability of rehabilitation robots. Recently, some classical control
methods have been developed and applied to rehabilitation
robots, for example, the rehabilitative system was realized by an
adaptive control framework and a human–machine interactive
method; meanwhile, the potential conflicts between patient and
rehabilitation robot were rejected by position-dependent stiffness
and predetermined trajectory (Zhang and Cheah, 2015). Pehlivan
et al. (2016) presented a minimal assist-as-needed controller
for rehabilitation robots, which could provide corresponding
assistance for patients during rehabilitation training.

In recent years, model predictive control (MPC) not only
considered the constraints of a non-linear system but predicted
future states. People have therefore paid more attention to
investigating it and applying it to the aerospace, automobile,
economics, and robotics fields. As the patient should be assisted
by the lower-limb rehabilitation robot within a relatively safe
motion range and protected against accidents, the MPC method
is suitable for human–machine interactive control of the lower-
limb rehabilitation robot. Generally speaking, the MPC method
is designed to optimize multivariable and constrained control
systems. On the one hand, a control sequence is created by
minimizing an optimization objective function over a finite
prediction horizon within state and control constraints. On the
other hand, the first optimal solution of non-linear optimization
problem feeds back to the non-linear systems, which is utilized
to generate the next iteration (Mayne, 2014). A key issue for
MPC is that the computational burden of real-time optimization
should be reduced through neural networks (Yan and Wang,
2014). To solve this problem is to linearize non-linear systems
and discretize the differential term. More and more people have
consequently developed some classical methods. For example,
a neural network was utilized to identify the unknown non-
linear discrete system, and then one-order Taylor expansion
formula was used to linearize the MPC problem (Pan and Wang,
2012). For non-linear continuous systems, in order to discretize
the differential term and guarantee the higher precision, a
Taylor-type numerical differentiation formula was developed and
applied to solve non-linear time-varying optimization problem
(Zhang et al., 2019), non-linear time-varying equations (Jin et al.,
2019), time-varying matrix inversion (Guo et al., 2017), future
dynamic non-linear optimization problem (Wei et al., 2019),
time-dependent Sylvester equations (Qi et al., 2020), and so on.
As the MPC problem can be seen as an optimization problem, a
Taylor-type numerical differentiation formula is thus also suitable
for solving the MPC problem online.

Another key issue of MPC to be looked at further is online
optimization. In fact, an MPC problem can be converted to
a non-linear optimization problem with equality constraints
and bound constraints and be solved to obtain the control
sequence at each sample time. There are thus numerous
algorithms proposed and studied for this non-linear optimization
problem. A complex-valued discrete-time neural dynamics is
studied by Qi et al. (2019) for solving time-dependent complex
quadratic programming (QP), which possesses high accuracy
and strong robustness but is only suitable for linear constrained
QP problems. A trust region-sequential quadratic programming
approach attempts to solve a sequence of QP subproblems of
non-linear constraint optimization problems, which is based
on trust-region technology and applied by finding the Karush-
Kuhn-Tucker (KKT) points. It is noteworthy for the approach
that the compatibility of the QP subproblem and the Maratos
effect were overcome by adding several linear equations into
the traditional trust region-SQP algorithm (Sun et al., 2019).
However, the calculation of this algorithm is increased by
the added linear equations. In addition, some troubles maybe
emerge; for instance, one is the consistency of the coefficient
matrix and the other the computational burden. Similarly,
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conjugate gradient methods can also be regarded as an effective
optimization approach that utilizes an iteration point with a steep
descent direction to generate conjugate direction and compute a
global minimum point instead of solving linear equations of trust
region-SQP algorithm (Sun et al., 2019). Some classical conjugate
gradient methods include the Hestenes-Stiefel (HS) method
(Hestenes and Stiefel, 1952), the Fletcher-Reeves (FR) method
(Fletcher and Reeves, 1964), the Polak-Ribiére-Polyak (PRP)
method (Polak and Ribière, 1969; Polyak, 1969), the Dai-Yuan
(DY) method (Dai and Yuan, 2000a), the Liu-Storey (LS) method
(Liu and Storey, 1991), and the conjugate descent (CD) method
(Dai and Yuan, 2000b), but those methods were exploited
to solve unconstrained optimization problems off-line. The
MPC problem usually contains some constraint qualifications.
Some modified conjugate gradient methods, which consider the
constrained conditions, were thus proposed by modifying the
search direction and a projected operator (Dai, 2014; Sun et al.,
2018). Besides, a projected gradient method, which projected
the gradient into the feasible region, was proposed by Rosen
(1960), and some modified conjugate gradient methods were
extended by some researchers based on the mentioned methods
(Li and Li, 2013; Dai, 2014). Those modified conjugate gradient
methods were also applied in optimal robust controllers and
robots (Sun et al., 2018). In this paper, a modified conjugate
gradient method, which will simultaneously consider equality
constraints and bound constraints, will be utilized to solve MPC
problem. Furthermore, the proposed algorithm of this paper
is further applied to the lower limb rehabilitation robots with
passive and active rehabilitation.

There are three significant contributions to be developed in
this paper. The primary one is that a new projected active set
conjugate gradient approach is developed and investigated, and
rigorous proof of feasibility and global convergence is also given.
The second is that a relationship between sEMG signals and
motion intentions established by an echo state network (ESN)
model can identify human motion state. Finally, a numerical
simulation about passive and active rehabilitation training of
lower-limb rehabilitation robot is illustrated and solved by the
proposed method. Surprisingly, the studies on the rehabilitation
training of lower-limb rehabilitation robot for MPC problem
with projected active set conjugate gradient approach are scarce.
This motivates our present study.

The rest of this paper is organized as follows: In section
2, the MPC problem is introduced, and a three-order Taylor-
type numerical differentiation formula is proposed and utilized
to discretize MPC model. In section 3, a new projected active
set conjugate gradient algorithm is developed, analyzed, and
investigated for the MPC problem, which can be generalized
from non-linear systems and lower limb rehabilitation robots.
Furthermore, the feasibility and the global convergence of this
approach are also proven. The relationship of sEMG signals
and motion intentions is established by an ESN model in
section 5; meanwhile, passive and active rehabilitation training
of lower-limb rehabilitation robot is illustrated and simulated
by the proposed method, which is based on sEMG signals with
ESN model and MPC problem. Furthermore, the disturbance
of dynamic model is also considered through simulation in

section 4. Finally, section 6 summarizes the results of lower-limb
rehabilitation robot based on the MPC technique and expects
future work.

2. FROM MPC TO NON-LINEAR
CONSTRAINED OPTIMIZATION

2.1. Problem Description
In this subsection, consider the following non-linear
control system:

{

ẋk = A(xk)xk + B(xk)uk + C(xk),
yk = h(xk),

(1)

where xk ∈ Rn is a system state variable, uk ∈ Rm is a control
input signal, A(xk) ∈ Rn×n, B(xk) ∈ Rn×m, C(xk) ∈ Rn

are the state matrix, control input matrix and constant matrix,
respectively. yk ∈ Rn denotes the system output, and h(·) is a
non-linear function.

MPC for the non-linear control system is devoted to
generating a sequence of control signals by minimizing an
objective function repeatedly over a finite moving prediction
horizon with system state and input constraints satisfied
simultaneously. For the non-linear control system (1), the MPC
problem can be described as a non-linear discrete-time optimal
control problem within input and state constraints:

min
Xk ,Uk

N
∑

i=1

∥

∥r(k+ i|k)− y(k+ i|k)
∥

∥

2
Q
+

Nu−1
∑

j=0

∥

∥1u(k+ j|k)
∥

∥

2
R

s.t. ẋ(k+ i|k) = A(k+ i|k)x(k+ i|k)+ B(k+ i|k)u(k+ j|k)
+ C(k+ i|k),

y(k+ i|k) = h(x(k+ i|k)),
x(k+ i|k) ∈ [xmin, xmax], u(k+ j|k) ∈ [umin, umax],

i = 1, 2, . . . ,N, j = 1, 2, . . . ,Nu,
(2)

where r(k + i|k) and y(k + i|k) are the desired output and the
predicted output for ith step ahead from kth sampling instant;
1u(k + j|k) = u(k + j|k) − u(k + j − 1|k) denotes the control
increment; N and Nu are the prediction horizon and control
horizon, respectively;Xk = {x(k+1|k), x(k+2|k), . . . , x(k+N|k)},
U
k = {u(k|k), u(k + 1|k), . . . , u(k + Nu − 1|k)}; Q ∈ Rn×n

and R ∈ Rm×m are real positive definite matrix, ‖·‖Q and ‖·‖R
are Euclidean norms defined as ‖x‖A =

√
xTAx, where A is a

square matrix.

2.2. Three-Order Taylor-Type Discretization
for MPC
In this subsection, a three-order Taylor-type numerical
differentiation formula with truncation error of O(h2) is
constructed for the first-order derivative approximation and is
exploited to discretize MPC problem (Jin and Zhang, 2014).
To obtain the higher-order truncation error, Guo et al. (2017)
proposed a novel Taylor-type numerical differentiation formula
for the time-varying matrix inversion.
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Lemma 1. Assume that xk ∈ C4[a, b] and xk−4, xk−3, xk−2,
xk−1, xk, xk+1 ∈ [a, b], h denotes the sampling gap. Subsequently,
a three-order Taylor-type numerical differentiation formula can
be obtained as follows:

ẋk ≈ 13xk+1 − 7xk + 2xk−1 − 10xk−2 + xk−3 + xk−4

24h
(3)

with a truncation error ofO(h3).
Proof. See Guo et al. (2017).
According to the Lemma 1, the non-linear control system (1)

can be discreted as







xk+1 = ( 2413hG
k + 7

13 I)x
k − 2

13x
k−1 + 10

13x
k−2 − 1

13x
k−3

− 1
13x

k−4 + 24
13hB

kuk + 24
13hZ

k

yk = h(xk),
(4)

where f = A(x)x+B(x)u+C(x),Gk = ∂f
∂x (x

k, uk), Bk = B(xk) =
∂f
∂u (x

k, uk), Zk = f(xk, uk)−Gkxk − Bkuk, I is an identity matrix.
Therefore, the MPC problem (2) can be rewritten in the

following form:

min
Xk ,Uk

N
∑

i=1

∥

∥r(k+ i|k)− y(k+ i|k)
∥

∥

2
Q
+

Nu−1
∑

j=0

∥

∥1u(k+ j|k)
∥

∥

2
R

s.t. xi+1 = (
24

13
hGi + 7

13
I)xi − 2

13
xi−1 + 10

13
xi−2 − 1

13
xi−3

− 1

13
xi−4 + 24

13
hBiuj + 24

13
hZi,

yi = h(xi),

xi ∈ [xmin, xmax], u
j ∈ [umin, umax],

i = 1, 2, . . . ,N, j = 1, 2, . . . ,Nu,
(5)

where xi = x(k + i|k), uj = u(k + j|k), and yi = y(k+ i|k), and
another symbols see Appendix.

In general, the MPC problem can be solved by the conjugate
gradient approach (Šantin and Havlena, 2011), and a sequence

u(i) : = [u(i)0 ; u(i)1 ; . . . ; u(i)Nu−1]

can be regarded as an initial control input sequence of the MPC
problem at Step i. In addition, the first element u∗0 of optimal
solution u∗ can be seen as a feedback control law for non-linear
control system (1).

For simplicity, the MPC problem (5) is equivalent to the
following non-linear optimization problem with linear equality
constrain and bound constrain:

min
x

Ŵ(x)

s.t. 3x = b, x ∈ �,
(6)

where x = (x, u), Ŵ(·) is a continuously differentiable function,
3 is a constant matrix, b is a constant vector, and � = {x =
(x, u)|xmin ≤ x ≤ xmax, umin ≤ u ≤ umax} is a bound
constrained set.

3. PROJECTED ACTIVE SET CONJUGATE
GRADIENT ALGORITHM FOR NON-LINEAR
CONSTRAINED OPTIMIZATION

In this section, a projected active set conjugate gradient
algorithm is proposed to solve the following non-linear
optimization problem:

min
x

Ŵ(x)

s.t. 3x = b,

x ∈ � = {x|s ≤ x ≤ t},
(7)

and the convergence of the proposed approach is developed,
investigated, and analyzed as follows.

3.1. Projected Active Set HS-Type
Conjugate Gradient Algorithm
To further analyze projected active set conjugate gradient
algorithm, some basic definitions and notions should be revisited
in this subsection. Let x∗ be a stationary point of (7), and consider
the following active set:

H∗ = {i : x∗i = si or x
∗
i = ti}.

Furthermore, define

L∗ = {1, 2, . . . , n} \H∗,

as a set of free variables, where L∗ is the complement of H∗.
Therefore, the KKT conditions for the problem (7) can be
converted as follows:

{

(si + ti − 2x∗i )∇Ŵi(x∗) ≥ 0, if i ∈ H∗,
∇Ŵi(x∗) = 0, if i ∈ L∗,

where ∇Ŵi(x) is the ith element of the gradient for Ŵ at x.
According to the literature (Kanzow and Klug, 2006), H(x) and
L(x), which approximate the active set and the free variables set
can be defined as follows:

H(x) = {i : si ≤ xi ≤ si + ψ(x) or ti − ψ(x) ≤ xi ≤ ti},
L(x) = {i : si + ψ(x) < xi < ti − ψ(x)},

where ψ(x) = min{ξ (x),ψ0} and ξ (x) =
√

∥

∥x− P�(x− ∇Ŵ(x))
∥

∥, P�(·) is a projection function defined

as P�(x) = argminω∈�‖x − ω‖2. ψ0 is a positive scalar, which
should be sufficiently small. Furthermore, it should satisfy the
following inequality:

0 < ψ0 < min
i=1,2,...,n

1

3
(si − ti).

In what follows, let xk be the point of iteration k, and for
simplicity, we abbreviate H(xk) and L(xk) as Hk and Lk.
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According to the literature (Cheng et al., 2014), the active set Hk

will be divided into the following three parts:

Hk
1 = {i : xki = si or x

k
i = ti, and (si + ti − 2xki )∇Ŵk

i ≥ 0},
Hk
2 = {i : si ≤ xki ≤ si + ψ(xk) or ti − ψ(xk) ≤ xki ≤ ti, and

(si + ti − 2xki )∇Ŵk
i < 0},

Hk
3 = {i : si < xki ≤ si + ψ(xk) or ti − ψ(xk) ≤ xki < ti, and

(si + ti − 2xki )∇Ŵk
i ≥ 0}.

(8)
It is inferred that a search direction dk can be constructed as a
feasible direction of Ŵ at xk if and only if dki ≥ 0, i ∈ {i : xki =
si and ∇Ŵk

i ≥ 0} and dki ≤ 0, i ∈ {i : xki = ti and ∇Ŵk
i ≤ 0}.

It is demonstrated that the active set Hk
1 can be seen as the

equality constraints of (7), and according to Rosen’s gradient
projection method (Rosen, 1960; Dai, 2014), an active set
projection matrix is given as follows:

P
k = Ik − (Mk)T(Mk(Mk)T)−1Mk,

Mk =
[

Ek

3

]

,
(9)

where Ek satisfies Ek(L,·)x
k = sL and Ek(U,·)x

k = −tU , L = {i : xki =
si and (si + ti − 2xki )∇Ŵk

i ≥ 0}, U = {i : xki = ti and (si + ti −
2xki )∇Ŵk

i ≥ 0},
Hence the search direction dk is defined by

dk =
{

−P
k∇Ŵk, if k = 0 or ∃i ∈ Hk

1 ∪Hk
2 ∪Hk

3 ,
−P

k∇Ŵk + βHS
k

dk−1 − ζkẑk−1, if k ≥ 1 and ∀i ∈ Lk,
(10)

where

βHSk = (Pk∇Ŵk)Tzk−1

(dk−1)Tvk−1
, ζk =

(∇Ŵk)Tdk−1

(dk−1)Tvk−1
,

zk−1 = ∇Ŵk −∇Ŵk−1, ẑk−1 = P
kzk−1,

vk−1 = zk−1 + γwk−1, γ = γ0 +max{0,− (wk−1)Tzk−1

(wk−1)Twk−1
},

wk−1 = xk − xk−1,

and γ0 is a positive constant. In what follows, the search direction
dk can be rigorously proved as a feasible descent direction of Ŵ at
xk for non-linear optimization problem (7).

Theorem 1. Suppose that xk ∈ {x|3x = b, x ∈ �} holds, and
xk is not a stationary point of (7), dk is defined by (10), then the
search direction dk is a feasible descent direction of Ŵ at xk for
non-linear optimization problem (7).

Proof. According to (8) and (10), and as per definition of the
projection matrix, the following two cases can be generalized.

Case 1. If k = 0 or ∃i ∈ Hk
2 ∪ Hk

3 , then the inequality can be
directly computed as follows:

(∇Ŵk)Tdk = (∇Ŵk)T(−P
k∇Ŵk) = −‖P∇Ŵk‖2 ≤ 0. (11)

Case 2. If k ≥ 1 and ∀i ∈ Lk, then the following inequality can
be directly obtained:

(∇Ŵk)Tdk = (∇Ŵk)T(−P
k∇Ŵk + βHSk dk−1 − ζkẑk−1)

= −‖Pk∇Ŵk‖2 + (Pk∇Ŵk)Tzk−1

(dk−1)Tvk−1
(∇Ŵk)Tdk−1

− (∇Ŵk)Tdk−1

(dk−1)Tvk−1
(∇Ŵk)TP

kzk−1

= −‖Pk∇Ŵk‖2 + (dk−1)T
∇Ŵk(∇Ŵk)TP

kzk−1

(dk−1)Tvk−1

− (dk−1)T∇Ŵk

(dk−1)Tvk−1
(∇Ŵk)TP

kzk−1

= −‖Pk∇Ŵk‖2 ≤ 0.
(12)

The search direction dk is therefore a descent direction of Ŵ at xk.
Now, the proof of the feasibility for dk is shown as follows, and

it is further inferred that

Mk(Pk∇Ŵk) = Mk(I − (Mk)T(Mk(Mk)T)−1Mk)∇Ŵk = 0.

If Ek is not an empty set, it can be seen that

Mkdk = Mk(−P
k∇Ŵk) = 0. (13)

If Ek is an empty set, thenMk = 3. Owing to Equation (10), then
the following equation can be generalized as

Mkdk = Mk(−P∇Ŵk + βHSk dk−1 − ζkẑk−1)

= −3P∇Ŵk + βHSk 3dk−1 − ζk3P(∇Ŵk − ∇Ŵk−1)

= βHSk 3dk−1.
(14)

If k = 0 or ∃i ∈ Hk
1 ∪Hk

2 ∪ Hk
3 , then

3dk = −3P
k∇Ŵk = 0. (15)

Owing to Equations (13)–(15), then we have Mkdk = 0 for all
k ≥ 0. It is also inferred that dk is a feasible descent direction for
non-linear optimization problem (7). 2

According to the above analysis and investigation, the
projected active set HS-type conjugate gradient algorithm
(PASHS) is developed, analyzed, and verified for non-linear
optimization problem (7).

Algorithm 1. (PASHS)

Step 0. Initialize x0 ∈ {x|3x = b, x ∈ �} and projection
matrixP

0, let k = 0 and positive constants ε,ψ0, γ0, η0, δ, ρ < 1.

Step 1. If
∥

∥

∥
P�(xk − P

k∇Ŵk)− xk
∥

∥

∥
≤ ε or k > kmax, stop;

else go to Step 2.
Step 2. Compute dk by (10).
Step 3. Determine a stepsize ηk = max{η0ρj|j = 0, 1, 2, . . . }

by Armijio-type line search rule:

Ŵ(xk + ηkdk) ≤ Ŵ(xk)+ δηk(Pk∇Ŵk)Tdk. (16)

Step 4. Let xk+1 = P�(xk + ηkdk), and k : = k+ 1, go to Step 1.
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Remark 1. A projected matrix P
k is computed by an active

set, which ensures iteration point satisfying equality and bounded
constraints of non-linear optimization problem (7). Assume that
if the component the active set Hk is not contained in the
previous iteration point xk, the search direction dk is updated
by the second formula of (10); otherwise, the search direction
dk is generated by the projected gradient method, which is the
first formula of (10). Furthermore, combining with Armijio-type
line search, it can be proved that the proposed PASHS algorithm
guarantees the feasibility and global convergence for non-linear
optimization problem (7).

3.2. Convergence Analysis
In this subsection, to further investigate the convergence of the
Algorithm 1 (PASHS) for non-linear optimization problem (7),
some basic assumptions should be revisited and introduced in
this subsection.

Assumption 1. The level set

D = {x ∈ �|Ŵ(x) ≤ Ŵ(x0),3x = b} (17)

is bounded.
Assumption 2. Given that the objective function Ŵ :Rn → R

is continuously differentiable on an open set N ⊆ D and its
gradient is Lipschitz continuous, there exists a positive constant
W > 0 that satisfies the following inequality:

‖∇Ŵ(x)− ∇Ŵ(y)‖ ≤ W‖x− y‖, ∀x, y ∈ N. (18)

As {Ŵ(xk)} is a descending sequence, it is clear that the sequence
{xk} generated by Algorithm 1 (PASHS) is contained in D. In
addition, according to Assumption 1, it is inferred that the
gradient of Ŵ is bounded, i.e., there exists a positive constant
γ > 0 such that

‖∇Ŵ(x)‖ ≤ γ , ∀x ∈ D. (19)

Since thematrixP is a projectedmatrix, suppose that there exists
a positive constant C > 0, and the following inequality can be
obtained:

‖P∇Ŵ(x)‖ ≤ C, ∀x ∈ D. (20)

Lemma 2. Assume that the iterative sequence {xk} generated
by Algorithm 1 (PASHS). The step size ηk is obtained via the
Armijo line search rule (16), and then there exists a positive
constant c0 > 0 such that the following inequality holds

ηk ≥ c0
‖Pk∇Ŵk‖2

‖dk‖2
(21)

for sufficiently large k.
Proof. According to Armijio-type linear search rule (16), the

following inequality can be obtained:

∞
∑

i=1

−δηk(Pk∇Ŵk)Tdk ≤ Ŵ(x0)− Ŵ(x∗) < +∞. (22)

Combined (11) and (12), and the properties of the projected
matrix P

k, the inequality can be generalized as follows

∞
∑

i=1

ηk‖Pk∇Ŵk‖2 =
∞
∑

i=1

ηk(∇Ŵk)TP
k∇Ŵk

= −
∞
∑

i=1

ηk(P
k∇Ŵk)Tdk < +∞. (23)

Now, the following two cases can be taken into account and be
utilized to prove (21).

Case 1: If ηk = 1, according to Equations (11), (12), and
(23), and by applying the Cauchy-Schwarz inequality, we can
derive that

‖Pk∇Ŵk‖2 = |(Pk∇Ŵk)Tdk| ≤ ‖Pk∇Ŵk‖ · ‖dk‖.

Thus, the inequality (21) holds.
Case 2: If ηk < 1, assume that the Armijio-type line search

rule is not true, there thus exists a positive constant ρ−1ηk such
that the following inequality holds true:

Ŵ(xk + ρ−1ηkd
k)− Ŵ(xk) > δρ−1ηk(P

k∇Ŵk)Tdk. (24)

Using the mean-value theorem and Assumption 1, there exists a
positive constant ξk ∈ (0, 1) such that xk + ξkρ−1ηkd

k ∈ D and

Ŵ(xk + ρ−1ηkd
k)− Ŵ(xk) =ρ−1ηk∇Ŵ(xk + ξkρ−1ηkd

k)Tdk

=ρ−1ηk(∇Ŵk)Tdk + ρ−1ηk(∇Ŵ(xk

+ ξkρ−1ηkd
k)− ∇Ŵk)Tdk

≤ ρ−1ηk(∇Ŵk)Tdk +Wρ−2(ηk)
2‖dk‖2.

(25)
Combining inequality (24) and Theorem 1, the following
inequality can be directly computed as

ηk ≥
(1− δ)ρ

W

‖Pk∇Ŵk‖2
‖dk‖2

. (26)

Let c0 = min{1, (1− δ)ρ/W}, the conclusion is true. 2

Lemma 3. Suppose that Assumption 2 holds. The iterative
sequence {xk} is generated by Algorithm 1 (PASHS), and then the
search direction dk defined by (10) is bounded, in other words,
there exists a positive constantM ≥ 0 such that

‖dk‖ ≤ M,∀k ∈ N
∗. (27)

Proof.According to the Assumption 2 andAlgorithm 1 (PASHS),
the following inequality can be directly obtained:

(dk−1)Tvk−1 > γ0ηk−1‖dk−1‖2.
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In addition, in term of the search direction (10) and Theorem 1,
the following inequality can be derived as

‖dk‖ ≤‖Pk∇Ŵk‖ + |βHSk | · ‖dk−1‖ + |ζk| · ‖Pkzk−1‖

≤‖P∇Ŵk‖ + ‖(Pk∇Ŵk)Tzk−1‖
γ0ηk−1‖dk−1‖2

‖dk−1‖

+ ‖(Pk∇Ŵk)Tdk−1‖
γ0ηk−1‖dk−1‖2

‖Pkzk−1‖

≤‖Pk∇Ŵk‖ + ‖(Pk∇Ŵk)‖
γ0ηk−1‖dk−1‖

(‖zk−1‖ + ‖Pkzk−1‖)

≤‖Pk∇Ŵk‖ + ‖(Pk∇Ŵk)‖W(1+ λmax(Pk))

γ0

≤C(1+ W(1+ λmax(Pk))

γ0
).

(28)
where λmax(Pk) is the maximum eigenvalue of the projected
matrix P

k. 2

Theorem 2. Suppose that Assumption 1 holds. The iterative
sequence {xk} is generated by Algorithm 1 (PASHS), and then

lim
k→∞

inf ‖Pk∇Ŵk‖ = 0. (29)

Proof. According to (21), there exists a positive constant c0
such that

ηk‖dk‖2 ≥ c0‖Pk∇Ŵk‖2. (30)

Combining Algorithm 1 with Lemma 3, it implies that

lim
k→∞

ηk‖dk‖2 = 0.

The following inequality can be generalized as k → ∞,

0 = lim
k→∞

ηk

c0
‖dk‖2 ≥ lim

k→∞
inf ‖Pk∇Ŵk‖2 ≥ 0. (31)

Hence limk→∞ inf ‖Pk∇Ŵk‖ = 0. 2

Remark. Owing to Theorem 2, it can be seen that the
Algorithm 1 (PASHS) is globally convergent for the non-linear
optimization problem (7). Combing the ESN learning algorithm
and Algorithm 1 (PASHS), the optimal controller of the MPC
problem can thus be solved rapidly; this is used for the patients
through a lower-limb rehabilitation robot with passive and active
rehabilitation training.

4. SIMULATIONS AND RESULTS

In this section, the proposed PASHS algorithm with MPC
technique is applied to the passive rehabilitation training of the
two-link lower-limb rehabilitation robot. Moreover, combining
the ESN model and intention recognition, the MPC and PASHS
algorithm also are utilized to active rehabilitation training.

FIGURE 1 | The schematic of two-link lower-limb rehabilitation robot.

4.1. Two-Link Lower-Limb Rehabilitation
Robot With MPC
The general dynamicmodel of two-link lower-limb rehabilitation
robot is shown as follows (He et al., 2015):

D(q)q̈+ C(q, q̇)q̇+ G(q) = τ , (32)

where q, q̇, q̈ ∈ R2 are angle, angular velocity and angular
acceleration of hip and knee, respectively; τ ∈ R2 is a torque
for the rehabilitation robot, which represents admissible control
inputs; D(q) ∈ R2×2 is a positive-definite inertia matrix;
C(q, q̇) ∈ R2×2 is a centrifugal and Coriolis term; and G(q) ∈ R2

is related to gravity term. The state space expression of (32) can
be described as























[

q̇

q̈

]

=
[

0 I2×2

0 −D−1(q)C(q, q̇)

] [

q

q̇

]

+
[

0

D−1(q)

]

τ

−
[

0

D−1(q)G(q)

]

,

y = h(q),

(33)

where y ∈ R2 is the end-effector position coordinates, h(·) is
a function mapping angles of the rehabilitation robot to the
position coordinates. The schematic of a two-link lower-limb
rehabilitation robot is shown in Figure 1.

As shown in Figure 3, θ1 = q1, θ2 = q2, C and r represent
the the hip joint angle, the knee joint angle, center, and radius
of the reference trajectory (which can be defined as a circle),
respectively. The lengths of the links are l1 = 0.35 m and
l2 = 0.32 m; the mass and inertia of two links are m1 = 1.8
kg, m2 = 1.65 kg and I1 = 1

4m1l
2
1 kg·m, I2 = 1

4m2l
2
2 kg·m,

respectively; the gravity constant is g = 9.801 m/s2. In addition,
the center and radius areC = (0.5, 0) and r = 0.1 m, respectively.

The parameters of the algorithm 1 (PASHS) are chosen
as follows:

ε = 10−6, ψ0 = 10−5, γ0 = 10−3, δ = 0.0001, ρ = 0.5, M0 = 3,

and the initial step size is selected as (Dai, 2011)

η0 =
∣

∣

∣

∣

∣

−γ0∇ŴkTdk

dkT(∇Ŵ(xk + γ0dk)− ∇Ŵk)

∣

∣

∣

∣

∣

.
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FIGURE 2 | The simulation results with passive rehabilitation training, (A) the angles of lower-limb rehabilitation robot with constraints (34), and (B) the angular

velocities of lower-limb rehabilitation robot with constraints (34).

FIGURE 3 | The simulation results with passive rehabilitation training, (A) the phase portraits for angles of lower-limb rehabilitation robot with constraints (34), (B) the

phase portraits for angular velocities of lower-limb rehabilitation robot with constraints (34).

Due to the proposed MPC model in section 3, the parameters of
the MPC will be defined as follows:

Q = R = I2×2,

the prediction horizon is N = 5 and the control horizon is
Nu = 5; the sampling time is h = 0.01s. The initial state
of end-effector position coordinates is y0 = (0.6, 0), and the
motion-task duration is 25 s with 5 s per cycle. The following
experiments are conducted under different constraints of torque:
while the hip joint angle and the angular velocity are constrained
in interval

[

− 2
3π ,

2
3π

]

, and [−π ,π], the knee joint angle and
the angular velocity are constrained in interval

[

− 4
3π , 0

]

, and
[−π ,π] (Jin and Zhang, 2011).

4.2. The Passive Rehabilitation Training
With Different Torques Constraints
Example 1: Consider the following control torques constraints

− 15 N·m ≤ τ1, τ2 ≤ 15 N·m, (34)

where τ1 and τ2 correspond to the torques of the hip joint
and the knee joint of a two-link lower-limb rehabilitation robot,

respectively. The numerical results of this situation are shown in
Figures 2–4.

Figure 2 represents the curves of angle and angular velocities
of the hip and knee for the two-link lower-limb rehabilitation
robot, and Figure 3 is the limit cycles of angle and angular
velocities. From Figures 2, 3, it is further inferred that the
angles and angular velocities of the lower-limb rehabilitation
robot present the periodic properties; it also verifies that the
proposed approach is feasible and effective. Figure 4A denotes
the control torque vs. time, and the hip joint and knee joint
of the rehabilitation robot can be controlled by torques τ1
and τ2, respectively. As shown in Figure 4A, it can be seen
that the control torques change periodically for two-link lower-
limb rehabilitation robot, which can help the injured patients
to do rehabilitation training stably via Algorithm 1 (PASHS)
with MPC technique. Figure 4B represents the tracking errors
of the real position of end-effector and desired trajectory,
while ex and ey are the tracking errors of horizontal ordinate
and longitudinal coordinates. As shown in Figure 4B, the
absolute value of the tracking errors is also smaller than 0.002
m, which also infers that the lower-limb rehabilitation robot
could implement the passive rehabilitation training efficiently
by the desired trajectory and MPC technique. It thus further
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FIGURE 4 | The simulation results with passive rehabilitation training, (A) the torques of lower-limb rehabilitation robot with constraints (34), and (B) the tracking errors

of lower-limb rehabilitation robot with constraints (34).

FIGURE 5 | The simulation results with passive rehabilitation training, (A) the angles of lower-limb rehabilitation robot with constraints (35), and (B) the angular

velocities of lower-limb rehabilitation robot with constraints (35).

demonstrates that the theoretical analyses are feasible and
reliable. Besides, it is very important to take into consideration
the energy consumption of rehabilitation training in real-world
rehabilitation implementations, therefore, control torques should
be constrained within relatively reasonable bounds. As shown
in Figure 4A, the optimal control input is obtained by online
solving of the MPC problem via Algorithm 1 (PASHS). However,
it can be seen from Figure 4A, that the bounded condition is too
large for non-linear optimization problem with MPCmodel, that
is, the real-time control torque τ1 is around 13 N·m. In other
words, to achieve the low-energy consumption, the boundary
constraints can be reduced to around 10 N·m, which are utilized
to control the two-link lower limb rehabilitation robot to realize
the rehabilitation cycle movement of the injured lower limb.

Example 2: Consider the following control torques with
constraint conditions

− 10 N·m ≤ τ1, τ2 ≤ 10 N·m. (35)

The numerical results of this situation are shown in Figures 5–7.
Figure 5 represents the curves of angle and angular velocities

for the two-link lower-limb rehabilitation robot, and Figure 6

shows the limit cycles of angle and angular velocities, respectively.
As can be seen from Figures 5, 6, the angular velocities of the

lower limb rehabilitation robot are affected by the control torques
with constraint conditions limited to−10–10 N·m. However, the
injured limb can stably complete rehabilitation training activities
via the algorithm 1 (PASHS) with MPC technique. Figure 7A
shows the control torque vs. time, and it can be seen that the
control input τ1 could be constrained in between −10 and 10
N·m, and the smoothness of angular velocities maybe influenced
by the constraint conditions. However, it further infers that
the stability can be maintained for the two-link lower limb
rehabilitation robot. Figure 7B plots the tracking errors of the
real trajectories of end-effector and desired trajectories, while
ex and ey are the same with the definition of Example 1. The
proposed approach is therefore suitable for passive rehabilitation
training of lower-limb rehabilitation robot.

Example 3: This example shows a comparison of different
algorithms with the MPC solution.

In order to compare the advantages of PASHS algorithm,
sequential quadratic programming (SQP) is selected to compare
with our algorithm (Sun et al., 2020). The simulation problem is
chosen as example 1, and the results are as follows:

Figure 8A represents the horizontal ordinate tracking errors
ex of lower-limb rehabilitation robots with passive rehabilitation
training, and Figure 8Bmeans the longitudinal ordinate tracking
errors ey. From those two figures, it can be seen that the
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FIGURE 6 | The simulation results with passive rehabilitation training, (A) the phase portraits for angles of lower-limb rehabilitation robot with constraints (35), and

(B) the phase portraits for angular velocities of lower-limb rehabilitation robot with constraints (35).

FIGURE 7 | The simulation results with passive rehabilitation training, (A) the torques of lower-limb rehabilitation robot with constraints (35), and (B) the tracking errors

of lower-limb rehabilitation robot with constraints (35).

FIGURE 8 | The simulation results with PASHS and SQP, (A) the tracking errors of horizontal ordinate, (B) the tracking errors of longitudinal coordinates, and (C) the

running time of algorithm at every time.

tracking errors of SQP are almost > 0.1 m at every iteration,
and sometimes the errors were closed to 1m. This is because
an optimal solution for SQP may not be in a feasible region.
However, the tracking errors of PASHS are always smaller
than 0.01 at every time. The optimal solution of the PASHS

algorithm was satisfied by the constraint conditions because
of the projective matrix and active set. PASHS was therefore
more suitable for the MPC of lower-limb rehabilitation robots.
Figure 8C is the running time of two algorithms at every
optimization; according to this figure, the running time of PASHS
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FIGURE 9 | The simulation results with 1.5 times parameters’ perturbation, (A) the angles of lower-limb rehabilitation robot with constraints (34), and (B) the angular

velocities of lower-limb rehabilitation robot with constraints (34).

FIGURE 10 | The simulation results with 1.5 times parameters’ perturbation, (A) the torques of lower-limb rehabilitation robot with constraints (34), and (B) the

tracking errors of lower-limb rehabilitation robot with constraints (34).

was nearly always smaller than 0.2 s, and the SQP running time
was around of 0.4 s. This can account for the real-time computing
capability of PASHS algorithm with the MPC technique.

Example 4: The example with parameters’ perturbation
1.5 times.

This example is reported the influence of uncertainties in
system, and the 1.5 times parameters’ perturbation is introduced
into lower-limb rehabilitation robots. During the simulation, the
parameters are selected as l1 = 0.35 m, l2 = 0.32 m,m1 = 2.7 kg,
m2 = 2.475 kg, I1 = 0.0827 kg·m, and I2 = 0.0634 kg·m. Other
conditions are the same as Example 1. The results of this example
are shown as follows.

Figures 9A,B represent the angles and angular velocities
of lower-limb rehabilitation robot with 1.5 times parameters’
perturbation, respectively. As can be seen from these figures,
the angles and angular velocities are changed periodically and
stably, although the model is disturbed. Figure 10A is the
torques of lower-limb rehabilitation robot which is subjected
to 1.5 times parameter perturbation, and Figure 10B represents
the horizontal ordinate tracking errors ex and the longitudinal
ordinate tracking errors ey of lower-limb rehabilitation robots
with 1.5 times parameters’ perturbation. From Figure 10A, we

can find that torques are limited between −15 and 15 N·m
because the mass of lower-limb rehabilitation robot is added.
However, the absolute value of tracking errors are smaller than
0.0015 m according to Figure 10B. The PASHS algorithm could
thus solve MPC problems of the lower-limb rehabilitation robot
with uncertainties in the model, and high accuracy could also
be guaranteed.

4.3. sEMG-Based Active Rehabilitation
Training
In this subsection, the active intention of injured patients is
regarded as one of the most important rehabilitation steps.
Furthermore, the joint trajectories of injured lower limb can
be identified via the mentioned ESN model based on the
active motion intention, which can be seen as the desired
trajectories of lower limb rehabilitation robots. A numerical
simulation is illustrated and analyzed for two-link lower limb
rehabilitation robot with ESN model and MPC technique. The
technical diagram of sEMG-based active rehabilitation training
and intention recognition is shown in Figure 11.

The active rehabilitation training consists of two parts. The
first one is intention recognition, which collects and preprocesses
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FIGURE 11 | The flowsheet of intention recognition and rehabilitation training.

raw sEMG signals, and then motion intention is identified by
the ESN model. The details of first part is described in the
following description.

During the data acquisition stage, a subject sits on a chair
and swings the shank periodically. The sEMG signals of seven
muscles of leg, which include the vastus rectus muscle (VR),
semitendinosus muscle (SM), tibialis anterior muscle (TA),
gastrocnemius muscle (GM), vastus lateralis muscle (VL), biceps
muscle of thigh (BM), and extensor pollicis longus (EP), need
to be recorded through data acquisition unit, respectively (Tong
et al., 2014). The acquisition device is BIOPAC MP160, which
can simultaneously capture eight channels of sEMG signals at
the default 2 kHz sample rate. Angles and angular velocities of
knee and ankle are recorded by inertial measurement unit (IMU),
which selects 100 Hz as the sample rate. Due to the sample rate of
sEMG signals is higher than IMU, the sub-sampling technology
should be implemented by (Zhang et al., 2012)

sEMGpre(k) = sEMG(20k− 19),

where sEMGpre(k) represents the sEMG signals after sub-
sampling at k times. The position of the electrodes and raw sEMG
signals are shown in Figure 12.

We then use neural network technology to establish the
relationship between sEMG signals and motion state. This is due
to the original sEMG signals being contaminated by different
measurement noises, such as direct current bias and baseline
noise (Law et al., 2011). The raw sEMG signals need to be
preprocessed, which includes a high-pass filter with 50 Hz high
cut-off frequency, full-wave rectification technology, low-pass
filter with 5 Hz low cut-off frequency and normalized technology
(Han et al., 2015). The sEMG signals can be seen as the input
signals of neural network when the noise of raw sEMG signals is
eliminated by the mentioned methods.

The ESN model is a kind of recurrent neural network that
is composed of an input layer, a hidden layer where neurons

interconnect randomly, and an output layer. The network
architecture is depicted in Figure 13.

The mathematical model of the ESNmodel can be obtained as

X
k+1 = F(MXX

k +MUU
k+1 +MFY

k),

Y
k+1 = MYX

k+1,
(36)

where F(·) is an activation function and commonly generates
from F(x) = tanh(x); MX ∈ Rl×l, MU ∈ Rl×n, MF ∈ Rl×m,
MY ∈ Rm×l are the internal connection weight of the hidden
layer, the input layer to the hidden layer connection weight
matrix, the output layer to the hidden layer feedback weight
matrix, and the hidden layer to the output layer connection
weight matrix; X and Y are the echo state and output vectors
of the ESN model, respectively. Assume thatMX ,MU , andMF

are unmodifiable during the ESNmodel training (Pan andWang,
2012). The ESN algorithm with off-line learning is summarized
as follows.

Algorithm 2. (ESN learning algorithm)

Step 0. Initialize echo state X 0 and randomly obtain a matrix
M. Normalize M̂ = M/|λmax| and generate MX = αX M̂,
MU ∈ Rl×n,MF ∈ Rl×m, where αX < 1 is a spectral radiuses of
MX and |λmax| is a spectral radius ofM.

Step 1. Compute the echo state by

X
k+1 = F(MXX

k +MU Û
k+1 +MF Ŷ

k)

for k = 0, 1, . . . ,N, where Ûk and Ŷk are the kth input and output
reference data from the training dataset.

Step 2. Collect the reservoir state X and target state Y

as follows:

X = [X 1, . . . ,XN],Y = [Ŷ1, . . . , ŶN].

Step 3. Off-line compute matrixMY = (X+Y)T , where X+ is
the pseudo-inverse of X.
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FIGURE 12 | The intention recognition experiment, (A) the sEMG signals sampling of the experiment procedure, (B) the raw sEMG signals of subject.

FIGURE 13 | The ESN diagram.

During the training process, the preprocessed sEMG signals
are recorded by the Biopac MP160 system with seven channels
from 0 to 46 s. Furthermore, the joint trajectories of injured lower
limb are recorded by IMU, the data set from 0 to 32 s is then
collected as a training set, and the remainder of the data set is
regarded as a test set. The training set is utilized to train the ESN
model, and the testing set is exploited to simulate lower limb
rehabilitation robots with active rehabilitation training. The real
angles and angular velocities are recorded by IMU, which aims at
demonstrating the accuracy of proposedmethod. The ESNmodel
has seven input neurons and four output neurons, the numbers
of ESN hidden layer neurons are 100, and the parameters are

selected as follows: αX = 0.5. The results of ESN training and
testing are shown in Figures 14, 15.

Figure 14 represents the intention recognition results of
injured lower limb via ESN model, where θ1 and θ2 mean
knee and ankle angles, respectively. Red solid lines denote real
joint trajectories of knee and ankle angles, and blue solid lines
represent training and testing results of ESN learning algorithm.
Figure 15 shows the training and testing results of knee and
ankle angular velocities through ESN learning algorithm. θ̇1 and
θ̇2 mean the angular velocities for knee and ankle, which are
shown by blue solid lines. Red solid lines represent real angular
velocities, which are recorded by IMU. As can be seen from
Figure 14, the injured lower limb swings the calf at the 5th
second, and then the knee periodically stretches and flexes about
at about 41 s. When the knee joint angle reaches 0 rad, the knee
joint swings to its maximum position. During the swing phase,
the knee joint can flex more than −1.8 rad. The angle of the
ankle joint is between 1.8 and 2.2 rad, which is always plantar
flexion. Figure 15 shows that the angular velocity of the knee
joint alternates between −2 and 2 rad/s with a cycle of about
4 s, while the angular velocity of the ankle joint varies slightly
between −0.5 and 0.5 rad/s. The motion intention of injured
lower limbs can be identified by the ESN learning algorithm
with multichannel sEMG signals from 32 to 45.3 s. Meanwhile,
it is also inferred that the proposed method shows superior
performance for intention identification of injured lower limb.

The second one is an MPC problem; the joint trajectories of
injured lower limb can be identified via an ESN model based on
active motion intention, which is viewed as desired trajectories
of the two-link lower limb rehabilitation robot. The control law
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FIGURE 14 | Intention recognition results for angles, (A) the knee angle, which is recognized by the sEMG and ESN model, and (B) the ankle angle, which is

recognized by sEMG and ESN model.

FIGURE 15 | Intention recognition results for angular velocities, (A) the knee angular velocity, which is recognized by sEMG and ESN model, and (B) the ankle angular

velocity, which is recognized by the sEMG and ESN model.

generated by the Algorithm 1 (PASHS) is transmitted to two-link
lower limb rehabilitation robot, which aims at assisting patient
to do rehabilitation training. The next predictive state also can be

computed by the optimization results ofMPC problem (2), which
feeds back to the two-link lower limb rehabilitation robot system.
Meanwhile, the MPC problem can be seen as follows:
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FIGURE 16 | The simulation results with active rehabilitation training, (A) the angles of lower-limb rehabilitation robot based on active intentions, (B) the angular

velocities of lower-limb rehabilitation robot based on active intentions, and (C) the torques of lower-limb rehabilitation robot.

min
θ
k ,θ̇
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,τ k
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∥

∥
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∥

∥

∥

2

Q
+

Nτ−1
∑

j=0

∥

∥1τ (k+ j|k)
∥
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2
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s.t.

[

θ̇
ki

θ̈
ki

]

=
[

0 I2×2

0 −D−1(θki )C(θki , θ̇
ki )

][

θ
ki

θ̇
ki

]

+
[

0

D−1(θki )

]

τ
kj

−
[

0

D−1(θki )G(θki )

]

,

θ(k+ i|k) ∈ [θmin, θmax], θ̇(k+ i|k) ∈ [θ̇min, θ̇max],

τ (k+ j|k) ∈ [τmin, τmax],

i = 1, 2, . . . ,N, j = 1, 2, . . . ,Nτ ,
(37)

where ki,j , k + i, j|k, and θ
k, θ̇

k
, and τ

k represent the angle
vector, angular velocity vector, and torque vector of two-link
lower limb rehabilitation robot at prediction horizon and control
horizon, respectively. θd(k + i|k) means the desired trajectory at
k+ i time, and1τ (k+ j|k) is the control input increment.Q = 5I
and R = I, where I is the identity matrix and the index N = 3
and Nτ = 3.

The trained ESN model can effectively identify the joint angle
and angular velocity of injured lower limb from the multichannel
sEMG signals. The lower limb rehabilitation robot takes the
results of recognition as the desired trajectories. Combining the
ESNmodel andMPC technique, the human–machine interactive
control method is developed, investigated, and analyzed for
lower limb rehabilitation robot and injured lower limb in
this paper. Besides, to design the human-machine interactive
controller, the joint angle and angular velocity that can be
regarded as desired trajectories are identified by ESN learning
algorithm from 32 to 46 s. The numerical results are shown
in Figure 16.

Figures 16A–C represent the numerical results of angles,
angular velocities, and torques of lower-limb rehabilitation robot
during rehabilitation training process. As shown in Figure 16,
the blue solid lines mean the results of knee and the red solid
lines represent the results of ankle, respectively. In light of
Figure 16, it can be seen that the patients can be stably driven
to do rehabilitation motion by lower limb rehabilitation robot,
which be oriented by a human’s active intention. It is also

inferred that the rehabilitation robot appropriately generates
torques, which assist patients to do rehabilitation training
and avoid the second injury. It is thus further demonstrated
that it is very practical to train the injured lower limb
through a human–machine interactive control method with
multichannel sEMG signals. In other words, it is also verified
that the ESN learning algorithm and Algorithm 1 (PASHS) are
feasible and effective for the rehabilitation training of injured
lower limb.

5. CONCLUSIONS

In this paper, to obtain an optimal controller of a non-
linear system, an MPC problem firstly solved by a new
PASHS algorithm has been proposed and analyzed by exploiting
the three-order Taylor discretization formula to linearize and
discretize the constraint conditions. Furthermore, the PASHS
approach not only takes advantage of a projected operator,
but it also integrates the active set into HS conjugate gradient
methods; the optimal controller can thus be rapidly solved for
a non-linear optimization problem. Moreover, the feasibility
and global convergence have been rigorously proved in this
paper. Some numerical results have been presented and analyzed
to substantiate the feasibility, effectiveness, and superiority
of the developed human–machine interactive control method
for passive/active rehabilitation training. The ESN model with
multichannel sEMG signals also has been proposed for intention
recognition, which could identify the joint angles and angular
velocities of the injured lower limb to realize active rehabilitation
training. In other words, passive rehabilitation makes patients
train through fixed-based trajectories of injured lower limb;
however, the desired trajectories of active rehabilitation training
are identified by ESN learning algorithm with multichannel
signals. Besides, combining withMPC technology and Algorithm
1 (PASHS), human-machine interactive control has been
developed, investigated, and analyzed for two-link lower limb
rehabilitation robot. The numerical results have inferred that the
proposed method could be effectively applied to passive/active
rehabilitation training. The proposed method has also solved a
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problem that creates uncertainty in the model. In future work,
more effective and real-time methods will be developed and
investigated in the solution of MPC problem and applied to
the rehabilitation of patients, such as upper limb rehabilitation
training, assisting patients to walk on the plane, or up and
down stairs.
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APPENDIX

Symbols of the Model and Algorithm

xk system state at kth sampling instant

uk control input at kth sampling instant

yk predicted output at kth sampling instant

rk desired output at kth sampling instant

Ŵ objective funtion

∇Ŵ gradient of objective function

3, b coefficient matrix and vector of equality

constraint

� bound constrained set

H(x) or H∗ active set

L(x) or L∗ free variables set

P�(x) projection function

P projection matrix

dk search direction of algorithm

ηk step size of Armijio-type line search rule

X echo state of ESN

U , Y inputs and outputs of ESN

MX , MU , MF , MY , matrixes of ESN
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