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In attempting to build neurorobotic systems based on flying animals, engineers have

come to rely on existing firmware and simulation tools designed for miniature aerial

vehicles (MAVs). Although they provide a valuable platform for the collection of data for

Deep Learning and related AI approaches, such tools are deliberately designed to be

general (supporting air, ground, and water vehicles) and feature-rich. The sheer amount

of code required to support such broad capabilities can make it a daunting task to

adapt these tools to building neurorobotic systems for flight. In this paper we present

a complementary pair of simple, object-oriented software tools (multirotor flight-control

firmware and simulation platform), each consisting of a core of a few thousand lines

of C++ code, that we offer as a candidate solution to this challenge. By providing

a minimalist application programming interface (API) for sensors and PID controllers,

our software tools make it relatively painless for engineers to prototype neuromorphic

approaches to MAV sensing and navigation. We conclude our discussion by presenting

a simple PID controller we built using the popular Nengo neural simulator in conjunction

with our flight-simulation platform.
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1. INTRODUCTION

Beginning with J.J. Gibson’s pioneering research on visual perception (Gibson, 1979), decades
of research in behavioral neuroscience have shown the importance of robust, tightly-coupled
perception/action cycles in supporting successful movement (predation, obstacle avoidance) in
challenging environments. This is especially true for flying animals like birds and insects, whose
survival depends on overcoming of a variety of forces in three-dimensional space; most obviously,
gravity (Floreano et al., 2009).

In attempting to build neurorobotic systems based on flying animals, engineers have come to rely
on existing firmware and simulation tools designed for miniature aerial vehicles (MAVs). Although
they provide a valuable platform for quick entrée into the world of first-person-view (FPV) racing
or aerial photography (firmware), and the collection of data for Deep Learning and related AI
approaches (simulation), such tools are deliberately designed to be as feature-rich and general as
possible, to appeal to the widest audience. The most popular software tools support air, ground,
and water vehicles and provide a hierarchy of safety mechanisms for minimizing the likelihood of
injury and property damage. Unsurprisingly, the sheer amount of code required to support such
broad capabilities can make it a daunting task to adapt these tools to building neurorobotic systems
for flight.
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In the remainder of this paper we present a pair of simple,
object-oriented software tools—Hackflight andMulticopterSim—
each consisting of a core of a few thousand lines of C++ code, that
we offer as a candidate solution to this challenge. These software
tools are built on the popular Arduino microcontroller platform
and the popular video game platform Unreal Engine 4. By
providing a minimalist application programming interface (API)
for sensors and PID controllers, these tools make it relatively
painless for engineers to prototype neuromorphic approaches to
MAV sensing and navigation.

2. HACKFLIGHT

Hackflight is an open-source toolkit for building multirotor
flight-control firmware and software. The project began in 2015
as an attempt by the author to build a simple open-source
flight-control firmware program for MAVs using the Arduino
platform (Banzi and Shiloh, 2014). At that time, as well as today,
there were two major firmware projects for MAVs: ArduPilot
(ArduPilot Dev Team, 2019a) and Cleanflight (Cleanflight Team,
2019). ArduPilot focuses on sophisticated mission planning with
waypoint navigation and other features, and runs mainly on
the Pixhawk flight controller. Cleanflight and its derivatives
(Betaflight, Raceflight) are popular with FPV racing enthusiasts,
and run on a broad variety of flight-control boards designed for
FPV racing. (A more recent Cleanflight derivative, iNav, adds
features for navigation and for fixed-wing aircraft). Although
both projects can trace their origin to the Arduino platform,
they have long since switched to using their own non-Arduino
hardware drivers for sensing and motor control. Both projects
are supported by large development teams and have a code base
of several hundred thousand lines (see Table 1). Hackflight, by
contrast, uses approximately 4,500 lines1.

How can Hackflight get away with using to or three orders
of magnitude less code than the two most popular flight-control
firmware packages? As discussed in the sections below, we
attribute this difference to a few important design principles:
(1) limitation to multirotor vehicles, not fixed-wing or ground
vehicles; (2) targeting programmers instead of general users; (3)
Arduino compatibility; (4) simple object-oriented API.

2.1. Features
Unlike ArduPilot, which supports a variety of vehicle types
(multirotors, fixed-wing aircraft, ground vehicles, marine
vehicles), Hackflight supports only multirotors. Cleanflight and
its derivatives, while supporting mainly multirotors (and perhaps
fixed-wing aircraft), offer a variety of configuration features
and flight modes (PID controllers), allowing everyone from
beginners to professional racing pilots to use them. Hackflight,
by contrast, uses only a the bare minimum of PID controllers

1To estimate the number of lines of code in each package, we cloned the package

repository from github, ran the cloc program (https://github.com/AlDanial/

cloc) in the root directory of the repository, and summed over the reported

number of lines in C/C++ header files, C files, and C++ files. For reference,

the respective git commits were: Hackflight: 206a6dd; Cleanflight: 83ed5df;
Ardupilot: 87a5189.

TABLE 1 | Approximate size of flight-control firmware packages.

Package Lines of code

Cleanflight 851,659

ArduPilot 283,316

Hackflight 4,445

necessary for stable flight, allowing you to create your own PID
controllers with relative ease (see section 2.4 below).

2.2. Audience
Although both ArduPilot and Cleanflight are open-source, their
target users are mostly non-programmers. There is therefore
a heavy focus in both projects on GUI-based configurator
programs. Hackflight, by contrast, is targeted toward engineers
and researchers comfortable with coding in C++. Adding a
feature to Hackflight therefore requires significantly less code
support, enabling rapid prototyping of new sensors, PID,
controllers, etc.

2.3. Arduino Compatibility
As mentioned above, Hackflight began as the author’s attempt
to build a simple open-source flight-control program using the
Arduino software libraries. Although Hackflight now supports
a subset of the STM32F3/4 flight controllers supported by
Cleanflight and its derivatives, our focus has always been
on Arduino compatibility. Thanks to the recent availability
of small, fast, 32-bit microcontroller development boards like
Teensy and the STM32L4 line from Tlera Corporation2, Arduino
compatibility is no longer tied to slower, eight-bit boards lacking
floating-point support (see Figure 1). Arduino compatibility
means that Hackflight can quickly exploit the increasing variety
of new sensors available today, without the need to write a custom
driver. Although the variety of neuromorphic sensors currently
available cannot rival the variety of Arduino-compatible MEMS
sensors (inertial measurement units, proximity sensors, and the
like), we are optimistic that neuromorphic devices will follow
the same trajectory; i.e., they will provide a UART or other
low-level serial interface for working with Arduino and similar
development platforms.

2.4. Simple Object-Oriented API
Hackflight is written entirely in C++, with the core components
written in header-only style. Our focus is on object-oriented
design, with most classes (altitude PID control, distance sensing)
being subclasses of other, more abstract classes (PID controller,
sensor). In addition to enabling extensive code re-use, this
approach allows us to abstract the driver code for a component
(sensor, motor) from the algorithms using that component
(Madgwick quaternion filter, mixer). This clean separation
allows Hackflight to be “dropped” directly into a simulation
environment (through the use of C++ #include statements),
without the need for “Hardware-In-the-Loop” (HIL), socket
connections, or other indirect mechanisms (see section 3 below).

2https://www.tindie.com/stores/TleraCorp/
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Although both ArduPilot and Cleanflight separate the driver
code from the algorithmic code, Hackflight’s consistent use
of object-oriented design allows us to avoid pre-processor
macros (#ifdef ... #else ... #endif) that are used
extensively in those two packages and can make it difficult to
arrive at a basic understanding of much of the code.

As well as keeping the codebase small, simple, and
portable, these design principles support a more direct
connection between the mathematical theory underlying
flight control and its implementation in code. Figure 2

illustrates this point by showing the main loop in Hackflight.
In the figure, each box (demands, state) represents a simple
datatype in the C++ code, and each oval (R/C Receiver,
Sensors, PID controllers, Mixer) represents an abstract
class. Mathematically, then, each abstract class is a function
from one datatype to another: Sensor :State 7→ State;
PIDController :(State × Demands) 7→ Demands. We believe
that this design principle makes Hackflight both easy to
understand and simple to adapt.

Figure 3 illustrates these principles by showing a complete
Arduino firmware sketch (main program) for a quadcopter using
the flight controller in Figure 1. As the sketch shows, Hackflight’s
simple API supports programs in which only the required
components (microcontroller, IMU, receiver, PID controllers,
mixer, motors) need to be specified (as opposed to choosing
from a list of options with a control statement). This approach
results in example programs that are easy for a programmer to
read and to adapt for use with new sensors, vehicle designs and
control paradigms.

3. MULTICOPTERSIM

Like Hackflight, MulticopterSim is designed as a minimalist
solution to a difficult engineering problem; in this case, a
physically realistic multirotor simulator general enough to
interface with a variety of flight-control packages. As with similar
efforts by others who have attempted to use a general-purpose
robotics simulator like Gazebo (Koenig and Howard, 2004),
our simulator began as a plugin for a more general robotics
simulation platform, V-REP (Rohmer et al., 2013). The lack of
realistic simulated camera images in these packages led us to
a photo-realistic game engine, UnrealEngine4 (Sanders, 2016).
Because UE4 is also used by Microsoft’s popular AirSim (Shah
et al., 2017) drone simulator, AirSim provides a useful frame-of-
reference for MulticopterSim3.

In addition to its focus on Deep Learning, AirSim has since
expanded to include support for self-driving cars, and provides
Python APIs for remote operation of the vehicles. As with flight-
control firmware discussed in the previous section, this rich set of
features translates into significantly more code.Table 2 shows the

3In March of 2017 the head of Microsoft’s AirSim project contacted the author

about using Hackflight as the flight-control software for AirSim, citing the design

principles of Hackflight is the primary reason for this interest. After a licensing

incompatibility ended up making this collaboration unfeasible, the author turned

to developing quadcopter flight simulator from scratch, using UE4 and the

Hackflight firmware.

FIGURE 1 | Arduino-compatible flight controller for Hackflight (total cost ∼$55

U.S.).

relative sizes of AirSim and MulticopterSim, based on the same
metric used in Table 1. As we saw with Hackflight, the design
principles used in MulticopterSim help keep the codebase small,
manageable, and easily extendable.

The core of MulticopterSim is the abstract C++ FlightManager
class. This class provides support for running the vehicle
dynamics and the PID control regime (e.g., Hackflight) on its
own thread, after it first disables the built-in physics in UE4. The
dynamics we used are based directly on the model presented in
Bouabdallah et al. (2004), written as a standalone, header-only
C++ class that can be easily adapted for other simulators and
applications if desired. This class also supports different frame
configurations (quadcopter, hexacopter) via virtual methods. By
running the FlightManager on its own thread, we are able
to achieve arbitrarily fast updates of the dynamics and flight-
control. We currently limit the update rate to 1kHz, based on
the data output rate of current MEMS gyrometers. It would also
be possible to run the dynamics and control on separate threads,
though we have not yet found it advantageous to do that.

The FlightManager API contains a single virtual method,
update(), which accepts the current time and the state of
the vehicle (as computed by the dynamics), and returns the
current motor values. The motor values are then passed to the
dynamics object, which computes the new vehicle state. On the
main thread, UE4’s Tick() method queries the flight manager
for the current vehicle pose (location, rotation) and displays
the vehicle and its environment kinematically at the 60–120 Hz
frame rate of the game engine. In a similar manner, the threaded
VideoManager classes can be used to process the images collected
by a simulated gimbal-mounted camera on the vehicle, using
OpenCV (Bradski, 2000). An abstract C++ Target class supports
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FIGURE 2 | Hackflight main loop.

FIGURE 3 | Sample Hackflight sketch for Arduino.

modeling interaction with other moving objects having their own
dynamics; for example, in a predator/prey scenario.

This simplicity of our flight-control scheme makes it
easy to connect MulticopterSim to existing flight-control
software like Hackflight, or to the Software-in-the-Loop
(SITL) mechanism of ArduPilot (ArduPilot Dev Team,
2019b), as modules in the MulticopterSim codebase. With

the Hackflight module, for example, we treat the control
device (e.g., joystick, Xbox game controller) as “virtual
receiver,” which provides the R/C Receiver signal shown
at the top of Figure 2. Further, the abstraction provided by
Hackflight for sensing and open-loop control allows rapid
prototyping of hybrid control systems, as we describe in the
next section.
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TABLE 2 | Approximate sizes of two flight-simulation packagesa.

Package Lines of code

AirSim 77,600

MulticopterSim 2,266

aThe line count for MulticopterSim includes the module for Hackflight (see main text for

details). For reference, the respective git commits wereMulticopterSim: aec0ae8; AirSim:

ca29068.

FIGURE 4 | Nengo model for simple PID control.

4. TOWARD NEUROMORPHIC FLIGHT
CONTROL

As a demonstration of our approach, we used the Python-
based Nengo neural simulator (Bekolay et al., 2014) to create
a simple PID controller class for altitude hold. As shown
in Figure 4, the controller consists of three populations of
200 spiking neurons: one population for computing the error
between the target altitude and current altitude (P term); one for
integrating the error (I term), and one for computing the error
derivative D) term. (For this simple experiment we used only
P.) The constants KP, KI , and Kd are implemented as arguments
to the transform parameter of the nengo.Connection
constructor; i.e., as connection weights between pools of neurons.
We set the simulation time step to 0.001 s4 and used the
default values for the remaining parameters in the Nengo
class constructors. We made this Python class available to
MulticopterSim by adding a UDP client/server module to
MulticopterSim: the PID control code runs in Python as a server,
and the C++ code for the simulator acts as a client for this server,
sending the vehicle state to the server and getting back motor
commands to fly the vehicle.

For this trial experiment, we chose a simple PID control
task common to flight-control systems like ArduPilot, namely,
takeoff to a fixed altitude. We wrote two versions of the same
basic Python server script. One version used the ArduPilot
algorithm for altitude hold, with the error between the target

4We chose this value as an order-of-magnitude approximation to the data output

rate (DOR) of contemporary inertial measurements units. As one reviewer pointed

out, it would also be useful to know how close to real-time such a model runs on

the sort of standard CPU hardware that is available on a quadcopter (see future

work section below).

FIGURE 5 | Comparison of traditional (solid line) and neural (dashed line) PID

controllers.

and actual altitudes as a set-point for a secondary, velocity-
based PID controller. The other version used the Nengo-based
PID controller shown in Figure 4. Sample results for this
experiments are provided in Figure 5. As the figure shows, the
Nengo-based control compares favorably to the algorithm that
computes the PID control signal in the traditional way, albeit with
some oscillation and greater undershoot. Although this Nengo-
based PID controller has been hand-tuned by us to work with
our simulator, and could obviously use some improvement, it
provides a simple proof of the feasibility of using an advanced
neural simulator like Nengo with a real-time flight simulator,
paving the way for more interesting experiments.

5. CONCLUSION AND FUTURE WORK

As the closest robotic approximation to flying insects, birds, and
mammals, miniature aerial vehicles (MAVs) offer a compelling
new platform for research in neuromorphic sensing, notably in
the realm of vision (Mitrokhin et al., 2019). Such research faces
unique challenges.

In the physical realm, the current weight and form factor
of commercially-available event-based dynamic vision sensor
(DVS) devices makes them impractical for deployment onmicro-
scale aerial vehicles. We are currently experimenting with our
recently-purchased DAVIS346 sensor H (40 × 60 × 25 mm, 100
g), using a RaspberryPi to convert the sensor’s USB3 signal to
UART (TTL) format for consumption by an Arduino-compatible
microcontroller. If that arrangement proves successful, we will
look into acquiring the much smaller mini-eDVS unit (18 × 18
× 7 mm, 3 g), from the same manufacturer5.

In simulation, the 60–120 Hz frame rate of game engines
like UE4 and Unity (Menard, 2011) exceeds that of most
commercially-available CMOS cameras but is inadequate for

5We thank a reviewer for suggesting the mini-eDVS, which was not available for

purchase at the time of this writing.
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emulating themulti-kilohertz data rates enabled by DVS (Gallego
et al., 2019). Hence, one of our current research directions
involves modeling the DVS datastream directly from the
dynamics of the vehicle and target object.

To extend our Nengo-based PID controller in a more
biologically realistic direction, we are also experimenting with
a Python version of our multirotor dynamics code, to exploit
Nengo’s support for reinforcement learning (Bekolay and
Eliasmith, 2011). This paradigm would provide an accelerated
way to develop neuromorphic flight controllers in an abstract
mathematical simulation, to be validated by transferring them to
MulitCopterSim, and eventually to an actual vehicle.

Finally, our Python-based client/server moduel will make it
significantly easier to experiment with other neural simulators
offering a Python API, including Brian (Stimberg et al., 2019) and
NEURON (Hines and Carnevale, 2013).

For both real and simulated flying robots, we see our
minimalist, integrated approach to software and firmware design
as a promising direction for robust aerial neurorobotics.

6. DOWNLOADS

The software described in this paper can be downloaded from the
following repositories:

• https://github.com/simondlevy/Hackflight
• https://github.com/simondlevy/MulticopterSim
• https://github.com/simondlevy/MulticopterSim/tree/

NengoModule
• https://github.com/simondlevy/gym-copter.
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