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Learning to Predict Perceptual
Distributions of Haptic Adjectives
Benjamin A. Richardson*† and Katherine J. Kuchenbecker †

Haptic Intelligence Department, Max Planck Institute for Intelligent Systems, Stuttgart, Germany

When humans touch an object with their fingertips, they can immediately describe its

tactile properties using haptic adjectives, such as hardness and roughness; however,

human perception is subjective and noisy, with significant variation across individuals and

interactions. Recent research has worked to provide robots with similar haptic intelligence

but was focused on identifying binary haptic adjectives, ignoring both attribute intensity

and perceptual variability. Combining ordinal haptic adjective labels gathered from

human subjects for a set of 60 objects with features automatically extracted from raw

multi-modal tactile data collected by a robot repeatedly touching the same objects,

we designed a machine-learning method that incorporates partial knowledge of the

distribution of object labels into training; then, from a single interaction, it predicts a

probability distribution over the set of ordinal labels. In addition to analyzing the collected

labels (10 basic haptic adjectives) and demonstrating the quality of our method’s

predictions, we hold out specific features to determine the influence of individual sensor

modalities on the predictive performance for each adjective. Our results demonstrate the

feasibility of modeling both the intensity and the variation of haptic perception, two crucial

yet previously neglected components of human haptic perception.

Keywords: haptic intelligence, perception, ordinal regression, tactile sensing, predicting probability distributions,

haptic adjectives

1. INTRODUCTION

Much of modern machine learning focuses on modeling tasks for which inputs are sorted into
discrete categories, such as image classification for visual data and speech recognition for audio
data (e.g., Deng et al., 2009; Goodfellow et al., 2016). In the domain of haptics, machine learning is
mainly used to pursue similar classification tasks in which models aim to recognize specific objects
or surfaces from tactile data (Fishel and Loeb, 2012; Spiers et al., 2016). Typically, a model is trained
on a large amount of raw tactile data that are manually labeled; given new tactile data, it can then
predict the object or surface from which the data were captured. Although haptic recognition is
an important task that humans perform well (Klatzky et al., 1985), it is limited in its applications
because the classification categories are constrained to a specific set, which restricts the experiences
that can be recognized and prevents generalization. For example, if a robot is trained to recognize
specific textures or objects, it has no way to identify anything that it hasn’t experienced before.

Given the limitations of recognition tasks, learning higher level semantic attributes will
likely benefit generalization; these attributes could include structural haptic cues, like size, or
substance-related adjectives, like hardness and texture (Klatzky et al., 1987). Because they are more
discriminable dimensions than structural cues in a purely haptic setting (Klatzky et al., 1987), this
work focuses on substance-related haptic adjectives.
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A number of haptics researchers have used machine learning
to try to teach robots to identify haptic adjectives from raw, multi-
modal tactile sensor data (Chu et al., 2013, 2015; Bhattacharjee
et al., 2018). In each of these cases, objects are labeled by humans
with various binary haptic adjectives like hard or rough, and raw
data are gathered when a tactile-sensor-equipped robot interacts
with the objects. Then, machine learning is used to train models
to map measurable features (characteristics) of the tactile data to
the human labels. Themethods used in all these cases have at least
the following three drawbacks:

1. The features that are calculated or extracted from the raw
data are carefully hand crafted. Their design often requires
expertise, and they are developed for specific tasks, which
limits how well they generalize to other tasks.

2. The binary labels (e.g., hard or not hard) are determined
either by thresholding measured mechanical properties such
as stiffness (Bhattacharjee et al., 2018) or by taking the
consensus of binary labels provided by multiple humans (Chu
et al., 2013, 2015). In either case, a rich, continuous perceptual
space for humans is reduced to a much simpler binary space
for an artificial system, which requires selection of an arbitrary
threshold and ignores any perceived differences in the strength
of attributes.

3. Associating a single label with a trial ignores the natural
variability in perception across individuals and interactions.
A self-aware human recognizes that some other people would
respond differently and might even be able to estimate the
distribution of reactions a population would provide.

In reference to the first drawback, various methods exist
for extracting representations from raw data without relying
on carefully designed features. Neural networks can extract
many levels of abstracted representations from data while
making very few assumptions about the underlying structure

(Goodfellow et al., 2016). However, the learned representations
typically depend to some extent on the specific training task.
While research in transfer learning has shown that learned
representations can be transferable to other tasks (Pan and
Yang, 2010; Bengio, 2012), other methods can find underlying
structure independently of any task. Autoencoders, for example,
learn representations of data by compressing raw data into a
lower-dimensional space and then uncompressing the middle
layer to match the input data as closely as possible (Hinton,
2006). Variational autoencoders (VAEs) work similarly, but they
represent data points as parameterized probability distributions
over a latent space (Kingma and Welling, 2014). Another
type of feature-extracting algorithm, unsupervised dictionary
learning, has been successfully used to extract features from
raw tactile data for multiple haptic classification tasks (Madry
et al., 2014). We additionally demonstrated the viability of these
methods in our previous work (Richardson and Kuchenbecker,
2019), in which the learned features greatly outperformed
hand-crafted features in the binary adjective classification tasks
presented by Chu et al. (2015). We use the same unsupervised
dictionary feature-extraction algorithms in this work. While
we acknowledge that other unsupervised learning methods,
such as autoencoders or VAEs, could discover equally or more

powerful representations of data, that is not the focus of
this paper.

Regarding the second drawback, a standard way to capture
richer information about human perception is to allow human
raters to classify samples with discretization levels that are finer
than a binary decision. One experimental method that yields
this richer information is a sorting task. By allowing raters
to sort materials by similarity and then analyzing the results
using multidimensional scaling, Bergmann Tiest and Kappers
(2006) were able to compare perceived compressibility and
roughness across many different materials. Hollins et al. (1993)
used a similar procedure to determine that hardness/softness
and roughness/smoothness are primary, orthogonal dimensions
of tactile perception, and that springiness, or the elasticity
of a material, might correspond to an additional primary
dimension. Using similar methodology, Hollins et al. (2000)
identified sticky/slippery as a third, less salient dimension of
tactile perception. Another method is to have subjects rate tactile
stimuli on a scale. Motivated by the lack of consensus regarding
the antonymous relationship between haptic adjectives (e.g.,
hard vs. soft) and the primary dimensions of tactile perception
(Picard et al., 2003; Guest et al., 2010), Chu et al. (2015) had
subjects rate 60 objects on a five-point rating scale for 10 distinct
adjectives. They chose 10 adjectives that have been considered by
various researchers to represent relevant perceptual dimensions,
but they never analyzed or published these results. This paper
will summarize the experiment used to gather the data, analyze
these ordinal labels, and use machine learning to learn and
predict them.

In reference to the third drawback, there are a variety of
ordinal regression and classification algorithms that attempt to
model the latent variable underlying the ordinal data (Gutiérrez
et al., 2016). However, these approaches typically account for
a variable that underlies the entire distribution of responses.
In the case of the labels gathered by Chu et al. (2015), each
of the 60 objects has its own distribution of labels for each
attribute, which depends on both the object and on the entire
underlying perceptual distribution of that attribute. Said another
way, different people have different opinions about how to apply
specific descriptions. For example, some people might say a
particular blanket is soft, while others perceive it to be very soft.
With enough data, these variations across people can be captured.
Thus, given a single interaction with an object, it should be
possible to predict the distribution of labels that interaction and
object would receive if experienced by a large number of people.
Such functionality would be useful for companies selling tangible
products to quickly understand how a particular material will be
perceived by a range of possible customers. However, we could
not find any algorithm that can predict a distribution of responses
from a single interaction; all of them predict single labels.

The main goal of this paper is to train models that accurately
map tactile data to distributions of ordinal haptic adjective labels.
We use unsupervised dictionary-learning methods to extract
representative features from raw tactile data, and we develop a
modified ordinal regression method to model the relationship
between the features and label distributions. A general overview
of the prediction process is shown in Figure 1. Following
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FIGURE 1 | Predicting the perceptual distribution of a haptic adjective. How

smooth will this object feel to a range of people? Features are extracted from

the robot’s raw tactile data. These are augmented to include a bias parameter

ranging from 0 to 1. Finally, ordinal regression predicts a probability density

over the five adjective ratings.

our previous work (Richardson and Kuchenbecker, 2019), we
measure the contribution of different exploratory actions and
haptic sensor modalities to the learning and prediction of the
adjectives. The secondary goal is to analyze the labels gathered
by Chu et al. (2015) and provide insight into the antonymous
relationships between common haptic adjectives.

2. MATERIALS AND METHODS

Throughout this paper, we rely on a number of algorithms
and newly designed methods to process and model the rich
haptic data in the Penn Haptic Adjective Corpus-2 (PHAC-2)
dataset (Chu et al., 2015). Section 2.1 describes the experimental
procedure that was used to gather the data, as well as the
methods we used to analyze the labels. As explained in section
2.2, dictionary-learning algorithms are used to extract features
from raw tactile data because they have proven effective for
representing tactile data for a range of tasks. Section 2.3
proposes a new method to incorporate object-specific ordinal
label distributions into model training. Finally, section 2.3.3
describes how the method is used in an existing ordinal
regression framework.

2.1. The PHAC-2 Dataset
In an effort to understand the relationship between raw
tactile information and human perception of haptic interactions
with objects, Chu et al. (2015) collected the PHAC-2 dataset
using two similar experiments. For the first, a robot equipped
with state-of-the-art tactile sensors repeatedly touched 60

objects. For the second, human subjects explored the same
60 objects in controlled conditions, providing multiple types
of haptic descriptions for each object. The experiments were
designed to provide the robot and humans with maximally
similar experiences.

The 60 objects were selected from everyday items and
constructed from common materials with the goal of providing
a wide range of tactile experiences that would stay consistent
throughout the study. To be included, an object had to be able to
stand stably on a table and provide two approximately parallel,
vertical, opposing surfaces with the same uniform texture. All
objects are between 1.5 and 8.0 cm thick and at least 10 cm tall
to facilitate two-fingered exploration. The selected objects can
be clustered into the following eight categories: 16 foam objects,
5 organic objects, 7 fabric objects, 13 plastic objects, 12 paper
objects, 2 stone objects, 2 glass objects, and 3 metal objects.

Although Chu et al. (2015) fully described the human-subject
experiment, they did not discuss or publish all of the results.
Because we present some of these unpublished results, we will
provide a summary of the robot experiment followed by a full
description of the human-subject experiment.

2.1.1. Robot Exploration
As shown in Figure 2, a Willow Garage Personal Robot 2 (PR2)
equipped with two BioTac tactile finger sensors (SynTouch LLC)
was used to gather multi-modal haptic data. It performed an
identical series of interactions with each of the 60 objects 10
times, for a total of 600 trials. The BioTac, which is designed to
imitate the sensing capabilities of a human fingertip, measures
overall pressure, vibration, temperature, heat flow, and fingertip
deflection. The robot performed the same four exploratory
procedures (EPs) (Lederman and Klatzky, 1993) for each trial
in the following order: Squeeze, Hold, Slow Slide, and Fast
Slide. These EPs were designed to imitate the frequently used
human EPs of Pressure, Static Contact, and two speeds of Lateral
Motion. Because humans prefer to determine distinct object
properties using individual EPs (Lederman and Klatzky, 1993), it
is reasonable to expect that certain robot EPs might discriminate
some object properties better than others. Each BioTac measured
the absolute steady-state fluid pressure (PDC), dynamic fluid
pressure (PAC), steady-state temperature (TDC), heat flow (TAC),
and voltages on 19 spatially distributed impedance-measuring
electrodes (E1:19). PAC was sampled at 2.2 kHz, and the other
channels were sampled at 100 Hz. To perform Squeeze, the PR2
slowly closed its gripper at constant velocity until the value
of PDC reached a predefined threshold, after which it slowly
opened the gripper to the original position. During the Hold EP,
the gripper was closed for 10 s to a position that was halfway
between the gripper distance at initial contact with the object
and at the PDC threshold during Squeeze. To perform Slow
Slide and Fast Slide, the gripper was closed by 20 and 10%,
respectively, of the Squeeze distance, moved downward by 5 cm
at 1 and 2.5 cm/s, respectively, and then released. A video of the
robot exploring the Satin Pillowcase object can be found in the
Supplementary Materials. For a more detailed description of the
robot experiment, please see Chu et al. (2013, 2015).
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FIGURE 2 | Detailed views of the BioTac-equipped PR2 hand interacting with

the Blue Sponge object, and a diagram showing the internal components of

the BioTac sensor.

2.1.2. Human-Subject Study
To capture how humans describe haptic interactions, thirty-
six people took part in an experiment in which they haptically
explored objects and provided descriptions. All procedures were
approved by the University of Pennsylvania’s Institutional Review
Board under protocol #816464. Subjects gave informed consent
and were compensated $15 for participation. The cohort of
participants contained 34 right-handed and 2 left-handed people,
with 10 males and 26 females between the ages of 18 and 21 years.
All subjects were students at the University of Pennsylvania and
had normally functioning arms and hands.

2.1.2.1. Experimental procedure
The subject sat at a table at which the objects were presented.
Individual objects were suspended from a ring stand above the
table surface so that the subject could neither lift nor move the
object. A large vertical panel prevented the subject from seeing
their hand or the object. Additionally, the subject wore noise-
canceling headphones playing white noise to block ambient
noise and any sound generated during interaction with the
objects. To imitate the limitations of the PR2, the subject was
instructed to use only their thumb and index finger from one
hand. Additionally, they were allowed to use only a fixed set
of exploratory procedures when probing the objects: pressure,
enclosure, static contact, and lateral movement. Figure 3 shows
an image of a subject mid-experiment. A video of this subject-
object interaction can be found in the Supplementary Materials.
Because Chu et al. (2015) wanted to understand natural
perceptually grounded language, subjects were not coached in
any way about how to define or apply the haptic adjectives used
in the study.

To make the experiments more manageable, the 36 subjects
were split into three groups of 12, each of which was assigned a
unique set of 20 objects (one third of the full set of 60 objects).
The 12 participants from each group interacted only with the

FIGURE 3 | A human subject touching the Blue Sponge object during

the experiment.

20 objects assigned to their group. For each participant, the
experiment was split into two stages. The first was used to
familiarize the subject with the procedure, and the second was
used to gather concrete data. In both cases, all 20 objects were
presented in a random order, and the subject touched a compliant
stress ball between each object to cleanse his or her haptic
“palate.” In the first stage, the subject freely described the feeling
of each object to the experimenter. In the second stage, the subject
was asked to rate each object on both binary and scaled ratings of
pre-determined haptic adjectives while they were interacting with
the object. The subject first selected the binary labels from a list
of 25 haptic adjectives that were displayed in random order on a
screen. Then the subject rated the object on a five-point scale for
the 10 basic haptic adjectives hard, soft, rough, smooth, slippery,
sticky, cold, warm, moldable, and springy. These scaled ratings
were collected to test whether certain basic haptic adjectives have
antonymous relationships and can be considered to lie along
relevant tactile dimensions. The 25 binary haptic adjectives were
investigated in detail by Chu et al. (2015); however, the scaled
ratings were not studied. In this work, we will present and discuss
the scaled adjective ratings for the first time.

2.1.2.2. Scaled adjective ratings
Each of the 60 objects was rated on a scale that included 1 –
“not at all (e.g., hard)”, 2 – “slightly (hard)”, 3 – “somewhat
(hard)”, 4 – “(hard)”, and 5 – “very (hard)”, for the 10 basic haptic
adjectives listed above. These adjectives are considered by some
to comprise five basic antonym pairs that lie along relevant, and
in some cases primary, dimensions of tactile perception (Hollins
et al., 2000; Okamoto et al., 2013). The posited antonym pairs are
hard – soft, rough – smooth, slippery – sticky, cold –warm, and
moldable – springy. The full set of responses for all 60 objects
is shown in Figure 4, including the names and small pictures of
the objects.

In this paper, we will analyze the collected haptic adjective
ratings on their own, and then we will deeply explore whether
features extracted from the robot’s raw tactile data can be
used to learn distributions over scaled adjective ratings. When

Frontiers in Neurorobotics | www.frontiersin.org 4 February 2020 | Volume 13 | Article 116

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Richardson and Kuchenbecker Learning Haptic Adjective Perceptual Distributions

FIGURE 4 | The 60 objects of the PHAC-2 dataset along with all the scaled adjective ratings given by subjects. The objects are shown in the same three groups of 20

that were used in the study. Colored bar length is proportional to the number of responses the indicated rating received. At a glance, it is clear that hard and soft are

antonyms, whereas moldable and springy seem to be synonymous.

considering the ratings alone, we first wanted to investigate
how well subjects agreed on how to apply each set of scaled
haptic adjective ratings to each object. We quantified interrater
agreement for each adjective-object combination by calculating
rwg , the most common suchmetric used in the literature (O’Neill,
2017). It is defined as:

rwg = 1−
S2X
σ 2
eu

= 1−
S2X

(

A2−1
12

) , (1)

where SX is the observed variance in the subjects’ ratings with
the chosen adjective scale on the chosen object and σeu is the
variance of the null distribution, which we set to the variance of
a uniform distribution across our A = 5 categories. This metric
is equal to one when all subjects choose the same adjective rating
for an object, and it is zero when they choose randomly among
the categories. Negative values indicate less agreement than what
stems from random guessing; we do not set negative values to
zero, as is sometimes done, to preserve the information provided
by the calculation (O’Neill, 2017).
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Second, given the uncertainty in the current literature, we
investigated the extent to which subjects actually used the five
adjective pairs as antonyms; we were particularly uncertain
about the antonym relationships between slippery and sticky,
and between moldable and springy, which have not been
firmly established as antonym pairs. We investigated this
question by calculating Spearman’s rank-order correlation, ρ,
between all possible pairs of adjective ratings. Spearman’s ρ is
a nonparametric measure of rank correlation, similar to the
Pearson product-moment correlation for parametric data; we
calculated it using the MATLAB function corr with the “type”
option set to “spearman.” The magnitude of the resulting value
shows the strength of the association between the two involved
adjectives, with values near zero indicating no correlation. The
sign of ρ shows the direction of the association; synonyms have a
large positive correlation, while antonyms have a large negative
correlation. We also evaluate the p-value associated with each
observed correlation, using α = 0.05 to determine significance.

2.2. Unsupervised Feature Learning
To map the robot sensor data to the human adjective
ratings, we first need to distill relevant information, or
features, from the raw data. The full learning process from
raw data to prediction of label distributions is shown in
Figure 5. Although our primary contribution pertains to
the method mapping the learned features to the labels, this
section describes the process used to extract the features
from the raw data, shown in the first two columns of
Figure 5. Specifically, we used unsupervised dictionary
learning, which has proven far more effective than using
hand-crafted features (Richardson and Kuchenbecker,
2019).

2.2.1. Description of Dictionary Learning
To learn powerful representations of the raw data, we used the
dictionary-learning method K-SVD (Aharon et al., 2006). The

goal of K-SVD is to first learn a dictionary composed of unit
vectors, called atoms, and then to use the learned dictionary
to represent new data as sparse linear combinations of the
atoms. More precisely, given a data array Y = [y1, ..., yM] ∈

IRn×M with M observations of length n, K-SVD learns a K-
atom dictionary D= [d1, ..., dK]∈ IRn×K and the corresponding
sparse code matrix X = [x1, ..., xM] ∈ IRK×M by solving the
optimization problem:

min
D, X

||Y − DX||2F subject to ||xm||0 ≤ T,

for m = 1, ...,M ,
(2)

where || · ||F denotes the Frobenius norm, || · ||0 denotes
the ℓ0 norm (which counts the nonzero entries), and T is
the sparsity constraint, which places an upper-bound on the
number of nonzero entries in each column of X. Given a
learned dictionary, K-SVD can compute sparse code matrices
for new observations. These matrices can in turn be used as
features or pooled to create more abstract features. A high-level
overview of the K-SVD process is shown in the first column of
Figure 5.

2.2.2. Feature Extraction Procedure
The PHAC-2 dataset contains sequences of four types of scalar
data (PAC, PDC, TAC, TDC) and one type of spatially distributed
data (E1:19), all captured during four different EP interactions;
a sample recording is shown in Figure 6. Because the dataset
contains both scalar and spatial temporal data, two methods
were needed to extract features. K-SVD with temporal max
pooling was used to extract features from the scalar signals,
and Spatio-Temporal Hierarchical Matching Pursuit (ST-HMP)
(Madry et al., 2014), an extension of K-SVD, was used to extract
features from the spatially arranged electrode signals. After
dictionaries were learned on a subset of all the tactile sequences,
they were then used to compute sparse code representations of
tactile sequences taken from individual trials. We learned one

FIGURE 5 | Summary of the data-processing pipeline. Samples from raw sensor data (either subsequences or patches of 1D and 2D signals, respectively) are

collected and used to learn dictionaries in an unsupervised manner. These are then used to extract features from full exploratory procedure trials. A subset of the

feature vectors is used to train neural networks to perform ordinal regression. The learned models are tested on a distinct subset of feature vectors.
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FIGURE 6 | Scalar and electrode signals from the robot’s two fingers over time during execution of the Fast Slide EP on the Blue Sponge object.

dictionary for each combination of the five sensory data streams
and the four EPs, giving 20 total dictionaries. Six randomly
selected trials per object, or 60% of the total number of trials,
were used to train the dictionaries. Each dictionary was trained
on data from only a single sensor signal and a single EP. In total,
there are 600 feature vectors for each sensor-EP pair.

To train dictionaries on the scalar signals using K-SVD,
the tactile sequences are cut into smaller overlapping vectors
of length n, each of which is used as a single observation yi
in Y . After the learned dictionary is used to extract a sparse
codes matrix for an individual tactile sequence, the sparse
codes are max pooled over subsequences, or temporal cells,
of multiple lengths. Finally, the pooled codes from each cell
are aggregated into a single feature vector representing the
tactile sequence.

On the other hand, ST-HMP extends K-SVD by performing
dictionary learning on frames from temporal sequences of
spatially distributed tactile data (Madry et al., 2014). Each frame
can be treated as a 2D tactile image, which is partitioned into
small overlapping 2D spatial patches. K-SVD is then used to
compute an underlying representation of these patches. In the K-
SVD framework, the tactile data contained within each 2D patch
from every image are treated as a single observation yi of Y . Thus,
several columns of Y correspond to a single tactile image. After
it is learned, a dictionary can be used to compute sparse code
matrices representing the patches. By spatially and temporally
pooling the max codes, ST-HMP constructs a feature vector from
a sequence of tactile images.

In our specific K-SVD implementation, the values of n were

chosen to be 22 for the 2.2 kHz PAC signal and 50 for the 100Hz
PDC, TAC, and TDC signals. In each case, vectors overlapped by
50% of their length. The dictionary sizes K were chosen to be
40 for PAC, 25 for PDC and TAC, and 10 for TDC. For temporal
pooling, we partitioned most of the tactile sequences into 16, 8, 4,
2, and 1 temporal cells for a total of 31 cells. Fast Slide sequences
of PDC, TAC, and TDC were not long enough to split into 16 cells,
so they were split into only 8, 4, 2, and 1 cells. Because PAC is
sampled at a higher frequency than the other signals, the pooling
leads to greater downsampling.

For our implementation of ST-HMP, the 19 BioTac electrode
values were arranged into a 7 × 3 array that maintained relative

measurement positions; the two additional values needed to
complete the matrix were interpolated from the nearby readings,
as done by Chebotar et al. (2016). The two resulting 7 × 3
arrays, one from each BioTac finger, were concatenated along
one of the long edges to form a 7 × 6 array. ST-HMP was
applied to the sequences of these 7 × 6 tactile images. These
images were partitioned into 3 × 3 patches, with a scanning
step size of 1. The dictionary size K was chosen to be 10.
For spatial pooling, each tactile image was divided into 9, 4,
and 1 cells for a total of 14 spatial cells. The tactile sequences
were divided into 16, 8, 4, 2, and 1 cells for a total of 31
temporal cells.

The specific parameter values for K-SVD and ST-HMP were
selected because they previously showed good performance in a
binary adjective classification task using the same raw tactile data
(Richardson and Kuchenbecker, 2019). Additionally, because
unsupervised feature learning is not the primary focus of this
work, full parameter optimization was not a priority. The full
feature extraction procedure, including the sparse coding and
the spatial and temporal pooling is summarized in the second
column of Figure 5.

2.3. Prediction of Perceptual Distributions
To map the extracted features to the distributions of labels,
we designed a new method within an ordinal regression
framework that can associate information about full label
distributions with individual interactions. We can use the
learned models to predict a distribution of labels from
data gathered during a single interaction. An overview of
the full process is shown in the last two columns of
Figure 5.

2.3.1. Method: Capturing Perceptual Distributions
As described above, each of the 60 objects has ∼12 rated
responses for each of the 10 adjectives. With each response
selected from five possible rating classes for each adjective, each
object can be given a distinct five-dimensional label La,o =

{n1, n2, n3, n4, n5} for each adjective a, where o represents the
object and nxi is the number of times that the particular rating
xi was chosen by the participants for the selected adjective-
object pair.
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FIGURE 7 | Inverse cumulative distribution function of each adjective for the Blue Sponge object. Recall the meaning of the ratings: 1 – “not at all (e.g., hard)”, 2 –

“slightly (hard)”, 3 – “somewhat (hard)”, 4 – “(hard)”, and 5 – “very (hard).”

Given the collected ratings, there exists a unique probability
distribution of ratings for any given adjective-object pair, where
for a given rating x, the P(x|a, o) = nx

∑

i nxi
. Additionally, because

the ratings are ordinal, there is a corresponding cumulative
distribution function (CDF) defined for a discrete random
variable X such that FX,(a,o)(x) = P(X ≤ x) =

∑

xi≤x P(xi|a, o).
More generally, the probability of a particular response is a
function of the random variable.

In order to predict a probability distribution of adjective
responses for a single trial, we designed a method that trains
a model to learn an approximation of the inverse of Fa,o(x)
for all (a, o) pairs, along with how that inverse function
depends on the features extracted from raw data. Then, given
new features, the model can predict the inverse of F(x) for
that specific trial, and thus an approximate distribution of
expected responses. The inverse of F(x) is called the quantile
or inverse cumulative distribution function and is defined as
F−1(p) = inf {x ∈ IR : p ≤ F(x)}, p ∈ [0, 1]. The inverse
CDF for each adjective of the Blue Sponge object is shown in
Figure 7. This approach differs from traditional cumulative link
models (Agresti, 2002) because it learns an inverse cumulative

distribution function for each specific object instead of for an
entire population. The method is slightly different for training
and validation/testing, and it works as follows.

Duringmodel training, each trial feature vector ft is duplicated
a fixed number of times W. For each duplicate ft,w, one extra

feature pw ∼ U{0, 1} is added to the end of the feature vector.
Thus, each duplicate of a trial is identical except for the last
feature. The single labels xi,(t,w) for the modified duplicates
are assigned using F−1

o (pw), where Fo(x) is the cumulative

distribution function for the object being explored during that
particular trial. One can think of pw as indicating the position of
the rater in the population; it shows in a continuous way whether

the associated rating is near the low end, the middle, or the high
end of the distribution of all ratings for this interaction.

To predict the distribution of labels for a new trial during
testing or validation, the feature vector is again duplicated.
However, in this case the extra variable is simply incremented
from 0 to 1. For each modified duplicate, one rating is predicted.
Therefore, any changes in the predicted rating across duplicates
depend only on the added variable. This method can thus predict
the inverse cumulative distribution function for single trials. The
separate training and testing processes are highlighted in the last
two columns of Figure 5.

2.3.2. Ordinal Classification Algorithm
Using the features extracted by dictionary learning and our
method for capturing perceptual distributions, we trainedmodels
to learn how to predict label distributions for new interactions.
Because the adjective ratings are ordinal (i.e., they have a relative
order but no defined scale), we use ordinal regression instead of
traditional multi-class classification. Ordinal regression accounts
for the ordered nature of the ratings, whereas multi-class
classification ignores it.

Specifically, we used the proportional odds model neural
network (NNPOM) algorithm (Gutiérrez et al., 2014). NNPOM
is an extension of the proportional odds model (POM). POM
estimates the inverse CDF of ordinal labels as a linear model of
the inputs (McCullagh, 1980). NNPOMuses a single hidden layer
of neurons between the input and the POM; it thus estimates
the inverse CDF as a linear model of nonlinear basis functions
from the hidden neurons. We chose this algorithm because it has
sufficiently high performance with low training times compared
to other common ordinal classification algorithms like support
vector machine (SVM) methods.

2.3.3. Implementation Details
With 20 separate feature sets for each combination of sensor
modality and EP, it was natural to train an adjective-specific
model for each feature set to determine which combinations
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FIGURE 8 | Neural network structure for the individual sensor model and the combined model, each with one hidden layer. The combined model takes as input the

outputs from the hidden layers of five individual models, one from each sensor modality.

perform well for which adjectives. We used NNPOM with a
sigmoid activation function to train each model. A total of 20
models, one for each feature set, was trained per adjective.

Because humans perceive tactile interactions as simultaneous
combinations of multiple sensation types, it is interesting to
determine how each robot sensor modality contributes to the
learning and prediction of different haptic properties. For
example, do vibration sensors play a more important role than
temperature sensors in the perception of rough and smooth?
To learn the contribution of each sensor modality to adjective
perception and to determine whether performance is improved
by including all sensor modalities in one model, we trained
additional NNPOMmodels for each EP; these models merge one
EP’s five learned representations from the sensor-specific models.
Specifically, the outputs of the hidden layer neurons from the
optimized sensor-specific models were used as the inputs to a
combined NNPOMmodel. The structure of the combined model
is shown in Figure 8. A total of four fully combined models, one
for each EP, was trained for each adjective to measure the overall
performance change. To compare the individual contributions of
the sensor types, additional combined models were trained while
holding out the features from a single sensor (by setting their
features all to zero). Five of these holdout models were trained
for each EP-adjective pair. To train both the sensor-specific
and combined models, we used the NNPOM implementation
developed by Gutiérrez et al. (2016).

To train and validate the models, we split the 60 objects
into separate training, validation, and testing sets for each
adjective. Six objects were used for each of the validation
and testing sets, and the remaining 48 objects comprised the
corresponding training set. To prevent the classifiers from
learning to understand objects instead of adjectives, all 10 trials
for each object were kept together in the same set.

We performed cross-validation by training models on the
training set and measuring their accuracy on the validation
sets. This approach was used to optimize the model parameter
N, the number of neurons in the hidden layer, over the
set {1, 5, 10, 20, 30}, and the parameter λ, the regularization
parameter, over the set {0.001, 0.01, 0.1, 1, 10}. During model
training the validation error was measured every 10 iterations.

After 150 iterations with no decrease in error, the training
stopped, and the model with the best performance was kept.

Each model was trained according to the process described in
section 2.3.1. Each of the training feature vectors was duplicated
15 times, a different random number p ∼ U{0, 1} was added
to each duplicate, and the duplicates were labeled using F−1

o (p)
of the corresponding object o (for a total of 15 duplicates × 10
trials = 150 training examples per object). The validation and
test trials were duplicated 99 times with the added extra variable
p incremented by 0.01 from 0 to 1 noninclusive, and the ground-
truth labels were assigned in the same way as they were for the
training samples.

Then for each adjective, four EP-specific combined models
were optimized, where each model is trained using information
from all five sensory modalities. As shown in Figure 8, the
outputs of the hidden layers of the optimized sensor-specific
models are used as inputs to the combined model. Again, cross-
validation was used to optimize N, λ, and the number of training
iterations. The training, validation, and test sets were again
prepared according to the process in section 2.3.1 with some
minor changes. In this case, the training trials for the combined
model are each comprised of the feature vectors from all five
sensor modalities. Each combined trial was duplicated 15 times,
and a different random number p ∼ U{0, 1} was added to each
combined duplicate and copied to each sensor-specific feature
vector. The labels for the combined duplicates were assigned in
the same way as above, and the validation and testing trials were
prepared similarly.

For each of the 40 combined models (4 EPs × 10 adjectives),
five additional holdout models were trained to measure the
contribution of each sensor modality to the system’s overall
performance. Each holdout model has the same parameters (N
and λ) as the corresponding combined model, and the number
of training iterations was optimized on the validation set as
described above. For each of the five holdout models, the features
from a different single sensor model were held out of training
and testing. By measuring the difference in test error between
the combined model and each of the holdout models, we can
measure the relative contribution of each sensor modality. There
are a total of 200 holdout models (5 sensor types × 4 EPs × 10
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FIGURE 9 | The boxplot on the left shows interrater agreement (rwg) for each of our 10 haptic adjective scales. The central mark of each box indicates the median of

the distribution across objects. The edges of the box are the 25th and 75th percentiles; the whiskers extend to the most extreme datapoints that are <1.5 times the

interquartile range (IQR) away from the closer 25th or 75th percentile mark. Outlier points outside this range are plotted individually. The graph on the right plots the

median of rwg against its IQR for each haptic adjective scale.

adjectives) in addition to the 40 combined models. For each EP-
adjective pair, there are a total of six types of grouped models:
the combined (nothing held out), PAC-holdout, PDC-holdout,
TAC-holdout, TDC-holdout, and E1:19-holdout models.

In all validation and testing, the performance of the models
was measured by taking the average across all trials of the per-
trial macroaveraged mean absolute error (MAEM) metric, as
defined by Baccianella et al. (2009). We use MAEM because it
measures error for imbalanced ordinal datasets more precisely
than traditional error metrics such as Mean Absolute Error.
Specifically, it normalizes the contribution to the error by class.
To define it for a single trial t, let the set of duplicate feature
vectors ft,w and associated labels yt,w be denoted Tdt , and let Xt

be the set of ratings xi that are represented in Tdt . With these
definitions in mind, the per-trialMAEM can be defined as:

MAEM
(

8̂,Tdt

)

=
1

|Xt|

∑

xi∈Xt

1
∣

∣Tdt,xi
∣

∣

∑

ft,w∈Tdt,xi

∣

∣

∣
8̂(ft,w)− yt,w

∣

∣

∣

(3)
where 8̂ represents the learned model, Tdt,xi denotes the set of
duplicates with true labels yt,w = xi, and |Xt| and |Tdt,xi | denote
the cardinality of the respective sets.

3. RESULTS

We analyze how the study participants used the scaled haptic
adjective ratings, and then we investigate the extent to which

features automatically extracted from the raw tactile data can be
used to learn distributions over scaled adjective ratings.

3.1. Human Perception
Figure 9 shows the distribution of interrater agreement rwg
across all 60 objects for each of our 10 adjective scales. The
adjectives sticky, hard, cold, warm, and rough all have relatively
high median values (> 0.75) and relatively small IQRs (< 0.35).
Soft and slippery also have relatively high medians but more
variation across objects. Smooth,moldable, and springy have the
lowest medians (< 0.70) paired with higher IQRs.

Our correlation analysis appears in Figure 10.We see a strong,
significant antonym relationship between hard and soft (ρ =

−0.71, p < 0.0001), as well as between rough and smooth

(ρ = −0.64, p < 0.0001). Sticky and slippery are uncorrelated.
Cold and warm appear to be weak, significant antonyms (ρ =

−0.30, p < 0.0001), whereas moldable and springy show a
strong, significant synonym relationship (ρ = 0.70, p < 0.0001).
Both moldable and springy are strongly positively correlated
with soft, showing subjects used these three adjectives largely
synonymously. Slippery is strongly correlated with smooth (and
anti-correlated with rough), showing that subjects used this
pair largely synonymously. Hard and cold are also significantly
positively correlated with smooth and slippery. Interestingly,
sticky has no strong positive or negative correlations.

3.2. Robot Perception
To obtain the following results, models were first trained and
optimized on separate training and validation sets. To account
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FIGURE 10 | Spearman’s rank-order correlation ρ for all pairs of haptic

adjective scales, along with the associated p-value. To improve readability, we

omit these values for insignificant correlations. Boxes showing strong

synonyms are colored blue (including the self-synonyms along the diagonal),

while strong antonyms are colored red.

for the variation in neural network performance caused by
the random initialization of the weights, 10 final models were
trained for each of the six types of grouped models (all sensory
data streams together plus five holdouts) for every EP-adjective
pair, and these models were all evaluated on a testing set that
was completely held out during training and optimization. As
a sample test-set result from a single combined model, the
predicted inverse CDFs of the adjective cold for all 10 Fast Slide
trials from the plastic Cutting Board (CB) object are shown in
Figure 11 and compared to F−1

cold,CB
. The average MAEM across

these 10 trials is 0.4355, which is less than half a point on the scale
from 1 to 5. Each trial has a different distribution because the
recorded tactile data are unique, due to slightly different initial
conditions. Some predictions are clearly quite close to the true
labels, and in other trials the predicted distribution differs from
the true distribution by approximately one rating point.

Model performance was measured by calculating the
macroaveraged mean absolute error per trial and then averaging
over all the testing trials. The average performance of every
set of 10 models is shown in Figure 12. The bars labeled
“−None” display the average performance of the models in which
no sensors were held out. The labels for the remaining bars
indicate the sensor type that was held out. Error bars display the
standard deviation of performance across the 10 models. The
Kruskal-Wallis test was used to determine whether the observed
differences in performance between the holdout models and
the combined models are statistically significant; an asterisk
indicates p < 0.05. For certain adjectives, some EPs perform
better than others. For example, Fast Slide outperforms the
other EPs for rough. Additionally it is clear that certain sensory
modalities are important for modeling particular adjectives,

and that these influential sensors can differ across EPs for a
single adjective.

4. DISCUSSION

In this paper, we set out to introduce a new learning method
for predicting perceptual distributions of haptic adjectives
from single interactions. We used this method to test the
effectiveness of certain exploratory procedures and sensory
modalities on haptic adjective prediction. The presented results
demonstrate that our proposed learning method can successfully
model a distribution of possible adjective labels for a single
interaction with an object that has never been previously
touched. Additionally, we found that certain sensory modalities
and exploratory procedures were more significant to predicting
specific haptic adjectives than others. The analysis of the human
labels allows us to evaluate how people interpret the meaning
of certain haptic adjectives and whether the adjective pairs are
indeed used as antonyms.

4.1. Human Labels
Haptics researchers have proposed the 10 adjectives we studied as
possible antonym pairs representing both relevant and primary
dimensions of perception. We wanted to further test these
propositions and also validate the collected labels for our
subsequent machine-learning investigations.

Interestingly, we found that the study participants used some
haptic adjective scales more consistently than others. These
patterns may stem from underlying dis/agreement about the
definitions of the employed adjectives, or they might come
from the design of our experiment, such as the chosen set of
objects. Sticky stands out as having high median agreement with
low variation in agreement across objects. As seen in Figure 4,
only one object (Silicone Block) was rated “very sticky.” Most
other objects were rated “not at all sticky,” yielding the overall
high agreement about the use of this adjective. Sticky has no
strong positive or negative correlations with the other studied
adjectives, but this is because there are very few objects that were
rated as sticky. Thus, we cannot make strong claims about the
relationship between sticky and other haptic adjectives.

The full 1–5 scale was used much more frequently for hard,
cold, warm, and rough. Thus, we believe their high median
agreement and relatively small agreement variation across objects
indicates that participants were generally consistent with one
another in how they applied these haptic adjectives. Indeed,
all four of these adjectives have only one physically relevant
definition in a modern American dictionary (Stevenson and
Lindberg, 2010), with the possible exception of warm, whose
physical definitions pertain both to temperature itself and to the
ability of a material to keep the body warm. It is thus reasonable
to expect that all subjects were applying approximately the same
definition as they made their hard, cold, warm, and rough

ratings. The weak, significant antonym relationship between cold
and warm reinforces the conclusion that subjects used these
adjectives consistently; a stronger antonym correlation might
have been observed if we tested thermal adjectives that were
more closelymatched in intensity, such as cool/warm or cold/hot.
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FIGURE 11 | Predicted distributions of the adjective cold for all 10 Fast Slide trials from the plastic Cutting Board object. The predicted inverse CDFs are shown in

dashed red, whereas F−1
cold,CB is shown in blue (and is the same across all 10 trials). The ratings mean 1 – “not at all cold”, 2 – “slightly cold”, 3 – “somewhat cold”, 4 –

“cold”, and 5 – “very cold.” The average MAEM across all 10 trials is 0.4355.

Interestingly, we did find significant correlations between hard

and cold despite the strong agreement about definitions that
don’t seem related. This phenomenon could be explained by
hedonics, which argues that human sensory perception is affected
by emotional attributes. For example, hard and cold could be
correlated with higher arousal, whereas soft and warm might be
correlated with higher comfort (Guest et al., 2010).

Subjects used the full range of ratings for both soft and
slippery but agreed less on their use than on that of the
aforementioned adjectives. The disagreement about soft most
likely stems from the fact that it has two distinct physically
relevant meanings (Stevenson and Lindberg, 2010): one pertains
to being easy to compress (the antonym to hard, as substantiated
by a strong negative correlation between these adjectives), while
the other pertains to texture. In contrast, slippery has only
one physical definition (Stevenson and Lindberg, 2010), so the
disagreement on its use may instead stem from disagreement
about intensity – how slippery is “very slippery?”

The relatively low agreement about the words smooth,
moldable, and springy may be a warning to other researchers
interested in using these words in their studies. As with slippery,
subjects used the full range of ratings for smooth; this haptic
adjective has only one definition (Stevenson and Lindberg, 2010),
so the observed disagreement most likely stems from variations
in how people perceive smoothness intensity. We do not know
why this adjective’s use suffered more than others from the fact
that we did not provide adjective definitions or ground our scales
with physical examples. Encouragingly, smoothwas reliably used
as an antonym to rough, again substantiating our belief that
variations in scaling (and not the fundamental definition of the
word) are responsible for smooth’s low interrater agreement.

In contrast to the other eight adjectives, moldable and
springy are uncommon words in American English; moldable

does not even have its own dictionary entry (Stevenson and
Lindberg, 2010). Thus we believe that a lack of knowledge of
the intended meanings of these adjectives (centered on whether
the surface quickly returns when pressed and released) prevented
subjects from being able to apply them consistently. This physical

property is also difficult to judge on hard materials, as they
do not deflect perceptibly when squeezed; consequently, the
disagreement about moldable and springy may simply reflect
a human inability to perceive such differences for many of the
chosen objects. Without guidance, it seems that participants use
both of these words in a similar way as soft.

These findings validate the collected labels and shed insights
on how these 10 haptic adjectives are used by everyday
Americans. We believe other researchers studying human and
robot perception of haptic properties will be able to design their
own studies more efficiently by considering these results.

4.2. Model Performance and Influence of
Sensory Modalities
The variance of human perception is rarely represented in the
labeling of data or captured by machine learning. However,
our proposed method demonstrates that it is indeed possible
to model this variance. We found interesting differences
in performance across adjectives and across EPs within
single adjectives. Additionally, by holding out each sensor
modality separately and training multiple models with the same
architecture, we were able to measure whether certain tactile
data types are better predictors of certain adjectives within single
exploratory procedures. Many of the results make intuitive sense,
suggesting that our method captures relevant structure that can
describe various haptic attributes. As far as we are aware, ours is
the first method to predict the probability distribution over an
ordinal variable from a single test trial.

For discrimination of hard, PDC seems to be the single
most important sensor modality; the increase in error for the
EP Squeeze is by far the largest increase for any holdout
model for the adjective hard. Surprisingly, TDC is also a
valuable predictor. However, this finding could be explained
by the positive correlation between hard and cold, as shown
in Figure 10. Similar patterns are apparent in the perception
of soft; again, pressure and temperature seem to be important
contributors. However, in this case the spatially distributed
fingertip deformation readings, E1:19, are more important than
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FIGURE 12 | Average error of all 10 trained models for each type of grouped model, sorted by exploratory procedure and adjective; lower error is better. Error bars

display standard deviations across 10 trained models. The label of a single bar indicates the sensor type that was held out during model training. Asterisks mark

statistically significant decreases in average performance compared to the combined model “− None”.

PDC, probably because the perception of soft heavily relies on
cutaneous information (Srinivasan and LaMotte, 1995).

Rough and smooth are more texture-related properties than
hard or soft. As might be expected, they depend more on PAC,
PDC, and E1:19. However, overall performance is weak, which

could explain why no individual sensor contributes to prediction
dramatically more than any other. This low performance aligns
with previous analysis of this dataset, which found that it is
difficult to accurately predict rough and smooth even in a
simpler binary classification task (Chu et al., 2015), most likely
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due to the degradation of the BioTac surface ridges over the
course of data collection.

For slippery, it is interesting that the only large increases in
error occur when TAC is held out, and that these increases occur
only for Slow Slide and Fast Slide. Such behavior is reasonable
because slippery pertains to sliding friction and has a relatively
strong correlation with cold. However, it is surprising that the
electrodes E1:19 don’t seem to play a significant role. For Squeeze
and Hold, it seems like slip information is encoded in every
sensor, although performance is weaker on average. The models
predict sticky very well. However, this good performance is
almost certainly because the labels for sticky have a strong bias
toward “not at all sticky,” which makes it easier to learn a model
for sticky from these data. As such, it is more accurate to say that
the robot learned only an absence of sticky, and not actually the
feeling of sticky.

Cold is influenced more by pressure than by temperature
sensors, whereas warm is influenced more by the temperature
modalities. Although it is not surprising that PAC is so important
to prediction for Fast Slide, given the dynamic nature of this
EP, it is surprising that PAC seems to have more influence on
temperature-related adjectives than texture-related adjectives.
This unexpected dependence on pressure could be a limitation
of the object set, in that a majority of the thermally conductive
objects are both hard and smooth. It is possible that these
correlated properties are easier to detect than cold itself. Warm

depends more on temperature sensors, which is reasonable given
that it was found to be more independent from the other
adjectives than cold.

The models formoldable and springy depend on many of the
same sensor modalities. For both adjectives, the electrodes E1:19
are significant for every EP. Additionally, the EPs Squeeze and
Slow Slide are both dependent on TAC. These sensor modality
influences are similar to those for soft. Interestingly, both of these
adjectives are highly correlated with soft and each other, as shown
in Figure 10. This finding may demonstrate that certain object
properties that are significant to humans’ judgment of multiple
haptic attributes are being captured by the robot sensors and used
in the modeling of adjectives.

There are a variety of potential limitations to our
implementation of these methods. Particularly, the dictionaries
were not optimized for this learning task. Thus, it is possible that
certain sensory modalities provided less information than might
be expected. Additionally, the individual sensor models were
optimized separately from the combined model. By optimizing
the individual and combined models simultaneously, the learned
representations could likely be improved.

We also did not evaluate the model performance as a
function of the number of random samples taken from the
label distributions. Undersampling could prevent models from
learning how the distribution of labels correlates with the tactile
data, whereas oversampling could cause the model to overfit
the object label distributions. A potentially useful improvement
could be to determine how many random samples to take given
the total number of ratings for a particular object-adjective pair.
Additionally, evaluating whether certain training samples appear
to be outliers from the primary response distribution could be

useful. Similarly, we did not look deeply into performance on
a per-object basis. Our initial analysis demonstrated that some
models perform terribly on one or two objects while performing
excellently on the majority. Using a larger and more diverse set of
objects and collecting ratings from more human subjects would
likely improve all of our results.

Because our ordinal regression method evaluates each
adjective individually, it ignores the strong positive and negative
correlations between adjectives. It might be possible to improve
both performance and training efficiency by implementing
an algorithm that can learn all adjectives simultaneously,
therefore incorporating these inter-adjective relationships into
the learning process.

In our results, we analyzed how the models performed over
the full range of responses when data from certain sensors
were removed. However, it is possible that certain sensory
modalities might not have equivalent predictive power across the
full response range. For example, to determine the probability
distribution of an interaction for the adjective rough, a model
could use PDC to make a distinction between the ratings {1,2,3}
and {4,5}, but be unable to use it to discern ratings within
those two groups. Similarly, the electrodes E1:19 could provide
information that allows the model to discriminate between
ratings 4 and 5. Analyzing how the contributions of sensor
modalities vary across the full range of ratings could provide
greater insight into what type of information is used to determine
the haptic attributes of objects.

4.3. Conclusion
Machine learning in haptics research often ignores the richness
of human perception, instead reducing natural variance to a
binary metric. We used the large PHAC-2 dataset to present and
analyze labels that represent the range of human haptic attribute
perception more granularly than traditional binary labels, also
validating the antonym pairs of hard–soft, rough–smooth, and
cold–warm. We developed a method that captured this richer
information in a model, which could then be used to predict
probability distributions of all 10 haptic adjectives for objects
that had never been touched before. We believe this research
is an important step toward fully capturing the robustness and
richness of human haptic perception. Furthermore, because
unsupervised dictionary learning and our new method are easily
adapted to different sensor and data types, we believe our
research broadens the range of tasks that can be tackled with
machine learning.

AUTHOR CONTRIBUTIONS

BR defined the proposed methodology, performed all machine-
learning experiments, analyzed the corresponding results, wrote
the majority of the manuscript, and edited the final manuscript.
KK designed and supervised the collection of the PHAC-2
dataset, analyzed the interrater agreement and correlations for
the adjective labels, wrote the corresponding descriptions and
analyses, and edited the final manuscript.

Frontiers in Neurorobotics | www.frontiersin.org 14 February 2020 | Volume 13 | Article 116

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Richardson and Kuchenbecker Learning Haptic Adjective Perceptual Distributions

FUNDING

Dataset collection was funded by the USA Defense Advanced
Research Projects Agency (DARPA) under Activity E within the
Broad Operational Language Translation (BOLT) program. Data
analysis was funded by the Max Planck Society.

ACKNOWLEDGMENTS

The authors thank the Penn/UCB BOLT-E team (Chu et al.,
2013, 2015) for gathering the data and giving us access to it,
with special thanks to J. M. Perez-Tejada for his descriptions
of the collection procedure and efforts to recover videos
of the experiments. The authors thank David Schultheiss

for designing an earlier version of the image shown in
Figure 1. Finally, the authors thank the International Max
Planck Research School for Intelligent Systems (IMPRS-IS) for
supporting BR.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnbot.
2019.00116/full#supplementary-material

Two videos of the PHAC-2 experiments are
included. The first demonstrates the robot exploration
experiment, and the second demonstrates the human
exploration experiment.

REFERENCES

Agresti, A. (2002). Categorical Data Analysis, Vol. 482. Hoboken, NJ: John Wiley

& Sons.

Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD: an algorithm

for designing overcomplete dictionaries for sparse representation.

IEEE Trans. Signal Process. 54, 4311–4322. doi: 10.1109/TSP.2006.8

81199

Baccianella, S., Esuli, A., and Sebastiani, F. (2009). “Evaluation measures for

ordinal regression,” in 2009 Ninth International Conference on Intelligent

Systems Design and Applications (Pisa), 283–287. doi: 10.1109/ISDA.

2009.230

Bengio, Y. (2012). “Deep learning of representations for unsupervised and transfer

learning,” in Proceedings of ICML Workshop on Unsupervised and Transfer

Learning, Vol. 27, eds I. Guyon, G. Dror, V. Lemaire, G. Taylor, and D. Silver

(Bellevue, WA: PMLR), 17–36.

Bergmann Tiest, W. M., and Kappers, A. M. L. (2006). Analysis

of haptic perception of materials by multidimensional

scaling and physical measurements of roughness and

compressibility. Acta Psychol. 121, 1–20. doi: 10.1016/j.actpsy.2005.

04.005

Bhattacharjee, T., Rehg, J. M., and Kemp, C. C. (2018). Inferring object

properties with a tactile-sensing array given varying joint stiffness and

velocity. Int. J. Human. Robot. 15:1750024. doi: 10.1142/S02198436175

00244

Chebotar, Y., Hausman, K., Su, Z., Sukhatme, G. S., and Schaal, S. (2016). “Self-

supervised regrasping using spatio-temporal tactile features and reinforcement

learning,” in Proceedings of the IEEE/RSJ International Conference on Intelligent

Robots and Systems (Daejeon), 1960–1966. doi: 10.1109/IROS.2016.77

59309

Chu, V., McMahon, I., Riano, L., McDonald, C. G., He, Q., Perez-Tejada, J. M., et

al. (2013). “Using robotic exploratory procedures to learn the meaning of haptic

adjectives,” in Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA) (Karlsruhe), 3048–3055. doi: 10.1109/ICRA.2013.66

31000

Chu, V., McMahon, I., Riano, L., McDonald, C. G., He, Q., Perez-Tejada, J. M., et

al. (2015). Robotic learning of haptic adjectives through physical interaction.

Robot. Auton. Syst. 63, 279–292. doi: 10.1016/j.robot.2014.09.021

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009).

“ImageNet: a large-scale hierarchical image database,” in IEEE Conference

on Computer Vision and Pattern Recognition (Miami, FL), 248–255.

doi: 10.1109/CVPR.2009.5206848

Fishel, J. A., and Loeb, G. E. (2012). Bayesian exploration for intelligent

identification of textures. Front. Neurorobot. 6:4. doi: 10.3389/fnbot.2012.00004

Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep Learning (Adaptive

Computation and Machine Learning series). Cambridge, MA: The MIT Press.

Guest, S., Dessirier, J. M., Mehrabyan, A., McGlone, F., Essick, G., Gescheider,

G., et al. (2010). The development and validation of sensory and emotional

scales of touch perception. Attent. Percept. Psychophys. 73, 531–550.

doi: 10.3758/s13414-010-0037-y

Gutiérrez, P. A., Pérez-Ortiz, M., Sánchez-Monedero, J., Fernández-

Navarro, F., and Hervás-Martínez, C. (2016). Ordinal regression

methods: survey and experimental study. IEEE Trans.

Knowl. Data Eng. 28, 127–146. doi: 10.1109/TKDE.2015.24

57911
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