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Recently, multi-task learning (MTL) has been extensively studied for various face

processing tasks, including face detection, landmark localization, pose estimation, and

gender recognition. This approach endeavors to train a better model by exploiting the

synergy among the related tasks. However, the raw face dataset used for training

often contains sensitive and private information, which can be maliciously recovered

by carefully analyzing the model and outputs. To address this problem, we propose a

novel privacy-preserving multi-task learning approach that utilizes the differential private

stochastic gradient descent algorithm to optimize the end-to-end multi-task model and

weighs the loss functions of multiple tasks to improve learning efficiency and prediction

accuracy. Specifically, calibrated noise is added to the gradient of loss functions to

preserve the privacy of the training data during model training. Furthermore, we exploit

the homoscedastic uncertainty to balance different learning tasks. The experiments

demonstrate that the proposed approach yields differential privacy guarantees without

decreasing the accuracy of HyperFace under a desirable privacy budget.

Keywords: multi-task learning, privacy preserving, differential private stochastic gradient descent, balance

different learning tasks, differential privacy guarantees

1. INTRODUCTION

Recently, neurorobotics has made great progress in a wide range of scientific fields, including
locomotion and motor control, learning and memory systems, action selection and value systems,
and many more. All of these models need to consider the problem of simultaneously solving
multiple related tasks, which is the prevalent idea behind multi-task learning (MTL). MTL focuses
on learning several tasks simultaneously by transferring knowledge among these tasks. In training
machine learning models, the required datasets may contain private and sensitive information.
Privacy is considered the private sphere of an individual or group that secludes information about
themselves from the public environment and ought to be preserved adequately. These datasets for
machine learning tasks enable faster commercial or scientific progress, but privacy-preservation
has become an urgent issue that needs to be addressed. In early works, some privacy-preserving
techniques, including k-anonymity (Sweeney, 2002), l-diversity (Machanavajjhala et al., 2006), and
t-closeness (Li et al., 2007), that anonymize the data before analyzing it, were proposed. Even
though curators can apply several simple anonymization techniques, sensitive personal information
still has a high probability of being disclosed (Wang et al., 2010). As an essential and robust
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privacy model, differential privacy can successfully resist most
privacy attacks and provide a provable privacy guarantee
(Dwork, 2011a; McMahan et al., 2017; Wang et al., 2018;
Erlingsson et al., 2019). Moreover, differentially private MTL
was introduced by Gupta et al. (2016), where the authors
proposed a differentially private algorithm using a noisy task
relation matrix and developed an attribute-wise noise addition
scheme that significantly improves the utility of their proposed
method. However, those algorithms significantly increase the
time complexity of MTL, making it difficult to perform the
iterative calculation in training models.

MTL is widely used in a broad range of practical applications,
including face detection (Ranjan et al., 2017; Ahn et al., 2018;
Chen et al., 2018; Zhao et al., 2019), federated MTL (Smith
et al., 2017; Corinzia and Buhmann, 2019; Sattler et al., 2019),
speech recognition (Huang et al., 2013; Kim et al., 2017; Liu
et al., 2017; Subramanian et al., 2018), and other applications
(Doersch and Zisserman, 2017; Han et al., 2017; Liu et al., 2017,
2019; Hessel et al., 2019). Ranjan et al. (2017) presented an
algorithm for simultaneous face detection, landmark localization,
pose estimation, and gender recognition. The proposed method,
called HyperFace, exploits the synergy among the tasks to boost
their individual performance. Their work demonstrates that
HyperFace is able to capture both global and local information
regarding faces and performs significantly better than many
competitive algorithms for each of these four tasks. However,
multi-task models without privacy preservation may impair
the privacy of users during the training process of models.
Therefore, enforcing privacy preservation on private datasets
is a challenge that needs to be addressed. Existing privacy
preservation methods have successfully integrated differential
privacy into iterative training processes like stochastic gradient
descent (Abadi et al., 2016; Papernot et al., 2016; McMahan
et al., 2017; Wu et al., 2017; Bun et al., 2018; Wang et al., 2018).
These differentially private frameworks preserve private and
sensitive data within an acceptable performance range in single-
task models. However, up until now, there have been few studies
on privacy preservation in MTL. Another major challenge is that
a reasonable trade-off of multi-task losses can make the noise
level more balanced among individual tasks. Previous methods
(Sermanet et al., 2013; Eigen and Fergus, 2015; Kokkinos, 2017)
alwaysmanually adjust weights or just initialize weights and often
become trapped in a local optimum.

As mentioned above, MTL has made great progress in a wide
range of practical applications. However, an important challenge
is how to preserve private and sensitive information contained
in training datasets. In practice, existing privacy preservation
methods have been successfully applied to many single-task
models, but they are rarely applied to multi-task models. In this
paper, we integrate the rigorous differential privacy mechanism
with a multi-task framework named HyperFace through training
five related tasks within a desirable privacy budget. We adopt
the differential private stochastic gradient descent algorithm to
optimize the end-to-end multi-task model. Specifically, Gaussian
noise is added to the gradient of loss functions for preserving
the privacy of the training data during the training process
of the model. Furthermore, we exploit the homoscedastic
uncertainty to weigh loss functions of multiple tasks, which can

improve learning efficiency and prediction accuracy. Our main
contributions are summarized as follows:

1. We propose a novel privacy-preserving multi-task learning
framework that provides differential privacy guarantees
on HyperFace.

2. The loss functions of multiple tasks are adjusted by utilizing
the homoscedastic uncertainty, which makes the model more
balanced within the privacy budget on individual tasks.

3. We evaluate our approach on face detection, landmark
localization, pose estimation, and gender recognition. The
extensive experiments demonstrate that data privacy can be
preserved without decreasing accuracy.

The rest of the paper is organized as follows. The next section
reviews differential privacy and multi-task learning. Section 3
describes the proposed approach in detail. Section 4 analyzes the
experimental results of our approach, and section 5 concludes
the paper.

2. RELATED WORK

In this section, we briefly review differential privacy and multi-
task learning.

2.1. Differential Privacy
Differential privacy is a new and promising model presented
by Dwork et al. (2006b) in 2006. It provides strong privacy
guarantees by requiring the indistinguishability of whether or not
an individual’s data exists in a dataset (McSherry and Talwar,
2007; Dwork, 2011b; Dwork and Roth, 2014; McMahan et al.,
2017; Wang et al., 2018; Erlingsson et al., 2019). We regard
a dataset as d or d′ on the basis of whether the individual
is present or not. A differential privacy mechanism provides
indistinguishability guarantees with respect to the pair (d, d′);
the datasets d and d′ are referred to as adjacent datasets. The
definition of (ε, δ)-differential privacy is provided as follow:

DEFINITION 1. A randomized mechanismM :D → R satisfies
(ε, δ)-differential privacy if, for any two adjacent datasets d, d′ ∈ D

and for any subset of outputs Y ⊆ R, it holds that

Pr[M(X) ∈ Y] ≤ eεPr[M(X′) ∈ Y]+ δ

The parameter ε denotes the privacy budget, which controls the
privacy level of M. For a small ε, the probability distributions
of the output results of M on d and d′ are extremely similar,
and it is difficult for attackers to distinguish the two datasets. In
addition, the parameter δ, which provides a possibility to violate
ε-differential privacy, does not exist in the original definition of
ε-differential privacy (Dwork et al., 2006a).

There are several common noise perturbation mechanisms
for differential privacy that mask the original datasets or
intermediate results during the training process of models:
the Laplace mechanism, the exponential mechanism, and the
Gaussian mechanism. Phan et al. (2017) developed a novel
mechanism that injects Laplace noise into the computation of
Layer-Wise Relevance Propagation (LRP) to preserve differential
privacy in deep learning. Chaudhuri et al. (2011, 2013) adopted
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the exponential mechanism as a privacy-preserving tuning
method by training classifiers with different parameters on
disjoint subsets of the data and then randomizing the selection
of which classifier to release. In Yin and Liu (2017), numerical
evaluations of the Gaussian cumulative density function are used
to obtain the optimal variance to improve the utility of output
perturbation Gaussian mechanisms for differential privacy.

To add less noise, the gradient computation of loss functions
samples Gaussian noise instead of Laplacian noise, since the
tail of the Gaussian distribution diminishes far more rapidly
than that of the Laplacian distribution. A general paradigm for
approximating the deterministic real-valued function f :M → R

with a differential privacy mechanism is via additive noise
calibrated to f ’s sensitivity Sf , which is defined as the maximum
of the absolute distance |f (d) − f (d′)| where d and d′ are
adjacent datasets. For instance, the Gaussian noise mechanism
is defined by

M(d) , f (d)+N (0, S2f · σ
2)

where N (0, S2
f
· σ 2) is the normal (Gaussian) distribution with

mean 0 and standard deviation Sf σ .

2.2. Multi-Task Learning
MTL is an interesting and promising area in machine learning
that aims to improve the performance of multiple related
learning tasks by transferring useful information among them.
Based on an assumption that all of the tasks, or at least
a subset of them, are related, jointly learning multiple tasks
is empirically and theoretically found to lead to better
performance than learning them independently. Recently, MTL
is becoming increasingly popular in many applications, such
as recommendation, natural language processing, and face
detection. Yin and Liu (2017) proposed a pose-directed multi-
task convolutional neural network (CNN), andmost importantly,
an energy-based weight analysis method to explore how CNN-
based multi-task learning works. However, multi-task learning
algorithms may cause the leakage of information from different
models across different tasks. Specifically, an attacker can
participate in the multi-task learning process through one task,
thereby acquiring model information of another task. To address
this problem, Liu et al. (2018) developed a provable privacy-
preserving MTL protocol that incorporates a homomorphic
encryption technique to achieve the best security guarantee. Xie
et al. (2017) proposed a novel privacy-preserving distributed
multi-task learning framework for asynchronous updates and
privacy preservation. Previous methods always apply privacy
preservation to the parameters of models. In this paper, we
combine HyperFace with a differential privacy mechanism for
preserving the privacy of original datasets.

3. METHODOLOGY

This section presents our approach of differentially private
learning on HyperFace, which provides a (ε, δ)-differential
privacy guarantee for HyperFace. Section 3.1 summarizes the
definition of the problem that needs to be resolved and

TABLE 1 | Notations and symbols.

Notations Descriptions

(ε, δ) Privacy budget

L(·) General loss function with parameters

gt (xi ),gt (xi ) Gradient and bounded gradient of the ith example in

a subset of examples Lt

ĝt Noisy gradient of a subset of examples

‖ · ‖2,S ℓ2 norm of the gradient of an example

N (·) Normal Gaussian distribution

ηt Learning rate of a subset of examples

loss∗ Corresponding loss functions of different tasks

the notations used, section 3.2 introduces the details of the
framework, while section 3.3 discusses and analyzes the method.

3.1. Review of the Problem and Notations
HyperFace is a prevalent multi-task model for simultaneously
learning the related tasks of face detection, landmark localization,
pose estimation, and gender recognition. In this model,
the synergy between related tasks is utilized to improve
the performance of the individual tasks. There are two
main problems for preserving privacy and boosting model
performance in Hyperface. In practice, facial datasets used to
train Hyperface contain a large amount of private and sensitive
information. Training data without a strong privacy guarantee
can be maliciously recovered by carefully analyzing the model
and outputs. Another problem is that the performance of a multi-
task model is highly dependent on appropriate weights among
the loss of each task. However, HyperFace simply initializes
these weights, which may cause the model to become trapped
in a local optimum rather than reaching the global optimum.
The notations and symbols used throughout the paper are
summarized in Table 1.

3.2. Our Approach
In this paper, we present a novel approach called Differentially
Private Learning on HyperFace (DPLH) to preserve the privacy
of original facial datasets that contain landmark coordinates, pose
estimations, gender information, and much more. To collect the
faces with private attributes that need to be protected, we need
to crop all faces from each given image in facial datasets. When
optimizing the loss function of each task with the stochastic
gradient descent algorithm, we allocate a reasonable privacy
budget across each of the gradient updates on examples and
analyze the privacy cost of the trained model. To trade off the
privacy and utility of the Hyperface multi-task model, we utilize
the synergy between related tasks to adjust the weights of each
loss function.

3.2.1. Pre-training

There are two pre-training steps that need to be performed
before the model update on Hyperface by applying the Gaussian
mechanism: regional candidate selection and initializing the
weights of HyperFace.
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FIGURE 1 | Per iterative computation process for preserving privacy on each learning task.

FIGURE 2 | The architecture of DPLH.
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FIGURE 3 | Results for the loss and accuracy of face detection and gender classification on HyperFace (H) vs. DPLH. (A) Loss of face detection. (B) Accuracy of face

detection. (C) Loss of gender classification. (D) Accuracy of gender classification.

Facial datasets usually involve a large amount of private
information that is potentially distributed over the images. In
order to apply the differential privacy mechanism to these facial
data, the given images are selectively cropped to generate positive
candidate regions with faces and negative candidate regions
without faces by regional candidate selection. We filter out
candidate regions as positive and negative by computing the
Intersection over Union (IOU) overlap. The candidate regions
are considered as positive with an IOU overlap of more than 0.5,
and negative candidate regions have an IOU overlap of <0.35.
Subsequently, these selected candidate regions are scaled to 227
* 227 pixels as the input of the model. In addition, the ground
truths, such as landmark localization and the visibility factor
corresponding to these candidate regions, need to be adjusted as
well since they are relative to the original images rather than the
selected regions.

Initializing the weights of network is helpful for finding
global optimal solutions or avoiding becoming trapped in poor
local optimal solutions. A good initialization facilitates gradient
propagation in deep networks and avoids the problems of a
vanishing gradient or gradient exploding. In this paper, we pre-
train a single-task model, whose parameters are initialized to
the default, for face detection with an input of the candidate
regions generated by regional selection. Then, the parameters
of this single task are used to initialize HyperFace for better
convergence performance.

3.2.2. Training

Training data may not be effectively protected by only adding
noise to the final parameters that result from the training process.
Generally, there are few useful and exact characterizations of the
dependence of these parameters on the training data. Moreover,
adding excessive noise to the parameters may destroy the utility
of the learning model. In the worst case, excessive noise will
degrade the model performance, and a small amount of noise
may not provide a strong privacy guarantee. Hence, we propose a
novel approach for HyperFace to preserve the privacy of training
data and control the influence of training data in the stochastic
gradient descent computation.

In the training process of our DPLH model, we iteratively
compute the gradient update from training data and then apply
the Gaussian mechanism for differential privacy to the gradient
update. Figure 1 shows the per iterative computation process for
protecting privacy while learning each task. Suppose the training
datasets with N examples consist of selected candidate regions
with adjusted ground truth. Given a sampling probability q,
clipping threshold S, and noise multiplier z, our approach focuses
on minimizing each task loss function L(θ j) with parameter
θ j(1 ≤ j ≤ 5) in the training process by using a stochastic
gradient descent optimizing algorithm. At each step of stochastic
gradient descent, we select a subset of the examples Lt ⊆ [1, ...,N]
by choosing each example with probability q. We compute the
gradient ∇θ jL(θ

j, xi) as gt(xi) with each example i ∈ Lt , clip
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FIGURE 4 | Results for the loss and mean square error (MSE) of landmark localization, landmark visibility, and pose estimation on HyperFace(H) vs. DPLH. (A) Loss of

landmark localization. (B) Loss of landmark visibility. (C) Loss of pose estimation. (D) MSE of landmark localization. (E) MSE of landmark visibility. (F) MSE of pose

estimation.

each gradient to have maximum ℓ2 norm S using gt(xi) =

gt(xi) ∗min(1, S
||gt(xi)||2

), then add noise to them and compute the

average of the noisy gradients by ĝt =
1
qN (

∑
i gt(xi)+N (0, σ 2I)).

Subsequently, we take a step in the opposite direction of this
average noisy gradient, like θt+1 = θt − ηt ĝt . In addition to
outputting the model, we estimate the privacy budget of an

iterative Gaussian noise mechanism by privacy accounting. We
describe our approach in more detail below.

Loss functions. In order to better measure the performance
of the model, different loss functions and evaluation metrics
are used for the training tasks of face detection, landmark
localization, landmark visibility, pose estimation, and
gender classification.
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Face detection.We use regional candidate selection to generate
positive candidate regions with faces (l = 1) and negative
candidate regions without faces (l = 0) in given images. We
can train the face detection task with loss function lossD, given
as follows

lossD = (1− l) ∗ log(1− p)−1 + l ∗ log(p)−1, (1)

where p is the prediction probability of a candidate region with
a face.

Landmark localization.We consider the category of candidate
regions and the visibility factor of landmark points when
computing the loss function of landmark localization. There is
no loss corresponding to invisible landmark points or negative
candidate regions. We compute the loss of landmark location by

lossL =
l

2Nl

Nl∑

i=1

vi((âi − ai)
2 + (b̂i − bi)

2), (2)

where (âi, b̂i) is the ith predicted landmark location. If the ith

landmark is visible in the positive candidate region, the visibility
factor vi is 1; otherwise, it is 0.Nl is the total number of landmark
points in a candidate region.

Landmark visibility. This task is learned with positive regions
to estimate the presence of the predicted landmark. The loss
function is shown in (3)

lossV =
l

Nl

∑

i=1

Nl(v̂i − vi)
2, (3)

where v̂i is the predicted visibility of the ith landmark.
Pose estimation. The head pose annotation contains roll, pitch,

and yaw expressed as (p1, p2, p3) in ground truth. We compute
the loss of pose estimation for a positive candidate region by

lossP =
l

3
((p̂1 − p1)

2 + (p̂2 − p2)
2 + (p̂3 − p3)

2), (4)

where (p̂1, p̂2, p̂3) are the pose estimations.
Gender classification. Predicting gender is a two-class problem

similar to face detection. Computing the loss of the gender
prediction for a positive candidate region is defined as

lossG = l(1− g) ∗ log(1− pg)
−1 + lg ∗ log(pg)

−1, (5)

where g = 0 if the gender is male, or else g = 1. pg is the predicted
probability of male.

Trading off loss. The simple approach to combining losses
among learning tasks is to directly perform a linear weighted sum
of the losses for each individual task, as shown in (6)

lossall =

5∑

i=1

λti lossti , (6)

where ti is the ith element from the set of tasks T = {D, L,V , P,G}
and parameter λti is the weight of each task. However, the naive

method of tuning weights manually makes it difficult to balance
the performance of individual tasks. We aim to better balance
the process of iteratively computing average noisy gradient for
each task by using homoscedastic task uncertainty to trade off
multiple loss functions. Homoscedastic task uncertainty, which
captures the relative confidence between tasks, is a quantity that
remains constant for all input data and varies between different
tasks, reflecting the uncertainty inherent to the regression or
classification task. Homoscedastic uncertainty can be used as a
basis for weighting losses in a multi-task learning problem. The
positive scalar σ added to the total loss function relates to the
uncertainty of the tasks as measured in terms of entropy. The
total loss function with the homoscedastic task uncertainty is
finally provided by

L(λti , σ1, σ2, . . . , σi) =
5∑

i=1

1

2σ 2
i

Lti (λti )+ logσ 2
i (7)

Privacy accounting. For our DPLH model, we attach
importance to computing the overall privacy cost of training.
When iteratively computing the average noisy gradient for
each task, the composability of differential privacy allows
the privacy accountant to accumulate the privacy cost
corresponding to all of the gradients. To make the testing
process more transparent and to ensure our model provides
a (ε, δ)-differential privacy guarantee, we encapsulate the key
differential privacy mechanism into the privacy accountant and
positively tune the hyperparameters to achieve different levels of
privacy protection.

3.2.3. Architecture of DPLH

In this section, we describe the flow of processing training data in
our proposed method, as illustrated in Figure 2.

As shown in Figure 2, the model input is composed
of candidate regions with a specific size of (227, 227)
generated by the regional candidate selection. Positive candidate
regions have full ground truth of face detection, landmark
coordinates, landmark visibility factors, pose estimation, and
gender information. In contrast, negative candidate regions
without faces have the ground truth of face detection, and
other ground truths are set to none. These data with ground
truth are used to adjust the weights and bias of each layer in
the network. In pre-training, we train a single-task model for
face detection, and the learned parameters from this network
are used to initialize Hyperface. Thereby, we use the candidate
regions with adjusted ground truth as input to train the privacy-
preserving model. We iteratively compute the gradient update
from training data and then apply the Gaussian mechanism
for differential privacy to the gradient update, and the privacy
cost of iterative calculation is accumulated and accounted. We
balance the loss functions of related tasks to ensure better
performance for applying the differential privacy mechanism
on each task and output a modest small loss. In the end, we
will get an output of the evaluation metric results and the
privacy budget.
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TABLE 2 | T-test results on the performance of multiple tasks at different epochs.

Epochs Task 50 100 150 200 250 300 350 400 450 500

P-value (%)

lossD 0.068 0.054 0.039 0.033 0.032 0.031 0.031 0.031 0.030 0.030

lossL 0.185 0.123 0.105 0.089 0.075 0.073 0.073 0.072 0.072 0.072

lossV 0.314 0.285 0.212 0.183 0.179 0.178 0.178 0.178 0.178 0.178

lossP 0.351 0.317 0.297 0.283 0.279 0.279 0.279 0.279 0.279 0.279

lossG 0.063 0.057 0.049 0.039 0.038 0.038 0.038 0.038 0.038 0.038

AccD 0.093 0.078 0.061 0.057 0.056 0.054 0.054 0.054 0.054 0.054

AccG 0.045 0.031 0.027 0.025 0.024 0.024 0.024 0.024 0.024 0.024

MSEL 0.194 0.172 0.151 0.143 0.139 0.138 0.138 0.138 0.138 0.138

MSEV 0.112 0.089 0.073 0.067 0.065 0.065 0.065 0.065 0.065 0.065

MSEP 0.185 0.169 0.154 0.147 0.145 0.145 0.145 0.145 0.145 0.145

3.3. Discussion
The proposed approach, DPLH, aims to preserve private
and sensitive information in training datasets. The main
idea is to iteratively compute the HyperFace model update
from optimizing loss functions and then apply the Gaussian
mechanism for differential privacy to the gradient update
before incorporating it into the model. In principle, this
method can theoretically provide the (ε, δ)-differential privacy
guarantee and can prevent private and sensitive data from
being maliciously recovered. Furthermore, we use a privacy
accountant to estimate the privacy cost of the training process
and use different loss functions and evaluation metrics for the
training tasks of face detection, landmark localization, landmark
visibility, pose estimation, and gender classification. In the
end, the losses of each task have reasonable, small values,
and the evaluation metrics of each loss function will reflect
good performance.

4. EXPERIMENT

In this section, we evaluate our approach on the AFLW
dataset (Martin Koestinger and Bischof, 2011) and report
the results of each task for different noise levels. Section
4.1 introduces the details of the experimental setup and
the training dataset. Sections 4.2 and 4.3 show the results
and analysis.

4.1. Dataset and Experimental Setup
We train our model by using the AFLW dataset, which
contains more than 25,000 faces in almost 22,000 real-world
images with full poses, gender variations, and some more
private information. It provides 21 landmark point coordinates
per face, along with the face bounding-box, face pose (yaw,
pitch, and roll), and gender information. These data cannot
be directly used as inputs to the model. We need to
prepare the input of the model for evaluating face detection,
landmark localization, landmark visibility, pose estimation, and
gender classification.

The input does not come from the original dataset, AFLW,
but rather comprises candidate regions generated by the regional
candidate selection method. The proposed method introduced in

section 3 is used for cropping essential regions from images and
adjusting privacy-related facial features. For each image from the
AFLW dataset, we use the Selective Search (Van de Sande et al.,
2011) algorithm to generate candidate regions for faces and then
filter out positive samples and negative samples by computing
the Intersection over Union (IOU) overlap. The equation of
IOU is

IOU =
Aoverlap

Aunion
(8)

where Aoverlap is the area of overlap between the selected
candidate region and the ground truth bounding-box, and
Aunion is the area of union encompassed by both of them.
Positive candidate regions are selected from regions that have
an IOU overlap of more than 0.5 with the ground truth
bounding box. The candidate regions with an IOU overlap
of <0.35 are considered as negative candidate regions, and
other candidate regions are neglected. Subsequently, we scale
these selected candidate regions uniformly to 227 * 227 pixels
to match the input size of our model. Note that the faces
in the images have full pose variations, resulting in some of
the landmark points being invisible. We use a visibility factor
to annotate visible landmarks provided by the AFLW dataset
(Martin Koestinger and Bischof, 2011). However, the given
ground truth fiducial coordinates and corresponding visibility
factors are relative to the original images. Training the model
directly by using the raw information can have a negative
impact on the quality of the model. Hence, the landmark
points are shifted and scaled to the selected candidate regions
using (9)

(ai, bi) = (
ci − c

w
∗ w′,

di − d

h
∗ h′) (9)

where (ci, di)′s are the given ground truth fiducial coordinates,
and (ai, bi)′s are the ground truth fiducial coordinates of
adjusted candidate regions. These regions can be characterized
by {c, d,w, h}, where (c, d) are the upper left coordinates of
a region and w, h are the width and height of the region,
respectively. In the end, some of the visible landmark
are modified to be invisible, because positive candidate
regions may not contain all (ai, bi)′s. The landmark
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FIGURE 5 | Results for low noise level training, modest noise level training, and high noise level training with privacy budget (10, 10−5), (5, 10−5), (0.7, 10−5). (A) Low

noise level. (B) Modest noise level. (C) High noise level.

points of negative candidate regions are set to invisible
by default.

In our experiments, we obtain more than 40,000 candidate
regions. We take 70% of them to train models and the rest
for evaluating model performance. Moreover, we set some
hyperparameters to fixed values for the next experiments.
The sampling probability is given by q = L/Nc, where
Nc is the total number of inputs and L is the number of

samples involved in a batch. We fix the clipping threshold
S = 0.5, the number of epochs E = 500, batch size
L = 32, input size Nc = 40, 000, and the learning
rate η = 0.00015.

4.2. Results of Model Training
In this experiment, we compare the results of our model
DPLH training and HyperFace training. In order to better

Frontiers in Neurorobotics | www.frontiersin.org 9 January 2020 | Volume 13 | Article 112

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles


Zhang et al. Differentially Private Learning on HyperFace

evaluate the performance of each task, we choose the accuracy
metrics for face detection and gender classification and
the mean square error metrics for landmark localization,
landmark visibility, and pose estimation. We allocate the
privacy budget (ε, δ) as (5, 10−5) to DPLH to provide a
privacy guarantee.

Figure 3 shows the results for the loss and accuracy of
face detection and gender classification on the two models.
A declining trend of losses is depicted in Figure 3A for face
detection and Figure 3C for gender classification. As the epochs
increase in number, the losses of HyperFace on these tasks
decline faster, and the losses of DPLH decrease gently. After
convergence, the two models consume 500 epochs to reduce the
loss to desirably small values. Moreover, the losses from training
HyperFace converge to a smaller level than the differentially
private losses. Additionally, Figures 3B,D illustrate the growth
trend of accuracy for face detection and gender classification,
respectively. The accuracy from training HyperFace consuming
the same number of epochs rises fastest, and, in addition,
the metrics evaluating the two models both converge to high
levels. Figure 4 shows the results for the loss and mean
square error (MSE) of landmark localization, landmark visibility,
and pose estimation on the two models. Similar to Figure 3,
the losses of the three tasks on training the two models
converge to desirably small levels. The MSE curves decline
to small values, converging to a nearby level, respectively on
their tasks.

These figures indicate that the final results for loss,
accuracy, and mean square error converge to a desirable level.
From the perspective of three metrics, the two models can
almost achieve approximate results on respective tasks, which
demonstrates that our approach decreases model performance
and utility very little compared with HyperFace. Our approach
achieves 90 and 86% accuracy on face detection and gender
classification, respectively, compared with 99 and 90% accuracy
on HyperFace. For landmark localization, landmark visibility,
and pose estimation, our approach achieves 0.255, 0.25, and
0.27 mean square error, respectively, compared with 0.245,
0.2, and 0.24 on HyperFace. The final results indicate that
our approach can provide a differential privacy guarantee
with desirable performance of the system. We conduct a
t-test on the performance of multiple tasks with different
epochs. For p-value ≤ 0.05, the performance of the DPLH
method approximates to that of Hyperface without privacy
preservation. As shown in Table 2, the extremely small p-value
indicates that the DPLH method provides a differential privacy
guarantee and achieves performance that is similar to that of the
Hyperface method.

4.3. Results for Training With Different
Noise Levels
In this experiment, we consider the effect of different noise
levels on the performance of DPLH. We compare three noise
levels for the training characteristics of HyperFace integrated
with differential privacy. We set a privacy budget ε =

0.7 to train the DPLH with a number of epochs E =

500, which represents high noise level training. Besides, we
consume a fixed ε = 5 privacy budget per epoch to train
HyperFace with a modest noise level. Moreover, low noise level
training is performed on HyperFace with a privacy budget
ε = 10 per epoch. In addition, that we fix δ = 10−5

per figure.
Figure 5 shows the results on different privacy budgets (ε, δ).

In each plot, we show the evaluation of accuracy for two
tasks (face detection and gender classification) and the mean
square error for three tasks (landmark localization, landmark
visibility, and pose estimation). Figures 5A,B illustrate low noise
level training and modest noise level training, respectively.
The accuracy of the two noise levels rises gently, and the
accuracy of low noise level training is higher than that of
modest noise level training after convergence. On the evaluation
of MSE, the two noise level trainings converge to a desirable
level. In contrast, Figure 5C illustrates high noise level training
performance on DPLH. The accuracy of high noise level training
converges to lower values, and the MSE shows a unstable
decline trend. We achieve desirable performance for (10, 10−5),
(5, 10−5) differential privacy, respectively, since the accuracy
converges to a high level and the MSE converges to a low
level. However, (0.7, 10−5)-differential privacy training brings too
much noise to the model, resulting in unstable performance.
The final results indicate that acceptable noise level training
on HyperFace can provide a differential privacy guarantee and
stable performance, while an excessive noise level may destroy
the performance and utility of the model, making privacy
preservation irrelevant.

5. CONCLUSION

In this paper, we propose a novel method called differentially
private learning on HyperFace that provides a differential
privacy guarantee and desirable performance for simultaneously
learning face detection, landmark localization, pose estimation,
and gender classification. We demonstrate the utility and
effectiveness of our model for training all four tasks
on the datasets. In the future, we will carry out further
studies on selecting the most appropriate noise level
automatically to provide a differential privacy guarantee
and excellent performance.
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