AUTHOR=Mick Sébastien , Lapeyre Mattieu , Rouanet Pierre , Halgand Christophe , Benois-Pineau Jenny , Paclet Florent , Cattaert Daniel , Oudeyer Pierre-Yves , de Rugy Aymar TITLE=Reachy, a 3D-Printed Human-Like Robotic Arm as a Testbed for Human-Robot Control Strategies JOURNAL=Frontiers in Neurorobotics VOLUME=13 YEAR=2019 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2019.00065 DOI=10.3389/fnbot.2019.00065 ISSN=1662-5218 ABSTRACT=

To this day, despite the increasing motor capability of robotic devices, elaborating efficient control strategies is still a key challenge in the field of humanoid robotic arms. In particular, providing a human “pilot” with efficient ways to drive such a robotic arm requires thorough testing prior to integration into a finished system. Additionally, when it is needed to preserve anatomical consistency between pilot and robot, such testing requires to employ devices showing human-like features. To fulfill this need for a biomimetic test platform, we present Reachy, a human-like life-scale robotic arm with seven joints from shoulder to wrist. Although Reachy does not include a poly-articulated hand and is therefore more suitable for studying reaching than manipulation, a robotic hand prototype from available third-party projects could be integrated to it. Its 3D-printed structure and off-the-shelf actuators make it inexpensive relatively to the price of an industrial-grade robot. Using an open-source architecture, its design makes it broadly connectable and customizable, so it can be integrated into many applications. To illustrate how Reachy can connect to external devices, this paper presents several proofs of concept where it is operated with various control strategies, such as tele-operation or gaze-driven control. In this way, Reachy can help researchers to explore, develop and test innovative control strategies and interfaces on a human-like robot.