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Robust haptic sensation systems are essential for obtaining dexterous robots. Currently,

we have solutions for small surface areas, such as fingers, but affordable and robust

techniques for covering large areas of an arbitrary 3D surface are still missing. Here, we

introduce a general machine learning framework to infer multi-contact haptic forces on

a 3D robot’s limb surface from internal deformation measured by only a few physical

sensors. The general idea of this framework is to predict first the whole surface

deformation pattern from the sparsely placed sensors and then to infer number, locations,

and force magnitudes of unknown contact points. We show how this can be done even

if training data can only be obtained for single-contact points using transfer learning at

the example of a modified limb of the Poppy robot. With only 10 strain-gauge sensors

we obtain a high accuracy also for multiple-contact points. The method can be applied

to arbitrarily shaped surfaces and physical sensor types, as long as training data can

be obtained.

Keywords: haptics, machine learning, multi-contact, sparse sensor network, transfer learning, insufficient data,

robotic application

1. INTRODUCTION

Robots can become helpful in more and more application areas if they can robustly interact with
the real world and if they are safe for humans. Haptic sensation is a crucial element on the path of
developing such robots. Up to now, haptic research advances aremainly on creating touch-sensitive
robotic hands (Odhner et al. , 2014; Kaboli et al. , 2016; Boutry et al. , 2018; OpenAI et al. , 2018;
Ward-Cherrier et al. , 2018), surgical robotic systems (Munawar and Fischer, 2016; Peters et al. ,
2018), and commercial touch screens, such as the in-display fingerprint readers and so forth. These
systems have in common that only a small area is equipped with highly precise haptic sensation
capabilities. However, there is only little research on large-surface haptics for robotic applications
with some recent advances using a grid of small patches (Rogelio Guadarrama-Olvera et al. , 2018),
flexible haptic skins (Lee, 2017), and machine learning approaches (Sun andMartius, 2018). Haptic
feedback at large parts of the body is essential for robots to learn interaction patterns, exploit the
environment, detect unexpected or safety-relevant situations for mastering real-world challenges.

Ideally, a haptic system should provide contact parameters, such as contact location and
directional force information (e.g., normal and shear forces) for multiple-contact points with high
spatial and temporal resolution. In addition, a haptic system should be: robust to long-lasting
impacts, low-cost, energy-saving, and computationally inexpensive. In this work, we present a
favorable trade-off of the above criteria with a particular emphasis on the needs of large-surface
haptic systems. For instance, the location, strength, and number of contact points are more
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important for large surface haptic applications than texture and
slip information which is desired in dexterous manipulation
tasks. The application we are aiming at is a robot in a
developmental learning setting that needs to learn behavior
from interactions. Thus our design aims at whole surface haptic
sensation with high robustness and simple hardware.

Existing large-area haptic devices are often bulky,
requiring complex manufacturing processes, have high
energy consumption and are not robust enough for long-
term interaction. Typical approaches use a dense arrangement
of physical sensor units (piezoelectric, resistive, capacitive,
pressure, infrared, etc.). There are several ways to replace such
dense configurations by sparse sensor arrangement reducing
hardware complexity and potentially energy consumption
while maintaining most of the functionality. This includes
optical methods (Koppelhuber and Bimber, 2013) and electrical
impedance tomography methods (Lee, 2017).

This paper proposes a haptic system HapDefX capable of
detecting multiple normal forces on a large 3D robot’s limb
surface using a sparse sensor configuration, as shown in Figure 1.
We tackle the problem of reducing energy consumption and
increasing data acquisition rate by opting for a small number
of optimally placed physical sensors, which measure the internal
deformation. In addition to the high resolution for single-contact
points, this system can robustly localize up to four contact points
and predict the respective force magnitude.

The contributions of the paper are the following:

• proposal of a new way of implementing a 3D multi-contact
haptic sensor;

• a machine learning framework for inferring contact
location and normal forces for multiple-contact points
using insufficient real multi-contact data;

• implementation of the proposed system on a robotic limb.

The paper is structured as follows: section 2 reviews the related
work. Section 3 presents the method by first giving an overview
and then investigating the different aspects from single- to multi-
contact prediction. In section 4, we present the results on the
robotic limb. We close with a discussion in section 5.

2. RELATED WORK

In order to make it easier to understand state-of-the-art large
surface haptic applications, we gathered a representative set
of approaches: array shaped sensors, optic sensors, anisotropic
electrical impedance tomography (aEIT) based sensors and
sensor systems with sparse sensor configuration.

HEX-o-SKIN by Mittendorfer and Cheng (2011) integrates a
proximity sensor, an accelerometer, three normal force sensors
and a temperature sensor on one 15× 15 mm hexagonal printed
circuit. It allows covering a surface, e.g., of a robot exoskeleton,
with multiple HEX-o-SKIN chips forming a dense array. In this
way a large surface can be covered, however, the robustness of the
system might be challenging.

TacCylinder by Ward-Cherrier et al. (2018) is a camera-
based system. It is shaped as a cylinder with a tube through its

center, which holds a camera and a bulky catadioptric mirror
system to capture the whole limb deformation pattern internally.
The sensor has a dimension of 63 × 63 × 82mm and delivers
comprehensive information about the deformation of the soft
cylindrical surface. The surface shape is restricted and a new
shape requires an adaptation of the optical system. Additionally,
the inside of the robotic part needs to be empty for this method
to be applicable.

Lee (2017) uses stretchable conductive materials (skin) with
a few electrodes assembled on the skin boundary and measure
all combinations of pairwise conductivities. The force location
is determined by anisotropic electrical impedance tomography
(aEIT). Only 16 electrodes are required on the skin boundary
with skin size of 40 × 100mm. However large computational
costs arise, requiring special hardware.

In a previous work, we proposed HapDef (Sun and Martius,
2018), which employs Machine Learning for single-contact force
prediction from a sparse sensor configuration. With this method
contact position and force magnitude can be inferred with
sufficient precision on a robot shin with a surface of about 200×
120mm equipped with only 10 strain gauge sensors (8 × 5mm
each). The positions of the sensors are optimized using different
optimization criteria. Using the same physical setup and taking it
as a basis, we explore in this paper the potential of the setting for
more precise measurement and the extension to multiple-contact
points. We will elaborate in section 3 on more details about the
HapDef design choices.

To put themulti-contact tactile spatial accuracy in relation, we
compare it with the acuity of human tactile sensation quantified
by the “two point discrimination” criterion, which is widely
used to assess tactile perception in clinical settings (Shooter,
2005; Blumenfeld, 2010). It describes the ability to distinguish
two nearby stimulations on the skin to be two distinct contacts
instead of one. In the human body, this ability largely differs from
body part to body part (Bickley et al. , 2017). We will compare to
the acuity on the fingertip, palm and shin.

3. METHODS

We propose a method to obtain a robust, multi-contact, large-
surface haptic device from a few sparsely placed deformation
sensors. The key ingredient is that we use Machine Learning
methods to infer the interaction forces from the sensor readings.
In Sun and Martius (2018), such approach was already used
to find an optimal placement of the sensors and to infer
single-contact information. In order to tackle the multi-contact
scenario, we propose to use a new pipeline using neural networks.

For a better understanding of the problem, we elaborate on the
hardware setup and some of the design choices. In order to obtain
a system with whole surface haptic sensation and with high
robustness to interactions, we decided to pursue an approach
where sensors are placed inside a deformable shell. The shell
is around a structural part, in our case of a robot limb, which
has an inner support structure. In our case the inside is mostly
hollow to be lightweight and allow for a easy assembly of strain
gauge sensors. The surface also contains holes for several reasons:
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FIGURE 1 | Overall goal of the method: inferring multi-contact haptic stimulation from a few sensors measuring internal deformation.

FIGURE 2 | General framework for multi-contact information inference: the framework first correlates the 10 real physical strain gauge values with the simulated

sensor values using Transfer Net FT and then predicts the deformation pattern based on the simulated sensor values using Reconstruction Net FR. According to the

predicted deformation pattern, the T multi-contact’s candidate locations are extracted using k-Max method. Depending on the rigidness distribution of the 3D

structure, the force magnitude of each candidate contact is predicted based on the location and the deformation using Sensitivity Net FS. All predicted candidate

force information is then summarized into robot system for further post-processing to cancel out the spurious contacts.

firstly, to simplify the assembly, and secondly, to improve the
localization by breaking the symmetry of the deformation pattern
and limiting the deformation effects. A more systematic study
of the best surface shape remains for future work. In principle,
our method is generic and can be applied to other hardware
configurations with arbitrary shapes. A decisive property of the
hardware needs to be that force interactions yield a stimulation of
multiple sensors, which can be typically achieved by adjusting the
softness of the shell. A result of the sparse sensor configuration
is that sensor values do not directly correspond to a force and
location of a haptic stimulus, which instead need to be inferred.

We start with the problem description. Given sensor readings
from a small number of real physical sensors R ∈ R

NR (here
NR = 10), we want to infer one of two quantities, where both

can be used to describe the multi-contact information. The first
one is the deformation map of the entire surface represented by
the displacement at many points D ∈ R

ND (ND = 3, 211 here)
with Di = 0 indicating no displacement at the particular point.
This representation is similar to a visual input representing the
interaction forces by a pattern. The second quantity is the explicit
contact point information, i.e., the positions Pi ∈ R

3 and their
respective force impact Ai ∈ R for all of the unknown T contact
points i ∈ [1, . . . ,T]. This representation is much more direct
and low-dimensional and allows for a quantitative comparison in
terms of position and force (magnitude) accuracy but it is more
difficult to obtain.

In order to implement the inference machine for the above
task, a large amount of data is required. In Sun and Martius
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(2018), a physical probing device is proposed which allows to
automatically collect data for single-contact points. Performing
this with multiple-contact points is very challenging. One would
need to stimulate the system in a controlledmanner withmultiple
independent force tips. More than one robotic arm would be
required in order to automate this process. Apart from the
hardware effort, their control would need to avoid collision
and so forth. We propose, instead, to exploit finite element
simulations for simulating the deformation patterns for multiple
contact points. This allows us to collect large amount of data
linking contact points to displacements of the surface. How to
link this to the real system? For the real system, we use the data
for single-contact points. The hypothesis is that, after learning
the relation between real sensor values and simulated sensor
values, we can then predict the deformation patterns for multiple
contact points. It remains to predict the position and force
magnitude for each contact point from the deformation pattern.
Our architecture is presented in Figure 2.

The method decomposes into three sub-tasks: transfer
learning from real to simulated sensors (Transfer Net FT),
reconstruction of the deformation pattern from simulated
sensors (Reconstruction Net FR), and the position and force
magnitude prediction (position and number of contacts detector
k-Max and Sensitivity Net FS). Each of the neural networks can
be trained using its own training scheme and dataset which we
explain in the following.

3.1. Transfer Learning
The transfer learning is implemented by the Transfer Net FT

mapping real sensor values R to simulated sensor values S. In
order to obtain the simulated sensor values, the model of the
structure (here the robotic limb) is simulated with a finite element
simulation tool, ANSYS by Lawrence (2011). For a virtually
applied force, the displacement of the surface can be calculated.
The real sensors are strain gauge sensors that measure elongation.
Since they are applied on the inside of the skeleton shell, an
elongation occurs if the surface is bent. However, in simulation
we cannot measure such bending directly, as we do not have
the corresponding sensors but we can recover the displacement
information solely from the individual points. We can solve this
problem by defining a “virtual sensor" as a patch of points around
the physical sensors, as shown in Figure 5B. In our case, for
each physical sensor we have a patch of 24 points, as explained
in section 4.2. The training data is obtained using a probing
device as proposed in Sun and Martius (2018). This device is a
modified 3D-printer where the print head is replaced by a force-
tip measuring the interaction force. There is an additional motor
to rotate the structure, such that all points on the surface can be
probed. From this setup, we obtain data containing real sensor
readings and corresponding force position and magnitude. The
target values for the transfer net, i.e., the simulated virtual sensor
values, are obtained by applying the same forces in the simulation
and minimizing the mean squared error:

LT(θ) = E

[

‖FTθ (R)− S‖2
]

. (1)

FIGURE 3 | Rigidness analysis of the 3D structure: the same force is applied

on each point on the surface and the displacement is compared. Lighter

colors indicates bigger displacements and less rigidity (normalized for visibility).

3.2. Reconstruction of the Deformation
Map
To infer the whole deformation map, i.e., the displacements at all
points on the surface, we use the Reconstruction Net FR mapping
S to D. The data for training this network is obtained solely from
simulations for different numbers of contact points and force
magnitudes.

The minimization objective is again the mean square loss:

LR(θ) = E
[

‖FRθ (S)− D‖2
]

. (2)

3.3. Force Position and Magnitude
Prediction
If we want to obtain the number and the position of the
interaction points, we need to predict this from the deformation
pattern. Intuitively, we expect the displacement to be locally
maximal for the points where the forces apply. This is also
consistent with studies on thin plate deformations by Ventsel
et al. (2002), where the displacement at the contact force location
is the highest and decreases with the distance approximately
following a bell shape. Thus, the local maxima have to be
detected, which we do with a simple k-nearest neighbors
algorithm called k-Max. For each point on the surface, the
displacement of the k nearest neighbors is compared to its own
displacement. If the point has the largest displacement among
the neighbors it is extracted as a candidate force location. The
number of neighbors specifies a spatial region around 10mm
radius within which we only extract one maxima.

The rigidity of the surfacemight vary from point to point, such
that we learn the mapping from displacement to force magnitude
depending on the position with the Sensitivity Net FS. This is
trained using the squared-error loss:

LS(θ) = E
[

‖FSθ (Di)− (A)‖2
]

, (3)
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where Di refers to the displacement at the location of contact
and A corresponds to the respective force (magnitude). The
data is again collected from simulations. Note that in this case
the algorithm might find more contact points than there are in
reality due to non-linear surface deformations. The rigidity of the
surface we study here can be visualized using FS with a constant
force input, see Figure 3. The upper and lower parts connected
with the thick joint boundaries are the most rigid areas of the
surface, as well as the hexagonal connection hub.

3.4. Architectural Choices
We optimized some aspects of the architecture in a
systematic way.

3.4.1. Real Sensors and Transfer Net
The number and the placement of the physical sensors was
optimized using a greedy strategy to maximize single-contact
performance as in Sun and Martius (2018). The transfer learning

FT is chosen to be a fully connected Feed-forward Neural
Network (FNN) (6 layers with 250 tanh hidden units each,
trained on 27,000 data points (R, S) with 60% for training and
20% for validation and testing. The number of layers and the
units are selected via Bayesian hyper-parameter optimization.

In theory, for analyzing the generalization property of
relationship between real physical sensor and simulated sensor,
each real sensor could have been trained independently. But
in order to allow for the inhomogeneous rigidness of the 3D
structure, the network connects all real sensors to all simulated
sensors. The number of simulated sensors is important for the
generalization performance in the case of multiple contact points.
On one hand, from the perspective of multi-contact prediction
from simulation, the number should be chosen as high as
possible. The extreme case would be the number of simulated
sensor points is equal to the number of deformation points on the
surface. This would make the reconstruction step unnecessary.
On the other hand, we want the entire system to generalize

FIGURE 4 | Single-contact information prediction baseline: (A) Prediction accuracy for contact position using SVR, k-NN and FNN. (B) Comparing predictions of

SVR, k-NN, and FNN for single-contact force information in a 2D surface projection. Gray dots represent geometry grid, blue dots are ground truth force positions,

red, orange and green dots are predicted force positions using SVR, k-NN, FNN, respectively. Arrows indicate the error vectors.

FIGURE 5 | Transfer learning maps the physical sensor values to simulated sensor values: (A) The effect of number of simulated sensors on the prediction precision

(of the full displacement map) evaluated with three methods: Linear regression (LR), k-NN, and FNN (FT ). Training was conducted on a large set of single-contact data

and the reported test performance is for single-contact and double-contact data collected on the real system. The reconstruction net FR was trained on simulated

multi-contact data. Twenty-four sensors per physical sensor yielding 240 sensors is optimal for generalizing to double contact prediction. (B) The yellow dots are the

centers of physical SGs (optimally selected in Sun and Martius, 2018) and the yellow sheet illustrates the real physical SG. The blue dots around each SG’s center are

the simulated sensor points (nodes in finite element simulation ANSYS).
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from single-contact data during training of the transfer net FT to
multi-contact without retraining it, because we have no data to do
so. This implies to use only a small number of simulated sensors,
because the transfer learning should really just capture the
mapping from real sensors to the simulated patches around each
sensor individually. This enables the generalization to multiple
contact points where the sensors are differently correlated. Since
the physical sensor and the simulated sensor measure different
quantities, we have chosen a small patch around each physical
sensor location reflecting roughly the surface of the physical
sensor, as displayed in Figure 5B. The number of points/the size
of the patches are optimized hyper-parameters.

3.4.2. Reconstruction Net
The architecture of the Reconstruction Net FR is chosen to be
a FNN with 600–1,200–1,800 ReLU hidden units as a result of

hyper-parameter optimization using validation data of single-,
double-, triple- and quadruple-contact.

3.4.3. Force Position and Magnitude Prediction
For finding the contact point in the deformation map, we also
considered different algorithms, such as GaussianMixtureModel
(GMM) (Bishop, 2006) and fitting Radial Basis Functions (RBF).
Since the task is not a density estimation, GMMcannot be applied
directly and the data would need to be transformed. For fitting
the RBFs a good initialization is needed (Anifowose, 2012) in
order to obtain consistently good results. The nearest neighbor
approach k-Max we propose shows superior performance in
our setting.

The Sensitivity Net FS is a FNN with four layers, 250 hidden
ReLU units mapping contact location and deformation
to the force magnitude. It is trained on 27,000 data

TABLE 1 | Reconstruction task: comparison of multi-contact prediction methods and dataset for predicting the displacements D from simulated sensors S.

Displacement Prediction Error [µm]

LR Train I I and II I, II, and III I, II, III, and IV

2.2 6.2 10.9 13.6

Test I II III IV I II III IV I II III IV I II III IV

2.2 36.6 60.3 78.2 1.9 16.1 24.4 31.8 2.0 15.6 23.0 29.8 2.1 15.6 22.6 29.0

k-NN Train I I and II I, II, and III I, II, III, and IV

2.3 12.8 27.5 40.9

Test I II III IV I II III IV I II III IV I II III IV

2.3 159.0 225.1 286.9 2.4 36.3 97.8 144.6 2.3 36.8 75.8 109.6 2.3 37.8 73.36 99.8

FNN Train I I and II I, II, and III I, II, III, and IV

0.6 2.9 5.7 8.1

Test I II III IV I II III IV I II III IV I II III IV

0.6 82.3 123.6 158.1 0.7 7.7 30.6 48.6 0.8 7.0 15.5 25.7 1.1 6.8 13.4 20.2

I, II, III, IV stand for dataset of single-, double-, triple-, and quadruple-contact, respectively. Gray columns indicate extrapolation to unseen number of contact points.

FIGURE 6 | Deformation prediction results: (A,B) are deformation patterns of single- and double-contact based on the data collected from the real system. Left

columns show ground truth (simulation: S to D) and right columns the prediction for random samples (real: R to S to D). (C) shows predicted deformation patterns of

triple contact based on simulated sensor values (S to D).
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FIGURE 7 | Quadruple contact information extraction. Based on the predicted

deformation map (lighter color indicates stronger deformation), the multiple

contact locations are extracted using the proposed k-Max method. Blue dots

are the predicted contact locations and red dots show the ground truth.

points (local deformation, position → A) with 60/20/20%
training/validation/testing splitting.

4. RESULTS

Before presenting the results for multi-contact sensation, we will
first compare our approach using neural networks for single-
contact prediction with the previous work (Sun and Martius,
2018). Then we will investigate the performance of different parts
of our architecture related to the multi-contact generalization.
Afterwards, the capabilities of the proposed system HapDefX is
tested on up to four contact points.

4.1. Direct Single-Contact Prediction
Baseline
The predicting of the position and force magnitude of a single-
contact point can be achieved with a simple regression model
from real sensor values (R) to force position and magnitude
(P,A). In Sun and Martius (2018) this was done with support
vector regression (SVR). We will first present results on using
k-nearest neighbors (k-NN) regressor and a FNN for this task.
The results are presented in Figure 4A. In contrast to k-NN and
SVR, which predict each coordinate independently, the FNN
makes joined predictions allowing it to exploit correlations in
the output space. As the results show, the FNN is outperforming
k-NN with a small margin and SVR with a big margin in this
task. Figure 4B illustrates the predictions for random contact
positions and forces. Thus, the FNNmodel seems to be a suitable
architecture for this regression problem. This FNN method is
used as an optimal baseline for the single-contact performance.

The hyper parameters for three methods are optimally chosen
based on 27,000 training data samples split as above. SVR: C =

20, ǫ = 10−6, γ = 2−3; k-NN: k = 6 nearest neighbors, weighted
by distance; FNN: 5 layers with 500 ReLU units each.

4.2. Generalization of Deformation
Prediction on Multi-Contact
In order to be able to infer multi-contact force information
without having sufficient training examples from the real system,
we resort to transfer learning. As illustrated in Figure 2, the
real sensor values should be mapped to simulated sensors,
because we can train a model from simulated sensors to the
full deformation map using simulated multi-contact data. The
design choice is now how many simulated sensor around each
physical sensor should be used? In Figure 5A, the performance of
single- and double-contact prediction depending on the number
of simulated sensors is evaluated. The transfer learning part
is trained using single-contact data only (27,000 points). Test
performance is based on single- and double-contact data from
the real system. The optimal number is suggested to be 24
simulated sensor per strain gauge (SG) resulting in 240 sensors,
because this yields the best performance on double-contact. Their
arrangement is around the center of the physical SG as shown
in Figure 5B.

After the simulated sensor arrangement is decided, we can
evaluate the capabilities of the reconstruction network FR for
inferring the right displacement map. For this we generate data
in simulation for different number of force-points impacting the
surface. We have single-, double-, triple- and quadruple-contact
with randomly selected contact positions and forces (each type
with 27k, 6k, 6k, 6k samples with the usual training, validation,
testing splitting).

We evaluate the performance of different models for the
reconstruction process, namely linear regression (LR), k-NN,
and FNN (FR). Table 1 shows the results for the accuracy of
predicting the global deformation map depending on which data
is used for training and testing. Two essential messages can be
extracted: First, linear regression is best at generalization from
only single-contact data to multi-contact prediction, however
results are poor. Secondly, the FNN performs best when data
for the respective number of contact points was present during
training and it also generalizes best from single-, double-, and
triple-contact data to predicting quadruple-contact. Thus, using
training data for multiple-contact points is clearly beneficial.
In the following we will use the FNN for FR trained in all
contact data.

A visual comparison between simulated and predicted
deformation maps are displayed in Figure 6. They show a
remarkable coherence. For single- and double-contact, the
prediction is based on real physical sensor values. Limited
by hardware, real sensor values for triple- and quadruple-
contact can not be validated, Figure 6C shows the results for
the reconstruction net FT using simulated sensor values. It
shows that the method is very robust. In terms of prediction
error on the displacements, we evaluate the method using
the normalized fraction of variance unexplained (FVU). A
value of zero corresponds to perfect prediction and a value
of 100% indicates the prediction is as bad as predicting
the mean of targets. The FVU shows the prediction of the
displacement is quite accurate, achieving 4% for single-contact
and 29% for double-contact. However, these numbers do not
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FIGURE 8 | Force position and magnitude prediction on single-contact data. Comparing our architecture with the method only usable in the single-contact case: the

optimal baseline mapping directly from sensors to the target and our entire framework without k-Max but instead predicting P,A from D directly. (A) Contact position

prediction error and (B) Force magnitude prediction error.

FIGURE 9 | Results on double-contact of the entire framework: (A) are predicted deformation patterns and detected contact points (orange +: true points, red ×:

detected) for double-contact. The size of the crosses reflect the force strength. (B) is the prediction error for position of double contact based depending on the force

strength. (C) is the same for force magnitude. One contact points is fixed at around 30N.

explicitly tell how accurately the position and force magnitude
of the individual contact points can be detected. This we will
investigate next.

4.3. Force Location and Magnitude
Prediction
Based on the predicted deformation patterns, the locations
of the contact points can be extracted using k-Max,

see section 3.3. In Figure 7, the force locations for four
contact points is extracted, where the predicted locations
show a small offset w.r.t. the position of the actually
applied forces. This is due to the fact that, for specific
geometry, the biggest displacement tends to be on the
beam bounds.

The prediction precision of single-contact force location
using k-Max gets slightly worse than direct prediction using
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TABLE 2 | Prediction accuracy summary: comparison of the prediction performance of HapDefX, HapDef and Human skin.

Precision Single-contact Double-contact

HapDef FNN HapDefX HapDefX Human fingertip Human palm Human shin

Location [mm] 8 3 5 10 2–8 8–12 30–40

Magnitude [N] 1.6 1.5 3 6 – – –

The bold numbers show accuracy improvements by the methods of this paper. Number for human skin are the “two point discrimination” distances taken from Bickley et al. (2017).

FNN directly as shown in Figure 8A. In this graphics we
ablate different parts of the architecture by bypassing the
simulated sensors or other parts. The results show that
for single-contact the additional parts that are needed for
multi-contact do not harm the performance. Note that the
direct prediction of the force position and magnitude is
not possible for multiple contact points. As consequence
of the 3D curved limb structure, we can get candidate
predicted force location, which is shown as blue dot
without a corresponding force application. However,
when computing the predicted force magnitude for all
candidate points, the spurious ones have typically by far
the lowest magnitudes.

In order to predict the magnitude of the force, the rigidity
of the surface has to be taken into account, see Figure 3.
The same force will cause different displacements at different
points. This is captured by the Sensitivity Net FS, which
takes the position and the deformation at the detected peak
displacement into account and predicts the magnitudes for
each potential force position. As shown in Figure 8B, the
prediction precision of single-contact force magnitude using k-
Max is getting worse with increased force strength, the relative
error is still low. This performance drop can potentially be
avoided if the sensitivity net is trained jointly, to compensate
for systematic errors in the force-location detection, for instance.
The performance of the k-Max procedure is slightly lower than
the direct methods, but it can be used for predicting multiple
contact points.

4.4. Testing the Whole Framework
With the full pipeline in place, we can evaluate the method
on single- and double-contact data collected from the real
system and quantify its performance in an interpretable way.
In order to test the multi-contact performance, we collect
a double-contact dataset on the real system for 270 pairs
(with a distance of 12–75mm) of contact points with 25
different amplitudes each. One contact point has a fixed
force around 30N (by the robot arm) while the other
contact point varies from 0 to 34N (manually applied with a
force tip).

The above mentioned force extraction method yields a
set of potential contact points with their corresponding force
magnitudes. As shown in Figure 9, the spurious contact points
have typically significantly lower force magnitudes than the
real ones, visible by marker size in the figure. For computing
the distance metric for position and force prediction, we sort
the found contact points by their force magnitude values and

compute the average distance of the top T contact points
with the closest real ones. T stands for the number of
actual contact points. On average, the precision for double-
contact is 14mm for the location and 6N for the force
magnitude if we take the sorted highest T contacts’ magnitudes
as targets.

We optimize the sorting method further, as we found
that often multiple contact points with similar strength
are detected and spurious points often lie in between. To
incorporate that, we consider the detected point T + 1, if
it exists and if it within 10% amplitude difference compared
to contact point T. We select T + 1 instead of T if this
maximized the spread of the detected points. With this
procedure, the precision for double-contact is optimized to
10mm for the location and 6N for the force magnitude as
listed in Table 2. Figures 9B,C shows the prediction error in
space and force magnitude depending on the force of the
contact points.

Our proposed HapDefX infers force magnitude information
properly for robotic multi-contact applications and has a greater
localization acuity than the human shin and is on par with the
human palm. The comparison to the human skin is only to give
an intuition and is not rigorously conducted. On the one hand,
our system has holes where it is “blind” to touch, but these are
not considered in the statistics. On the other hand, we compare
absolute localization performance of our system with the bare
ability to distinguish two stimuli measured at human subjects.

5. DISCUSSION

We present a robust, low cost, large-surface haptic system with
sparse sensor configuration, which is capable of sensing multi-
contact location and force strength. The system is powered
by a machine learning approach, which can reliably localize
multiple-contact points all around a curved surface and predict
the respective force strength. The example shown here uses only
10 deformation sensors covering a sensing surface of 200 ×

120mm achieving a localization precision of 5mm on single-
contact and 10mm on double-contact. The updating rate of
the hardware can be up to 1 kHz using Arduino DUE. The
speed of the neural network depends on the implementation and
platform, but it can also be made fast. All together, our system
is only composed of low-cost components. Our method can be
applied to any large-surface system where a set of sensors can be
applied to a deformable surface. In fact, the deformation can and
should be non-local in order to make use of the spreading of the
deformation to allow for the inference process. In this paper, we
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also show that having training data on single-contact points is
enough to detect multiple contact points for real physical system.
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