AUTHOR=Zhang Zhijun , Zhou Qiongyi , Fan Weisen TITLE=Neural-Dynamic Based Synchronous-Optimization Scheme of Dual Redundant Robot Manipulators JOURNAL=Frontiers in Neurorobotics VOLUME=12 YEAR=2018 URL=https://www.frontiersin.org/journals/neurorobotics/articles/10.3389/fnbot.2018.00073 DOI=10.3389/fnbot.2018.00073 ISSN=1662-5218 ABSTRACT=
In order to track complex-path tasks in three dimensional space without joint-drifts, a neural-dynamic based synchronous-optimization (NDSO) scheme of dual redundant robot manipulators is proposed and developed. To do so, an acceleration-level repetitive motion planning optimization criterion is derived by the neural-dynamic method twice. Position and velocity feedbacks are taken into account to decrease the errors. Considering the joint-angle, joint-velocity, and joint-acceleration limits, the redundancy resolution problem of the left and right arms are formulated as two quadratic programming problems subject to equality constraints and three bound constraints. The two quadratic programming schemes of the left and right arms are then integrated into a standard quadratic programming problem constrained by an equality constraint and a bound constraint. As a real-time solver, a linear variational inequalities-based primal-dual neural network (LVI-PDNN) is used to solve the quadratic programming problem. Finally, the simulation section contains experiments of the execution of three complex tasks including a couple task, the comparison with pseudo-inverse method and robustness verification. Simulation results verify the efficacy and accuracy of the proposed NDSO scheme.