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Estimating muscle force by surface electromyography (sEMG) is a non-invasive and

flexible way to diagnose biomechanical diseases and control assistive devices such

as prosthetic hands. To estimate muscle force using sEMG, a supervised method is

commonly adopted. This requires simultaneous recording of sEMG signals and muscle

force measured by additional devices to tune the variables involved. However, recording

the muscle force of the lost limb of an amputee is challenging, and the supervised

method has limitations in this regard. Although the unsupervised method does not

require muscle force recording, it suffers from low accuracy due to a lack of reference

data. To achieve accurate and easy estimation of muscle force by the unsupervised

method, we propose a decomposition of one-channel sEMG signals into constituent

motor unit action potentials (MUAPs) in two steps: (1) learning an orthogonal basis of

sEMG signals through reconstruction independent component analysis; (2) extracting

spike-like MUAPs from the basis vectors. Nine healthy subjects were recruited to evaluate

the accuracy of the proposed approach in estimating muscle force of the biceps

brachii. The results demonstrated that the proposed approach based on decomposed

MUAPs explains more than 80% of the muscle force variability recorded at an arbitrary

force level, while the conventional amplitude-based approach explains only 62.3% of

this variability. With the proposed approach, we were also able to achieve grip force

control of a prosthetic hand, which is one of the most important clinical applications

of the unsupervised method. Experiments on two trans-radial amputees indicated that

the proposed approach improves the performance of the prosthetic hand in grasping

everyday objects.

Keywords: sEMG decomposition, reconstruction independent component analysis, motor unit action potentials,

grip force estimation, prosthetic hand control

INTRODUCTION

As the basic driver of human locomotion, muscle force is an important evaluation index in
research on and treatment of biomechanical diseases, disabilities, disorders, and injuries. Invasive
measurement of muscle force can cause pain or injury to the subject (Connan et al., 2016), and the
used of non-invasive techniques is therefore desirable. Surface electromyography (sEMG), using
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biopotentials recorded on the skin, provides a window on muscle
states and has become one of the most popular non-invasive
techniques for estimating muscle force (Höppner et al., 2017).

Methods for estimating muscle force by sEMG fall into
two types: supervised and unsupervised. In the supervised
method, sEMG signals and the corresponding force measured
by additional devices are recorded to tune variables of the
mapping from sEMG to the force, for example coefficients of
linear regression (Hoozemans and Van Dieen, 2005), weights of
an artificial neural network (Liu et al., 2017), and parameters
of model-based algorithms (Hayashibe and Guiraud, 2013).
Although it can achieve high accuracy when estimating muscle
force, this method requires a large dataset to tune multiple
variables and additional devices to record the force. In addition,
it is challenging to apply the supervised method to conditions
where recording of the force is impossible, a particular case being
the recording of muscle force from lost limbs of amputees. In
the unsupervised method, muscle force recording is not needed.
Nevertheless, this method suffers from low accuracy of force
estimation due to a lack of reference data.

The conventional unsupervised method estimates muscle
force as being proportional to the sEMG amplitude (Hoozemans
and Van Dieen, 2005). It has been discovered, however, that
the relation between sEMG amplitude and muscle force is
linear only at low force levels (Solomonow et al., 1986). For
high force levels, the relation becomes non-linear owing to
extensive superimposition of sEMG signals (McGill, 2004).
Superimposition of sEMG signals means that positive and
negative action potentials from different motor units (MUs)
cancel each other, with a consequent reduction in the energy of
the summed sEMG signals. In addition, the conventional method
treats sEMG signals as numerical data, without any consideration
of muscle physiology. All the factors that affect the EMG-force
relationship are concentrated in a one-dimensional signal. This
imperfect one-dimensional signal, affected by factors irrelevant
to force production, is neither precise nor representative for force
estimation (Staudenmann et al., 2010).

A muscle is composed of hundreds to thousands of MUs—the
basic units that produce muscle force. This force can be increased
by increasing the number of activated MUs and their firing
rates (Sandbrink and Ellad, 2016). The activated MUs generate
motor unit action potentials (MUAPs) and the summation of the
MUAPs is the sEMG signal. By decomposing sEMG signals into
their constituent MUAPs, superimpositions of sEMG signals can
be avoided to a large extent. Therefore, theoretically, muscle force
can be estimated more accurately from the constituent MUAPs
than from one-dimensional sEMG.

To decompose an sEMG signal, independent component
analysis (ICA) is commonly adopted. This approach, which
assumes linear independence of the firing pattern of MUAPs
(Blok et al., 2002), has been shown to excel in separating
sEMG signals with several overlapped MUAPs (Comon and
Jutten, 2010). ICA is commonly applied using high-density
electrodes (Holobar et al., 2012; Farina et al., 2014, 2015), because
large-scale data are required to ensure its performance (Deng
et al., 2012). However, high-density electrodes require expensive
recording instruments and involve complex operations. This

limits the applicability of ICA to real-time muscle force
estimation.

In this paper, we propose an unsupervised approach for
accurate muscle force estimation with one-channel sEMG. This
approach decomposes a one-channel sEMG signal into its
constituent MUAPs and estimates muscle force based on these
MUAPs. First, the approach learns an orthogonal basis of sEMG
signals through reconstruction independent component analysis
(RICA), a transformed ICA with a soft form of constraint (Le
et al., 2011). The use of RICA instead of ICA is able to achieve
decomposition of one-channel sEMG signals with a considerably
reduced number of electrodes. Second, MUAPs are extracted
from basis vectors and form clusters according to their shape. The
centers of the clusters are memorized as the most representative
MUAPs. The learned basis is made sparse by replacing spikes
in the basis vector with the most representative MUAPs and
by padding the rest of the basis vector with zeros. This process
of obtaining a sparse matrix is called the training process. The
next process is testing. During this, the sparse matrix obtained
from the training process is used to decompose new sEMG
signals in real time. Because of the sparsity of the matrix, its
inverse can be computed rapidly to obtain the firing rate and the
number of activated MUs from sEMG. Muscle force is estimated
in proportion to the firing rate and the number of activated MUs.

To compare the accuracy of the proposed approach with
that of the conventional approach to muscle force estimation,
experiments were carried out on nine healthy subjects. Both
sEMG and muscle force were recorded to evaluate the accuracy.
In addition, we applied the proposed approach to control the
grip force of a prosthetic hand—one of the most important
clinical applications of the unsupervised method (Riillo et al.,
2014). Grasping experiments on two trans-radial amputees were
carried out to evaluate the improvements in performance of the
prosthetic hand in grasping everyday objects.

sEMG MODEL

In this section, a widely accepted sEMG model composed of
MUAPs and noise is introduced. MUAPs are modeled as sparse
and periodic spikes to meet the sparsity and linear independence
assumptions of RICA. The sEMG signal is composed of a mixture
of firing patterns of MUAPs recorded by surface electrodes
during muscle contraction. Other factors such as sweat, subject
movement, and interference from the electrical mains supply
produce noise in sEMG. The mixing in the sEMG signal can be
represented as

x = As+ ε (1)

The sEMG signal x is a linear combination of the firing
patterns of MUAPs s multiplying by a mixing matrix A and
the Gaussian noise ε. Each column of A represents the passive
volume conduction effect of the biological tissue between the
electrodes and the MUs (Clark and Plonsey, 1966; Farina et al.,
2004). These volume conduction effects largely determine the
features of the detected sEMG signal in terms of its shape and
frequency content (Staudenmann et al., 2010). Themixingmatrix
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A is a time-varying variable, because the volume conductor is
affected by various factors such as subject movement and sensor
displacement. However, A can be treated as stationary over a
period of time in which changes in A happen rather slowly. In
addition, biologists have shown that the nervous system increases
the strength of muscle contraction by increasing the number
and the firing rate of activated MUs, without changing the
features of the signal (Sandbrink and Ellad, 2016). MUAPs are
transformed spikes from the nervous system, and they share
common properties in terms of their shape and probability of
occurrence (Byrne and Dafny, 2015). Biological findings have
revealed two properties of MUAPs: one is the stationarity of
MUAP features at all force levels, and the other is the sparsity
and independent occurrence of MUAPs. In a period of time T,
the mixing in the sEMG signal can be expressed as

x (t) =
∑L

j=1

∑T−1

d=0
ajsj

(

t − d
)

+ ε (t) , t = 0, 1, ..,T, (2)

where L is the number ofMUs, d is the time shift, aj is the filtering
effect of tissues between MU j and the electrode, and sj(t) is the
firing pattern of MU j. Equation (2) indicates that the sEMG
signal can be treated as a linear combination of time-shifted
MUAPs. RICA and K-means were used to separate MUAPs from
the sEMG signals. The details of the decomposition will be
presented in the next section.

sEMG SIGNAL DECOMPOSITION AND
FORCE ESTIMATION

In this section, an approach to the decomposition of the sEMG
signal into its constituent MUAPs and an estimation of the
muscle force based on MUAPs is proposed. Figure 1 shows the
workflow of the proposed approach. Two main processes are
involved: the training process and the testing process. In the
training process, the raw sEMG signal is filtered and reshaped.
Then, from the reshaped sEMG signal, an orthogonal basis is
learned. Finally, MUAPs are extracted from basis vectors and
form clusters with the most representative MUAP chosen as
the center of each cluster. In the testing process, the sEMG
signal is multiplied by a sparse matrix formed from the most
representative MUAPs to obtain the firing patterns of the
MUAPs. Muscle force is estimated in proportion to the number
of activatedMUs and the firing rate. The details of the process are
described in the following subsections.

Preprocessing
The raw sEMG signal is sampled at 16 kHz and preprocessed in
two steps. First, it is filtered by a band-pass filter (100–3,000Hz, 3
dB) to remove noise. Then the filtered signal is standardized with
zeromean and unit variance. The standardized sEMG is reshaped
to am× nmatrix to avoid singularity in decomposing the sEMG
signal. In the remainder of this paper, the sEMG signal refers to
data passed through this two-step preprocessing, and is denoted
by x.

Learning the Basis of sEMG With RICA
ICA is an algorithm for learning an orthogonal basis from
data. However, ICA is time-consuming, because the orthogonal
constraint is non-differentiable. To slightly loosen the constraint
and speed up learning, the orthogonal constraint of ICA is
replaced with a soft reconstruction loss and a sparsity penalty.
This soft form of ICA is referred to as RICA, which reduces
calculation time and is thus a practical tool for real-time data
decomposition.

The model introduced in Section sEMG Model assumes
that sEMG is composed of sparsely occurring and linearly
independent MUAPs that are spikes in the orthogonal basis
vectors of the sEMG signal. The key issue in learning the basis is
to find a transform matrix W that minimizes the cost function
J(W). The cost function of ICA constrains basis vectors to be
mutually orthogonal. RICA penalizes the sparsity and minimizes
the reconstruction loss, and thus guarantees that the basis vector
is as orthogonal as possible (Le et al., 2011). The method assumes
W to be of full column rank to avoid singularities in matrix
manipulation. Therefore, it is necessary to learn a basis with k
basis vectors of x, m ≥ k. The cost function J(W) used by RICA
to decompose the sEMG signal is

J (W) = λ ‖Wx‖1 +
1

2

∥

∥

∥
WTWx− x

∥

∥

∥

2
(3)

Here λ is the penalty factor (λ = 0.01); ‖ ‖1is the absolute
difference, which constrains the sparsity of the basis; and ‖ ‖2
is the square difference, which measures the differences between
the original and the reconstructed sEMG signal. The optimum
W can be quickly calculated with a gradient descent optimizer.
x is decomposed into k basis vectors bi (i = 1, 2, . . . , k) by the
transform matrixW:

[b1, . . . , bi, . . . , bk]
T = Wx (4)

Note that bi is composed of the spike-like MUAPs and noise.
The approach to detecting MUAPs from the basis vectors and
clustering the MUAPs will be introduced in the next subsection.

Detecting and Clustering MUAPs
An amplitude threshold is set to detect MUAPs from the basis
learned with RICA. The amplitude threshold is set at 4σ to split
signal from background noise:

σ = median(
|x|

0.6745
) (5)

where |x| returns the absolute value of all elements of x. σ gives
a fast and accurate estimation of background noise (Donoho and
Johnstone, 1994). Choosing the median instead of the standard
deviation of data avoids high threshold values when MUs are at
high firing rate and large amplitude (Quiroga et al., 2004).

Spikes in the basis vectors bi, i=1,2,...,k with absolute peak values
larger than the threshold are assumed to be MUAPs. For each
spiky MUAP, 100 samples (6.25ms) are extracted from the basis
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FIGURE 1 | Workflow of the proposed muscle force estimation approach.

vector with the peak value at sample 50. Furthermore, MUAPs
with peak value less than zero are flipped to avoid misalignment
of the MUAP. If the MUAP is flipped, the corresponding column
in W will be multiplied by −1 to avoid changing the sign of x.
MUAPs yi are extracted from the basis vector bi according to the
rule

yi =

{

sgn
(

peak
(

bi
))

∗spike
(

peak
(

bi
)

, 100
)

,
∣

∣peak
(

bi
)
∣

∣ > 4σ ,

0, otherwise,

(6)

where sgn is the sign function, peak(bi) returns the peak of
bi, and spike(peak

(

bi
)

, 100) returns the 100 datapoints from
bi aligned to the peak. MUAPs are clustered by the K-means
algorithm in terms of their shape. The shape of an MUAP
is measured according to its Fourier coefficients.The K-means
algorithm minimizes the within-cluster sum of squares (Arthur
and Vassilvitskii, 2007) and has been used in a wide range of
applications (Kuo et al., 2005). K-means has one drawback in
that the number of clusters has to be provided in advance. For
clustering MUAPs, the number of clusters, set from 5 to 20,
reflects the maximum number of MUs potentially detected by
a one-channel electrode. The number of MUs can be chosen to
be < 5 or more than 20, but doing so will lead to inconsistencies
with biological findings with regard to the firing rate and
interpulse interval of the MUs. The optimum number of clusters
is searched by Grid Search, which uses a scoring system based
on the silhouette metric. This metric is employed to model
the distribution of the cluster and to find the optimal balance
between tightness and separation (Rousseeuw, 1987). The score
is defined as

score =

∑L
l=1 (scl > sc)

L
(7)

where sc is the average silhouette coefficient for all samples and
scl is the average silhouette coefficient for the sample in cluster
l. L is the number of clusters. The number of clusters with the
highest score is chosen as the optimum one. After the number of
clusters has been determined, the K-means algorithm is applied.
The K-means algorithm classifies MUAPs into l clusters. The

center of cluster l is utilized as the most representative MUAP
of the cluster, which is denoted by rl. All MUAPs in cluster l are
replaced by rl:

si =

{

bi
[

replace
(

yi, rl
)]

, kmeans
(

yi
)

= l,
0, otherwise,

(8)

where s is a sparse form of the basis b, bi[replace(yi, rl)] replaces
100 data points in bi from which yi has been extracted with rl,
and kmeans(yi) returns the cluster label of yi. The inverse of s
can be approximated by LSQR (Paige and Saunders, 1982), which
allows fast decomposition of the sEMG signal. In the following
subsection, an s−1-based approach is proposed to estimate the
muscle force.

Muscle Force Estimation and Evaluation
This subsection presents an approach to estimating muscle force
from the firing rate of MUAPs and the number of activated
MUs. Research has proved that muscle force has a positive
correlationwith the number of activeMUs and their firing rates—
the frequency at which the MU is activated (Sandbrink and
Ellad, 2016). To calculate the firing rate, we count the number
of MUAPs in 0.05 s. For any sEMG signal in 0.05 s, x (1× n), the
data are treated as linear combination of the sparse matrix s:

[a1, a2, . . . , ak] = xs−1, (9)

where [a1, a2, . . . , ak] is called the coordinate of x with respect
to s. If the absolute value of ai is greater than the constant c (here
c = 0.34), then we assume that the MU of cluster l corresponding
to the ith row of s is activated. In fact, ai denotes the strength
of the constituent si in x. If the strength is greater than c, then
the MU corresponding to si is assumed to be activated. The
number of activated MUs is calculated by counting the number
of activated clusters. The muscle force F̌ is calculated by

F̌ = φ

∑k
i=1 (|ai| > c)

k
unique(kmeans(yi, if |ai| > c)) (10)

where φ is a scaling coefficient and unique() returns the number
of unique elements; for example, unique ([1, 2, 2, 3]) = 3 owing
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to the duplicated 2 in the vector. For an sEMG signal in a period
of 0.5 s, the muscle force is calculated by the above equation.

The estimated force F̌ is evaluated with R-squared analysis:

R2 =

(

1−
var
(

F̌−F
)

var(F)

)

× 100% (11)

where F is the measured force, and the function var(z) returns
the variance of the variable z. When R2 = 1, the estimated force
explains all the variability of the measured force around its mean,
and when R2 = 0, the estimated force explains none of the
variability of the measured force around its mean.

EXPERIMENTS AND RESULTS

Experimental Setup
To evaluate the accuracy of our force estimation approach, we
carried out experiments on nine healthy subjects—seven males
(subjects 1, .., 7, aged 30.0 ± 5.6 years) and two females (subjects
8 and 9, aged 25.0 ± 0.2 years)—after they had signed informed
consent documents. The subjects reported no history of upper-
extremity or other musculoskeletal disorders.

The experiment setup is shown in Figure 2. A bipolar
electrode (Ag–AgCl) was attached to the biceps brachii of the
subject. sEMG was performed using a portable sEMG device
(BioRadio R© ) at 16 kHz, and muscle force was recorded by a
tensiometer (Handpi R©) at 10Hz. Each subject was instructed to
sit still in a chair with his or her right arm fastened to an upper-
limb orthosis. The orthosis kept the forearm in the horizontal
plane and only allowed the elbow joint to flex. The tensiometer
was connected to the end of the orthosis. In the experiment, the
subjects flexed their right arms and maintained a comfortable
level force for one second and then relaxed for one more second.
The subjects were asked to repeat this procedure eight times. The
data from the first three times were used as the trainset and the
data from the remaining five times as the testset.

Experimental Results and Discussion
Sections Extracting MUAPs from the Learned Basis to
Reconstructing sEMG Signals from MUAPs present the
experimental results of the training process, and Section
Accuracy of Force Estimation discusses the accuracy of the
approach to force estimation during the testing process.

Extracting MUAPs From the Learned Basis
The learned basis is shown in Figure 3. The raw sEMG
signal was filtered, segmented, and reshaped into xm×n (m =

120, n = 800), then bk (k = 100) basis vectors were
learned from xm×n based on Equation (3). In the figure, basis
vectors are colored blue and the spike-like MUAPs are colored
red. One can observe that 93 MUAPs were extracted from
basis vectors based on the amplitude threshold 4σ . Spikes
in basis vectors of width < 100 samples, marked with black
ovals in the figure, were discarded owing to incompleteness.
Spikes with negative peak values, which are marked with
black squares, were flipped. The 93 MUAPs were clustered
by the K-means algorithm into seven groups (MU1, . . . ,

MU7) based on their shape. MUAPs in the same cluster were
highlighted in the same color, as shown on the right side of
Figure 3.

In order to learn the basis reliably and quickly, several
assumptions on the basis were made, including the sparsity of
MUAPs and the linear independence of the firing patterns of
the MUs. Although these assumptions have not been rigorously
proved, acceptable mathematical results were obtained. Any
sEMG signal in 0.05 s is expressed as a linear combination
of orthogonal basis vectors that contain firing patterns of
MUs in 0.05 s. In theory, for muscle force estimation, the
use of large basis vectors should improve the accuracy of
force estimation. On the other hand, however, large basis
vectors undermine the real-time performance of the proposed
approach.

Shape of MUAPs
MUAPs of the same cluster have similar shapes, and they
are assumed to be generated by the same MU. Figure 4

shows distributions of MUAP shape through principal
component analysis (PCA) and in three dimensions. The
distance between any two points represents a measurement
of their differences in shape as given by Fourier coefficients.
From the figure, one can observe that the distances between
different samples in the same cluster are almost equal. This
can probably be attributed to the fact that the silhouette
metric models the data distribution as a Gaussian and
prefers clusters with equal variance (the same tightness).
The most representative MUAP of each cluster, i.e., the center
of the cluster, is colored, while the remaining MUAPs are
gray.

Clustering ofMUAPs determines the number ofMUs detected
in muscle. In Equation (10), the number of MUs provides the
non-linearity in force estimation. Removing this non-linearity
will reduce the accuracy of the proposed approach.

Firing Rates of MUs
The upper part of Figure 5 shows the estimated and measured
forces. The colored vertical bars of unit height indicate
the firing pattern of a specific MU. The densities of these
bars represent the firing rates. One can observe that the
firing rate of the MUs increases as the muscle force rises.
To prove that the proposed approach is consistent with
biological findings, interpulse interval histograms of the
MUs are shown at the bottom of the figure. Most of the
MUs fired with interpulse intervals centered around 50–
100ms, which means that the firing rates of the MUs are
around 10–20Hz. These histograms agree with results on
the statistical properties of the interpulse interval (Stock and
Thompson, 2016), which shows the feasibility of the proposed
approach.

Reconstructing sEMG Signals From MUAPs
By decomposing an sEMG signal into MUAPs, the part of the
signal irrelevant to force production is removed. Reconstructing
sEMG signals from MUAPs is a direct way of observing
the signals after decomposition. The reconstructed signal
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FIGURE 2 | Experimental setup (A) diagrammatic side view; (B) photograph.

x̌ can be obtained as

x̌ = W−1s. (12)

Power spectra of the decomposed MUAPs are shown on the
left of Figure 6. The energy loss between the original and the
reconstructed sEMG signals can probably be attributed to the
spike-like shapes of MUAPs. The power spectra of MUAPs
are bell-shaped, with centers around 200Hz. The reconstructed
sEMG signal can be regarded as the raw sEMG after passage
through a non-linear filter. The shapes and power spectra of
the original and reconstructed sEMG signals are shown on the
right of Figure 6. The reconstructed signal is similar to the
original, except that the noise in the latter has been removed.
Although the two signals look alike in the time domain, their
power spectra differ significantly. The power spectrum of the
original sEMG signal is strongly concentrated around 100Hz,
but that of the reconstructed signal is centered around 200Hz,
which is consistent with the results of a study of the power spectra
of MUAPs (Tanzi and Taglietti, 1981). The reconstructed sEMG
signal retains 56% of the energy of the original signal.

Accuracy of Force Estimation
The accuracy of force estimation for the nine healthy subjects is
shown in Figure 7. One thing that deserves attention here is that
muscle force is normalized with respect to the maximal voluntary
contraction (MVC) of the subject. The blue, red, and green lines
denote the force recorded by the tensiometer, the force estimated
by the proposed approach, and the force estimated from the
amplitude of the sEMG signal, respectively. The R2 values of the
force estimated by the proposed approach with respect to the
recorded force (subjects 1, . . . , 9) are 72.6, 87.3, 88.1, 72.2, 76.3,
80.2, 81.3, 84.6, and 88.9%. The R2 values of the force estimated
from the amplitude with respect to the recorded force (subjects 1,
. . . , 9) are 67.3, 43.1, 61.3, 63.5, 57.5, 68.2, 68.9, 62.7, and 68.3%.
The average R2 value of the proposed approach is 81.3% ± 6.1%
and is superior to that of the approach based on the amplitude

(62.3% ± 7.7%). The improvement in performance achieved
with the proposed approach can probably be attributed to its
robustness to superimposition of sEMG signals and to noise.
From the figure, one can observe that at low force levels, where
noise surpasses the sEMG signal, the approach based on the
amplitude wrongly predicts a force even when none is produced.
At high force levels, superimpositions of sEMG lead to severe
fluctuations in the force estimated by the approach based on the
amplitude, the reason for this being that the energy of the sEMG
signal ceases to increase with rising muscle force.

The accuracy of muscle force estimation confirms the validity
of the decomposition. The force can be estimated according
to the biological rule stating that muscle force is proportional
to the number of activated MUs and their firing rates. If the
decomposed MUAPs had been inconsistent with the biological
findings onMUAPs, then themuscle force estimated according to
the biological rule would have diverged from the force recorded
by the tensiometer. Moreover, we believe that the accuracy of the
proposed approach can be improved if the parameters involved
are fine-tuned for each subject.

APPLICATION TO A PROSTHETIC HAND

The experimental results on healthy subjects show that the
proposed approach performs well in estimating muscle force. To
further evaluate the performance of this approach in a clinical
application, we applied it to the grip force control of our lab-made
prosthetic hand.

Prosthetic Hand Control
A diagram of the control strategy is shown in Figure 8.
Because the proposed approach is unable to run entirely on a
microcontroller, we downloaded the inverse of the sparse matrix
s−1 to a microcontroller that runs only Equations (9) and (10).
The microcontroller thereby achieves real-time muscle force
estimation.
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FIGURE 3 | sEMG signal decomposition: the raw sEMG signal (top left), the bandpass-filtered signal (top right), the detected MUAPs from the learned basis vectors

(bottom left), and the clustered MUAPs (bottom right).

An unsupervised training process is required before the
amputee can use the prosthetic hand. In this training process,
the amputee is instructed to perform the MVC. There are two
main reasons for this: first, the MVC activates most of the
MUs in a muscle and hence allows detection of a maximal
number of MUAPs; second, the MVC can be used to normalize
the muscle force. s−1 is calculated from the sEMG signal of
the MVC.

Grasping Experiments
Grasping experiments were conducted to compare our
lab-made prosthetic hand (Figure 9A) controlled by the

proposed approach with a commercial prosthetic hand from
Kesheng, a Chinese prosthetic hand company (Figure 9B).
Both hands have one degree of freedom. Their weights
and shapes are almost the same, but their transmission
mechanisms are quite different. The Kesheng hand is
controlled by motor torque delivered in proportion to the
amplitude of the sEMG signal. In the grasping experiment,
both prosthetic hands wore a five-finger rubber glove; the
ring finger and little finger of both prosthetic hands are
passive.

Two trans-radial amputees (subject A aged 34 and subject B
aged 45), after signing informed consent documents, participated
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FIGURE 4 | Distribution of the shape of the MUAPs in three dimensions using principal component analysis.

FIGURE 5 | Relationship between the firing rates of the MUAPs and the muscle force (Top) and interpulse interval histograms of the MUs (Bottom).
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FIGURE 6 | Time domain and power spectra of MUAPs and sEMG signals.

FIGURE 7 | Force curves for the nine subjects. The blue curves show the force recorded by the tensiometer, the red curves the force estimated by the proposed

approach, and the green curves the force estimated from the amplitude of the sEMG signal.

in the grasping experiments. Subject A has 3 years’ experience and
Subject B 6 months’ experience using the Kesheng hand. sEMG
sensors were integrated in the socket and placed on different
residual muscles of the subject. The amputees were asked to
grasp everyday objects both with our lab-made prosthetic hand
and with the Kesheng hand. As shown in Figure 9C, objects for

grasping included a spoon, a mobile phone, a tea tube, a coffee
canister, a flash drive, a bottle, a plate, a pen, a computer mouse,
and a charger. The procedures for each grasping experiment were
as follows (Figure 9D): (1) the amputee picked up an object from
the left white square and placed it in the right white square; (2)
after successfully doing this, the amputee pushed the right red
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FIGURE 8 | Control strategy for the prosthetic hand using the proposed approach. Unsupervised training is required before real-time use of the prosthetic hand.

FIGURE 9 | Setup of the grasping experiment: (A) lab-made prosthetic hand without hand glove; (B) Kesheng hand without hand glove; (C) everyday objects for

grasping. (D) snapshot of grasping experiment.

FIGURE 10 | Average scores of the prosthetic hands in the grasping

experiments.

button and earned a score of 1; (3) the amputee then picked up
the object from the right square and put it back in the left square;
(4) after successfully doing this, the amputee pushed the left red
button and earned another score of 1. Each amputee was asked
to repeat procedures (1), . . . , (4) to get as high a total score as
possible in 1min.

RESULTS AND DISCUSSION

Figure 10 shows the average scores for the two prosthetic
hands in grasping everyday objects. The total score of our lab-
made hand (53) is 11.3% higher than that of the Kesheng
hand (47). The performances of the two hands did not
differ much in grasping objects of regular shape, such as the
mobile phone (8, 7), the coffee canister (6, 5), and the bottle
(7, 8).However, when it came to irregularly shaped objects,
such as the spoon and plate, our lab-made prosthetic hand
achieved much higher scores (7/8) than the Kesheng hand (3/1).
This huge gap in scores implies that our proposed approach
outperforms the approach based on the amplitude of sEMG
signals. Our lab-made prosthetic hand can control the grip
force accurately for fast and stable grasping of irregularly
shaped objects. In contrast, the grip force of the Kesheng
hand is prone to fluctuations caused by noise in the sEMG
signal, and the contact force between the hand and the
object dramatically changes. These problems result in failure of
grasping.

CONCLUSION

We have proposed an accurate force estimation approach
using one-channel sEMG and have applied it to force
control of a lab-made prosthetic hand. Experimental
results on nine healthy subjects indicate that this approach
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is more accurate than the conventional amplitude-based
approach. In addition, the results of grasping experiments
on two trans-radial amputees demonstrate that with
the proposed approach our lab-made hand achieves
more stable and faster grasping than a commercial
hand. In the future, we aim to investigate the effects
of segmentation interval widths of sEMG signals
and of RICA redundancies on the accuracy of force
estimation, as well as applying this approach to different
prostheses.
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