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this approach is that it is not so much the details of spatial trajec-
tories of actions, but more their resulting states which characterize 
action in the context of perception and recognition (Bekkering 
et al., 2000). The resulting system provided predicate–argument 
representations of visually perceived events, which could then be 
used in order to learn the mapping between sentences and meaning. 
We demonstrated that naïve humans could narrate their actions 
which were perceived by the event recognition system, thus pro-
viding sentence-meaning inputs to the grammatical construction 
model, which was able to learn a set of grammatical constructions 
that could then be used to describe new instances of the same types 
of events (Dominey and Boucher, 2005).

We subsequently extended the grammatical construction frame-
work to robot action control. We demonstrated that the robot could 
learn new behaviors (e.g., Give me the object, where object could 
be any one of a number of objects that the robot could see) by 
exploiting grammatical constructions that define the mapping from 
sentences to predicate–argument representations of action com-
mands. This work also began to extend the language–action frame-
work to multiple-action sequences, corresponding to more complex 
behaviors involved in cooperative activity (Dominey et al., 2009b). 
Cooperation – a hallmark of human cognition (see Tomasello et al., 
2005) – crucially involves the construction of action plans that 
specify the respective contribution of both agents, and the represen-
tation of this shared plan by both agents. Dominey and Warneken 
(in press) provided the Cooperator – a 6DOF arm and monocular 

Introduction – A framework for language and 
action
One of the central functions of language is to coordinate coopera-
tive activity (Tomasello, 2008). In this sense, much of language is 
about coordinating action. Indeed, language constructions themselves 
become linked to useful actions in our experience, as emphasized 
by Goldberg (1995, p. 5) “constructions involving basic argument 
structure are shown to be associated with dynamic scenes: experien-
tially grounded gestalts, such as that of someone volitionally trans-
ferring something to someone else, someone causing something to 
move or change state…” Interestingly, this characterization is highly 
compatible with the embodied language comprehension framework, 
which holds that understanding language involves activation of expe-
riential sensorimotor representations (Barsalou, 1999; Bergen and 
Chang, 2005; Zwaan and Madden, 2005; Fischer and Zwaan, 2008; 
Pulvermüller et al., 2009). We have pursued this approach in develop-
ing neurally inspired systems that make this link between language and 
action. We introduce this approach in the remainder of this section, 
describing the path we have taken to arrive at our present work.

In this context of linking language and action, we first devel-
oped an action recognition system that extracted simple percep-
tual primitives from the visual scene, including contact or collision 
(Kotovsky and Baillargeon, 1998), and composed these primitives 
into templates for recognizing events like give, take, touch and push. 
Siskind and colleagues (Fern et al., 2002) developed a related action 
learning capability in the context of force dynamics. A premise of 
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vision robot – with this capability, and demonstrated that the result-
ing system could engage in cooperative activity, help the human, 
and perform role reversal, indicating indeed that it had a “bird’s eye 
view” of the cooperative activity. More recently, Lallee et al. (2009) 
extended this work so that the robot could acquire shared plans by 
observing two humans perform a cooperative activity.

An important aspect of this area of research is that the source 
of meaning in language is derived directly from sensory-motor 
experience, consistent with embodied language processing theories 
(Barsalou, 1999; Bergen and Chang, 2005; Zwaan and Madden, 
2005). For instance, Fontanari et  al. (2009) have demonstrated 
that artificial systems can learn to map word names to objects in a 
visual scene in a manner that is consistent with embodied theories. 
However, we also postulated that some aspects of language compre-
hension must rely on a form of “hybrid” system in which meaning 
might not be expanded completely into its sensory-motor mani-
festation (Madden et al., 2010). This would be particularly useful 
when performing goal-based inferencing and reasoning. Indeed, 
Hauser and Wood (2010) argue that understanding action likely 
involves goal-based teleological reasoning processes that are distinct 
from the embodied simulation mechanisms for action perception. 
These authors state that, “Integrating insights from both motor-rich 
(simulation, embodiment) and motor-poor (teleological) theo-
ries of action comprehension is attractive as they provide different 
angles on the same problem, a set of different predictions about the 
psychological components of action comprehension, and enable 
a broad comparative approach to understanding how organisms 
interpret and predict the actions of others” (Hauser and Wood, 
2010, p. 4). This is consistent with a hybrid approach to action 
understanding that we have recently proposed (Madden et al., 2010; 
for other dual-representation approaches see: Barsalou et al., 2008; 
Dove, 2009). In that model, action perception and execution take 
place in an embodied sensorimotor context, while certain aspects 
of planning of cooperative activities are implemented in an amodal 
system that does not rely on embodied simulation.

A fundamental limitation of this approach to date is that the 
system has no sense of the underlying goals for the individual or 
joint actions. This is related to the emphasis that we have placed 
on recognition and performance of actions, and shared action 
sequences, without deeply addressing the enabling and resulting 
states linked to these actions. In the current research, we extend 
our hybrid comprehension model to address aspects of goal-based 
reasoning, thus taking a first step toward the type of teleological 
reasoning advocated by Hauser and Wood (2010). The following 
section describes how this new framework addresses the limitations 
of the current approach.

A new framework for action and language – 
combining teleological and embodied mechanisms
In Lallee et al. (2009) the iCub robot could observe two human 
agents perform a cooperative task, and then create a coopera-
tive plan, which includes the interleaved temporal sequence of 
coordinated actions. It could then use that plan to take the role 
of either of the two agents in the learned cooperative task. This 
is illustrated in Figure  1. A limitation of this work is that the 
task is represented as a sequence of actions, but without explicit 
knowledge of the results of those actions, and the link between 
them. In the current work, this limitation is addressed by allow-
ing the robot to learn for each action, what is the enabling state 
of the world which must hold for that action to be possible, and 
what is the resulting state that holds once the action has been per-
formed. We will refer to this as the S

E
AS

R
 state-action-state (SAS) 

representation of action. This is consistent with our knowledge 
that humans tend to represent actions in terms of goals – states 
that result from performance of the action (Woodward, 1998). 
Furthermore, neurophysiological evidence of such a goal specific 
encoding of actions has been observed in monkeys (Fogassi et al., 
2005) whereby the same action (grasping) can be encoded in 
different manners according to intentions or goals (grasping for 
eating/grasping for placing).

Figure 1 | On-line learning of a cooperative task. (A,B) Larry (left of robot) lifts the box that covers the toy. (C,D) This allows Robert (right of robot) to take the toy. 
(E) Larry replaces the box. (F) Robot now participates. (G) Human takes box, so Robot can take the toy. (H) Robot takes box so human can take the toy.
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forces, in order to represent causal relationships between entities. 
That is, to understand causality, one must have a body, and thus 
any implementation model of causal understanding necessitates 
an embodied system, to sense physical forces.

Dynamic forces are often invisible, such as the difference in the 
feeling of contact when an object is moving fast or slow, and how a 
pan feels when it is hot or cold. Because invisible dynamic forces map 
so well onto our experience of kinematic forces, or visual experience of 
forces (shape, size, position, direction, velocity, accelerations), humans 
often rely solely on visual information when attributing causal rela-
tionships in the world. In the same vein, causal understanding in non-
human systems can be implemented through the use of kinematics 
as perceived via vision (e.g. Michotte, 1963). Thus, in our current 
work, we capitalize on this aspect of visual perception and restrict 
our representation of events to perceptual primitives that fall out of 
the visual input, leaving other perceptual modalities as well as motor 
actions for future implementation. Fern et al. (2002) and Siskind et al. 
(2001, 2003) have exploited the mapping of force dynamic properties 
into the visual domain, for primitives including contact, support and 
attachment. This results in robust systems in which event definitions 
are prespecified or learned, and then used for real-time event clas-
sification. Dominey and Boucher (2005) employed a related method 
for the recognition of events including give, take, push, touch in the 
context of grounded language acquisition.

In the context of development, once a toddler is able to sense 
and understand physical forces in the environment, he has the tools 
to understand causal relationships. Pioneering studies have shown 
that this understanding of causality and causal language is acquired 
very early in development, as infants may already perceive cause-
effect relationships at only 27 weeks (Leslie and Keeble, 1987), and 
toddlers can already express many types of causal language by the 
age of 2–3 years (Bowerman, 1974; Hood et al., 1979). At this stage, 
exposure to language may help to accelerate the development of 
causal understanding. One study has shown that when toddlers are 
exposed to a causal relationship between two events accompanied 
by a causal description, they are more likely to initiate the first event 
to generate the second, and expect that the predictive relations will 
involve physical contact, compared to when they are exposed to 
the causal situation in the absence of causal language (Bonawitz 
et al., 2009). That is, though the toddler associates the two events 
in either case, this association might not be recognized as a causal 
link, and causal language, such as “the block makes the light turn 
on,” can help to explicitly establish this link.

In this way, language is used as a tool to further conceptual under-
standing of goal-directed events and actions by helping toddlers 
more quickly integrate information about prediction, intervention, 
and contact causality. Thus, we can exploit language in our current 
system as a vector for establishing causal links between actions and 
their resulting states. In particular we are interested in the states 
that result from the “cover” and “give” actions which involve states 
related to the covered object being present, but invisible in the first 
case, and notions of change of possession in the second.

Cortical networks for language comprehension
In our effort to develop a system that can represent events and the 
state-transition relations between events, we can exploit knowledge 
of how language and event comprehension are implemented in 

Interestingly, we quickly encountered limitations of the percep-
tual system, in the sense that when an action causes an object to be 
occluded, the visual disappearance of that object is quite different 
from the physical disappearance of the object, yet both result in a 
visual disappearance. The ability to keep track of objects when they 
are hidden during a perceived action, and the more general notion 
of object constancy is one of the signatures of core object cogni-
tion (Spelke, 1990; see Carey, 2009). This introduces the notion that 
human cognition is built around a limited set of “core systems” for 
representing objects, actions, number and space (Spelke and Kinzler, 
2007). Robot cognition clearly provides a testing ground for debates 
in this domain, and the current study uses this platform to investigate 
the nature of the core system for agency. Embodied theories hold that 
actions are interpreted by mental simulation of the observed action, 
while teleological theories hold that this is not sufficient, and that 
a generative, rationality-based inferential process is also at work in 
action understanding (Gergely and Csibra, 2003). In our work, we 
employ both embodied learning of actions as well as a higher-level 
symbolic processing of these actions to yield a better understanding 
of the causes and consequences of events in the world. There are 
several research teams conducting very important and interesting 
work in scaling up from the primary perceptual layers (e.g., Fontanari 
et al., 2009; Tikhanoff et al., 2009). Our aim is to use the output of 
these layers in a more abstract and symbolic reasoning mainly driven 
by language, combining two approaches that are not antagonistic 
but rather complementary. This dual approach is consistent with 
Mandler’s (2008) ideas of developmental concepts, as well as the role 
of amodal lexical associations in embodied language theories (e.g., 
Glaser, 1992; Kan et al., 2003), and several representational theories 
of meaning (Borghi and Cimatti, 2009; Dove, 2009).

As event understanding often involves inferences of links between 
intentions, actions, and outcomes, language can play an important 
role in helping children learn about relations between actions and 
their consequences (Bonawitz et al., 2009). The following section 
provides an overview of how language is used to enrich perceptual 
representations of action, and some of the corresponding neuro-
physiological mechanisms that provide some of these capabilities, 
based largely on data from humans. It is our belief that under-
standing these behavioral and neurophysiological mechanisms can 
provide strong guidelines in constructing a system for robot event 
cognition in the context of human–robot cooperation.

Aspects of Language and Causality
One of the hallmarks of human cognition is the ability to understand 
goal-directed events. This ability surely entails the representation of 
events in terms of their causes and effects or goals (Bekkering et al., 
2000; Sommerville and Woodward, 2005), but how does it work? 
Although some theorists have postulated that causality itself is a 
conceptual primitive, it has become evident that causality can be 
decomposed into constituent elements (see Carey, 2009 for discus-
sion). According to physicalist models of causality, causes and effects 
are understood in terms of transfer or exchange of physical quanti-
ties in the world, such as energy, momentum, impact forces, chemi-
cal and electrical forces (Talmy, 1988; Wolff, 2007). Furthermore, 
nonphysical causation (e.g., forcing someone to decide) is under-
stood by analogy to these physical forces. In this sense, physicalist 
models necessitate the ability to perceive kinematics, and dynamic 
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leads to complex mental representations of complex events. Our 
initial computational models predicted dual structure-content 
pathway distinction (Dominey et  al., 2003), which was subse-
quently confirmed in neuroimaging studies demonstrating the 
existence and functional implication of these two systems (Hoen 
et al., 2006), leading to further specification of the model (Dominey 
et al., 2006, 2009a).

Toward a Neurophysiological Model of Embodied and 
Teleological Event Comprehension
More recently, we extended this to a hybrid system in which sen-
tence processing interacts both with a widespread embodied sen-
sory-motor system, and with a more amodal system to account 
for complex event representation and scenario constructions 
operating on symbolic information (Madden et al., 2010). This 
second network, seems to engage bilateral parietal–prefrontal con-
nections including bilateral activations in the parietal lobule for 
the perception and monitoring of event boundaries (Speer et al., 
2007) as well as dorsal prefrontal regions seemingly implicated 
in the global coherence monitoring of the ongoing mental rep-
resentation elaboration (Mason and Just, 2006). The monitoring 
of complex event representation includes the ability of deciding 
if ongoing linguistic information can be inserted in the current 
representation and how it modifies the global meaning of this rep-
resentation. These aspects rely on information and knowledge that 
are not primary characteristics of the language system per se but 
rather include general knowledge about causal relations between 
events, intentionality and agency judgments etc. These properties 
are sometimes called teleological reasoning and different authors 
have now shown that processes involving teleological reasoning are 
sustained by a distributed neural network, referred to as a “social 
perception” cognitive network that is closely related to the language 
system (Wible et al., 2009).

This social perception network is implicated in teleological 
reasoning as determining agency or intentionality relations and 
involves regions as the right inferior parietal lobule (IP), the supe-
rior temporal sulcus (STS) and ventral premotor regions. All these 
regions are part of the well-known mirror system (Decety and 
Grèzes, 2006). The TPJ or IP and STS regions, in addition to being 
part of the mirror system, are also heavily involved in other social 
cognition functions. Decety and Grèzes (2006), in an extensive 
review, have designated the right TPJ as the “social” brain region. 
Theory of mind is the ability to attribute and represent other’s 
mental states or beliefs and intentions or to “read their mind” 
(“predict the goal of the observed action and, thus, to “read” the 
intention of the acting individual” – from Decety and Grèzes, 2006, 
p. 6). Therefore, it seems that regions that are implicated in social-
cognition, that is to say regions implicated in agency, intentionality 
judgments on others are also implicated in the same judgments 
on a simulation/representation of mental simulations triggered 
by language.

Figure  2 illustrates a summary representation of the corti-
cal areas involved in the hybrid, embodied-teleological model of 
language and event processing. The language circuit involves the 
frontal language system including BA 44 and 45 with a link to 
embodied representations in the premotor areas, and in the more 
posterior parietal areas – both of which include mirror neuron 

the human nervous system. Language comprehension involves a 
cascade of computational operations starting from the decoding of 
speech in sensory areas to the emergence of embodied representa-
tions of the meaning of events corresponding to sensory-motor 
simulations (Barsalou, 1999; Bergen and Chang, 2005; Zwaan 
and Madden, 2005; see Rizzolatti and Fabbri-Destro, 2008 for 
review). These representations are triggered via: observation of 
others engaged in sensory-motor events; imagination of events and 
the evocation of these experiences through language. Therefore, 
we consider the existence of two parallel but interacting systems: 
one system for language processing, ultimately feeding informa-
tion processes into a second system, dedicated to the processing 
of sensory-motor events. These systems are highly interconnected 
and their parallel and cooperative work can ultimately bootstrap 
meaning representations. The second system will also accommodate 
the representation of elaborated events that implicates processes 
derived from a system sometimes referred to as a “social percep-
tion” network (Decety and Grèzes, 2006; see Wible et al., 2009 for 
review). This second network is directly involved in teleological 
aspects of reasoning, including agency judgments, attributing goals 
and intentions to agents, inferring rationality about ongoing events 
and predicting outcomes of the ongoing simulation (Hauser and 
Wood, 2010). We will present these two systems and show how 
they interact to form complex meaning representations through 
language comprehension.

One central view in the recent models of the cortical process-
ing of language is that it occurs along two main pathways, mostly 
lateralized to the left cortical hemisphere (Ullman, 2004; Hickok 
and Poeppel, 2007; see also Saur et  al., 2008). The first route is 
referred to as the ventral-stream. It is dedicated to the recognition 
of complex auditory (or visual) objects involving different locations 
along the temporal lobe and the ventralmost part of the prefrontal 
cortex (BA 45/46). The second one is named the dorsal-stream and 
is dedicated to the connection between the language system and 
the sensory-motor system, that is both implicated in the transfor-
mation of phonetic codes into speech gestures for speech produc-
tion, but also in the temporal and structural decoding of complex 
sentences (Hoen et al., 2006; Meltzer et al., in press). It implicates 
regions in the posterior part of the temporo-parietal junction (TPJ), 
parietal and premotor regions and reaches the dorsal part of the 
prefrontal cortex (BA 44).

In the ventral pathway, speech sounds are decoded in or nearby 
primary auditory regions of the dorsal superior temporal gyrus (BA 
41/42), before phonological codes can be retrieved from the middle 
posterior superior temporal sulcus (mp-STS – BA 22), and words 
recognized in regions located in the posterior middle temporal 
gyrus (pMTG – BA 22/37; see Hickok and Poeppel, 2007 for review; 
Scott et al., 2006; Obleser et al., 2007). Then, these lexical symbols 
can trigger the reactivation of long-term stored sensory-motor 
experiences, either via implications of long-term autobiographic 
memory systems in the middle temporal gyrus or in long-term 
sensory-motor memories, with a widespread storage inside the 
sensory-motor system. Therefore, complex meaning representa-
tion can actually engage locations from the ventral pathway but also 
memories stored inside the dorsal pathway (Hauk et al., 2008; e.g., 
Tettamanti et al., 2005). This primary network feeds representation 
into a secondary-extended cortical network, whenever language 
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given to the system in advance, so it will be able to recognize them 
from speech. It is possible to have the speech recognition behaviors 
emerge (e.g., Fontanari et al., 2009), but as mentioned above, that 
was not the goal of this work. The ability to recognize this innate 
vocabulary and use it in recognition grammars is provided by the 
CSLU toolkit which deals with HHM processing of the sound sig-
nal. The grammars that parse the speech signal both for input and 
output are hard coded into the system, however the system learns 
to associate a parsed sentence (verb, subject, object) with the visual 
perception of the corresponding action. Vision is provided by a 
template-matching system (Spikenet™) based on large spiking neu-
rons networks, here again we use this tool to make a bridge between 
the raw sensory images, and the symbols of recognized objects. 
We developed state and action management in C#. Interprocess 
communication is realized via the YARP protocol.

Experimental Scenarios
In this section we describe the experimental human–robot inter-
action scenarios that define the functional requirements for the 
system. The current scenarios concentrate on action representation 
in the embodied and teleological frameworks. They demonstrate 
how language can be used (1) to enrich the representation of action 
and its consequences, and (2) to provide access to the structured 
representation of action definitions, and current knowledge of the 
robot. An embodied artificial system should incorporate both per-
ceptual and motor representations in action comprehension, and 
current work is underway on this issue. However, in the current 
demonstrations we focus solely on perceptual (visual) representa-
tions of actions.

First we put the emphasis on the robot’s ability to learn from 
the human when the human performs physical actions with a 
set of visible objects in the robot’s field of view. Typical actions 

activity in the context of action representation. This corresponds 
to the embodied component of the hybrid system. The teleological 
reasoning functions are implemented in a complimentary network 
that includes STS and TPJ/IP. In the current research, while we do 
not model this hybrid system directly in terms of neural networks, 
we directly incorporate this hybrid architecture into the cognitive 
system for the robot.

Materials and Methods
This section will present in three parts the physical platform, the 
behavioral scenarios, and the system architecture.

The iCub Humanoid and System Infrastructure
The current research is performed with the iCub, a humanoid robot 
developed as part of the RobotCub project (Tsagarakis et al., 2007). 
The iCub is approximately 1 m tall, roughly the size and shape of 
a 3-year-old child, and its kinematic structure has a total of 53 
degrees of freedom controlled by electric motors, primarily located 
in the upper torso. The robot hands are extremely dexterous and 
allow manipulation of objects thanks to their 18 degrees of freedom 
in total. The robot head is equipped with cameras, microphones, 
gyroscopes and linear accelerometers. The iCub is illustrated in 
Figures 1 and 4.

Our research focuses on cognitive functions that operate on 
refined sensory data. We use off the shelf systems for both visual 
object and word recognition because they handle this raw sensory 
information quite well. Spoken language processing and overall 
system coordination is implemented in the CSLU Rad toolkit. The 
system is provided with an “innate” recognition vocabulary includ-
ing a set of action names (give, take, touch, cover, uncover), derived 
predicates (on, has), object names (block, star, sign), and causal 
language connectives (if–then, because). That is, a list of words is 

Figure 2 | Cortical networks for language processing (simplified). Ventral 
stream areas (green) are part of a first network dedicated to speech decoding and 
phonological/lexical processing along the superior temporal sulcus (STS), middle 
temporal gyrus (MTG) and ventral prefrontal cortex (Pfc). Dorsal stream areas 
(blue) constitute a sensory-motor interface implicated both in the transcription of 
phonological codes into articulatory codes (adapted from Hickok and Poeppel, 
2007) but also in the temporal/structural organization of complex sentence 
comprehension, and engage the left temporo-parietal junction, the parietal lobule 

and dorsal prefrontal regions (Hoen et al., 2006; Meltzer et al., in press). The 
social perception or teleological cognition network (oranges) is implicated in 
complex event representation and the attribution of agency, theory of mind in the 
right TPG (orange, from Decety and Lamm, 2007), causality and intentionality in 
the posterior STS (dark orange, from Saxe et al., 2004; Brass et al., 2007), and 
also comprises areas implicated in the global monitoring of the coherence of 
event representation (light orange, from Mason and Just, 2006). Networks are 
shown in their specialized hemispheres but most contributions are bilateral.



Frontiers in Neurorobotics	 www.frontiersin.org	 June 2010  | Volume 4  |  Article 8  |  6

Lallee et al.	 Embodied and teleological action

training configuration, and transfer configuration, in each of the 
five phases. This experiment is detailed in Section “Usage Study” 
and in Figure 5.

Cognitive System Architecture
We developed a cognitive system architecture to respond to the 
requirements implied in Section “Experimental Scenarios,” guided 
by knowledge of the cognitive linguistic mechanism in humans and 
their functional neurophysiology, and by our previous work in this 
area (See Figure 3). The resulting system is not neuro-mimetic, but 
its architecture is consistent with and inspired by our knowledge of 
the corresponding human system and on neural correlates found in 
the monkey (Fogassi et al., 2005). We describe the architecture in the 
context of processing a new action, and illustrated in Figure 4.

The human picks up the block and places it on the sign. Vision 
provides the front end of the perceptual system. Video data from 
the eyes of the iCub are processed by the Spikenet vision software 
which provides robust recognition for pretrained templates that 
recognize all objects in the scene. Each template is associated with 
a name and the camera coordinates of the recognized location. One 
to four templates were required per object.

Based on our previous work, inspired by human developmental 
studies, we identified three perceptual primitives to be extracted 
from the object recognition, which would form the basis for 
generic action recognition – these are visible(object, true/false), 
moving(object, true/false), and contact(obj1,obj2, true/false). These 
primitives are easily extracted from the Spikenet output based 
on position and its first derivative, and are provided as input to 
Temporal Segmentation. The temporal segmentation function 
returns the most recent set of segmented primitives that occurred 
within specified time window. This corresponds to our hypothesis 
that a given complex action will be constituted by a pattern of 
primitives that occur in a limited time window, separated in time 
by periods with no action. The resulting pattern of primitives for 
contact is illustrated in Figure 4C.

When the robot detects changes in the visual scene, the above 
processing is initiated. The Action Management function matches 
the resulting segmented perceptual primitives with currently defined 
action in the Knowledge Base. Each action in the Knowledge Base is 
defined by its pattern of action primitives, its name, the arguments it 
takes, any preconditions (i.e., the enabling state S

E
 in the S

E
AS

R
 rep-

resentation), and the resulting state. Thus, during action recognition, 
the Action Management function compares this set of segmented 
primitives with existing action patterns in the Knowledge Base. If no 
match is found then the system prompts the human to specify the 
action and its arguments, e.g., “I cover the sign with the block.”

The State Management determines that as a result of the action, 
the World State has changed, and interrogates the user about this. 
The user then has the opportunity to describe any new relations 
that result from this action but that are not directly perceptible. 
When the block covers the sign, the sign is no longer visible, but 
still present. The State Management asks “Why is the sign no longer 
visible?” Thus the human can explain this loss of vision by say-
ing “Because the block is on the sign.” The action manager binds 
this relation in a generic way (i.e., it generalizes to new objects 
when the event “cover” is perceived) to the definition of “cover” 
(see Figure 4D).

include covering (and uncovering) one object with another, 
putting one object next to another, and briefly touching one 
object with another. For actions that the robot has not seen 
before, the robot should ask the human to describe the action. 
The robot should learn the action description (e.g., “The block 
covered the star”), and be capable of generalizing this knowledge 
to examples of the same action performed on different objects. 
For learned actions, the robot should be able to report on what 
it has seen. This should take place in a real-time, on-line manner. 
Knowledge thus acquired should be available for future use, and 
in future work, the robot will also be able to learn its own motor 
representations of actions.

Another element that has to be learned is the causal relation 
between an action and the resulting state, which is not always trivial. 
When one object covers another, the second object “disappears” 
but is still physically present, beneath the covering object. In this 
scenario actions are performed that cause state changes, in terms 
of the appearance and disappearance of objects. The robot should 
detect these changes and attempt to determine their cause. The 
cause may be known, based on prior experience. If not, then the 
robot should ask the human, who will use speech for clarification 
about this causal relation.

The links between actions and their enabling and resulting states 
correspond directly to grammatical expressions with the if–then 
construction. The sentence “If you want to take the block then the 
block must be visible” expresses an enabling relation, where the 
state “block visible” enables the action “take the block.” In contrast, 
the sentence “If you cover the star with the block, then the star is 
under the block,” or “If you cover the star with the block then the 
star is not visible” expresses a causal relation. This scenario should 
demonstrate how by using these forms of grammatical construc-
tions, we can interrogate the system related to these enabling and 
causal relations.

Once the robot has learned about new actions in one context, 
we want it to use this knowledge in another context. Concretely, 
in the cooperative task where Larry uncovers the toy so that Robot 
can pick it up, the robot should be able to begin to make the link 
between the resulting state of the “uncover” action as the enabling 
state of the subsequent “take” action. In this experiment, through a 
process of interrogation we will demonstrate that the robot has the 
knowledge necessary to form a plan for getting access to a covered 
object, by linking goals with resulting states of actions, and then 
establishing the enabling state as a new goal. After each learning ses-
sion, the robot knowledge is stored in a long-term memory which 
we call Knowledge Base. It stores all the action definitions and their 
causes and consequences in term of states in an XML file that can 
be loaded on the robot.

We monitor the evolution of the Knowledge Base in order to 
analyze the performance of the recognition capabilities of the sys-
tem under extended use. We start with a naïve system (i.e., an empty 
Knowledge Base), and then for the five actions cover, uncover, give, 
take, and touch, we expose the robot to each action with the block 
and the sign, and then in the transfer condition test the ability to 
recognize these actions with a new configuration (i.e., with the 
block and the star). We repeat this exhaustive exposure five times 
(one for each action). The dependant measure will be the number 
of presentations required for the five actions to be recognized in the 
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the physical redundancy that is expressed in the observations made 
by the system. The result is that when any of the appropriate pat-
terns for an action are recognized, the action is recognized.

A total of five distinct actions were learned and validated in 
this manner. The resulting definitions are summarized in Table 2. 
Figure 5 provides some performance statistics for learning these 
actions and then using the learned definitions to recognize 
new actions.

Use of Causal Constructions to Interrogate SEASR 
representations
This experiment demonstrates how the “if–then” construction can 
be used to extract the link between actions, the required enabling 
states, and the resulting states. Results are presented in Table 3.

Use of causal knowledge in teleological reasoning
Here we consider a scenario similar to “uncover the block” scenario 
introduced in Section “Introduction – A Framework for Language 
and Action,” and Figure 1. In this context, an object is covered by 
another, and the user’s goal is to use the first object in a new task. The 
goal then is to find out how to gain access to the first object that is 
currently covered. The robot observes one human put the toy on the 
table, and another human cover the toy with the box. The objective 
is to begin to perform teleological reasoning about action sequences 
that have never been observed. Results are presented in Table 4.

This experiment demonstrates how the SAS (S
E
AS

R
) representa-

tion provides the required information for goal-based reasoning.

Usage Study
We performed six additional experiments, which involved 
processing of 111 separate actions, to begin to evaluate the robust-
ness of the system. Experiments 1–4 each started with an empty 
Knowledge Base, and examined the ability to learn the five actions, 
and then transfer this knowledge to new object configurations. 

If a match is found, then the system maps the concrete argu-
ments in the current action segment with the abstract arguments 
in the action pattern. It can then describe what happened. For 
a recognized action, State Management updates the World State 
with any resulting states associated with that action. In the case 
of cover, this includes encoding of the derived predicate on 
(block, star).

Results
Learning new actions and their derived consequences
Here we present results from an interaction scenario in which the 
user teaches the robot four new actions: cover, uncover, give and 
take. In order to explain the system level functionality, details for 
learning are illustrated in Figure 4 for the action “cover.” The cor-
responding dialog is presented in Table 1.

For new actions (that have not yet been defined in the Knowledge 
Base) the system uses the set of observed primitives from Temporal 
Segmentation to generate a generic pattern of primitives to define 
the action (Figure 4C). If any unexpected perceptual changes occur, 
the system asks the human why this is the case, and the human can 
respond by describing any new relation that holds. For example, 
when the block covers the sign, the sign becomes not visible. The 
system asks the human why, and the human responds that this is 
“because the block is on the sign.” This new relation on (block, 
sign) is added as part of the generic definition of the cover action, 
illustrated in Figure 4D.

Table 1 provides a record of the interaction in which the robot 
learns the meaning of “cover” and then displays this knowledge by 
recognizing cover in a new example. We observed that executing a 
given action like cover may sometimes lead to a different ordering 
of the segmented primitive events, e.g., detecting of the end of the 
block’s movement may occur before or after the sign being visually 
obstructed. This is accommodated by encoding multiple patterns 
for a given action in the database. This redundant coding captures 

Figure 3 | Cognitive system architecture. See text for description.
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of learned action patterns (p < 0.05). Closer investigation revealed 
that in Experiment 2 the vision system was generating false move-
ment recognition which lead to a number of irrelevant patterns 
being learned. When only Experiments 1, 3 and 4 are consid-
ered, an average of 1.13 trials are required for learning, and the 
knowledge transfers to 100% of the new trials with no additional 
learning.

In Experiments 5 and 6 we retained the Knowledge Base from 
Experiment 4, and then tested it with a new user, and examined 
the evolution over two complete tests with the five actions and 
the two object configurations. In Experiment 5, a total of six 
additional demonstrations were required to recognize the five 
actions in the two different object configurations. In Experiment 
6 only one additional demonstration was required during the 
recognition of the 10 distinct actions. Overall these tests indi-
cate that when the vision system is properly calibrated, the 
system is quite robust in the ability to learn generalized action 
recognition patterns.

The key performance indices are (1) how many trials are required 
to learn an action with one set of objects, and (2) how well does 
this learning transfer to recognition of the same actions with dif-
ferent objects? Over the four experiments, a given action required 
1.35 demonstrations to be learned accurately. This learning then 
transferred to new conditions on 70% of the new trials. Thirty 
percent of the trials required additional learning before the actions 
were recognized under new conditions. To quantify learning we 
performed an ANOVA on this data with three independent vari-
ables corresponding to Experiments (1–4), Experience (Naive, 
Experienced), and Condition (Training, Transfer). The dependant 
variable was the number of trials performed. The main observa-
tion was that once the system had learned the actions with one set 
of objects, it could transfer this knowledge to recognize the same 
actions with new object with little or no additional training. This 
was revealed by the significant interaction between Experience 
and Condition, independent of Experiment. Thus there is a sig-
nificant effect of training on the ability to recognize new instances 

Figure 4 | Learning and generalizing “cover Arg1 with Arg2.” (A) Robot 
setup and visual scene before the action. (B) Vision: Robot’s view of scene 
after the block is put on the sign. (C) Temporal Segmentation: Time ordered 
sequence of perceptual events observed during the action. (D) Knowledge 

Base: Abstract pattern template for cover, along with the resulting state 
changes, and required initial state. (E) Relations encoded in the World  
State after the “cover” is recognized in a new action “covers the star  
with the block.”



Frontiers in Neurorobotics	 www.frontiersin.org	 June 2010  | Volume 4  |  Article 8  |  9

Lallee et al.	 Embodied and teleological action

Discussion
Part of the stated objective of this work has been to implement, 
and demonstrate the advantages of, a hybrid embodied-teleological 
approach to action–language interaction, both from a theoretical 
perspective and via results from human–robot interaction experi-
ments with the iCub robot. This objective was motivated by our 
observation that true cooperation requires not only that the robot 
can learn shared action sequences, but that it represents how those 
actions are linked in a chain of state changes that lead to the goal. 
This means that the robot must be able to represent actions in 

Figure 5 | Performance effects for learning and transfer. Interaction 
times were recorded for the learning of four novel actions, learning the 
derived predicates for those actions, and then using the resulting definitions 
to recognize new instances of the five actions (Action, Predicate, and 
Transfer, respectively). We compared interaction time for these three 
conditions in a single factor ANOVA. Recognition in transfer to new actions 
(15.5 s) was significantly faster than initial action learning time (29.25), 
p < 0.05.

Table 1 | Interaction fragment as robot learns meaning of “cover.” 

Completion time (seconds).

Learning “cover” (0:42)

12:22:22 User : watch <user then places the block on the sign>

12:22:31 Robot : Need to Learn this one

12:22:58 User : cover the sign with the block

12:23:00 Robot : Did you say cover sign block ?

12:23:02 User : yes

12:23:04 Robot : Adding cover sign block

Learning resulting predicate “on” (0:17)

12:23:08 Robot : Why are the sign and the block close one each other ?

12:23:12 User : because the block is on the sign

12:23:15 Robot : Did you say because block on sign ?

12:23:17 User : yes

12:23:25 Robot : What should I do now ?

Transfer “cover” to new situation (0:16)

12:24:07 Robot : What should I do now ?

12:24:09 User : watch

12:24:21 Robot : Recognized cover star block

12:24:23 Robot : What should I do now ?

User can interrogate the World State:

12:24:26 User : Tell about star

12:24:28 Robot : I will query info about the star

12:24:30 Robot : star contact block

12:24:33 Robot : block on star

Table 2 | Enabling State – Action – Resulting State (SEASR) 

representation for the learned actions.

Enabling state	 Action	R esulting state

Visible Arg1	 Cover Arg1 with Arg2	 Contact Arg1 Arg2

Visible Arg2		  Visible Arg2

		  On Arg2 Arg1

Visible Arg2 True	 Uncover Arg1 with Arg2	 Visible Arg1

On Arg2 Arg1		  Visible Arg2

		

Visible Arg1	 Give Arg1 to Arg2	 Contact Arg1 Arg2

Visible Arg2 		  Visible Arg1

		  Visible Arg2

		  Has Arg2 Arg1

Contact Arg1 Arg2	 Take Arg1 from Arg2	 Visible Arg1

Visible Arg1		  Visible Arg2

Visible Arg2		

On Arg2 Arg1		

Table 3 | Interaction fragment as robot explains the preconditions and 

results of the cover action.

13:43:10  User : What are the conditions for cover the sign with the block?

13:43:12 Robot : If you want to cover the block with the sign then

13:43:14 Robot : sign need to be visible

13:43:16 Robot : block need to be visible

13:43:23  User : What are the consequences of cover the sign with the block?

13:43:26 Robot : If you cover the sign with the block then

13:43:28 Robot : block will be contact with sign

13:43:30 Robot : sign will be contact with block

13:43:32 Robot : sign will no longer be visible

13:43:34 Robot : block will be on sign

The block is currently on the sign.

13:43:40 User : How can I make the sign visible?

13:43:43 Robot : If you want to make the sign visible then

13:43:45 Robot : You can uncover the sign

terms of the states that allow them to be performed, the states that 
result from their performance including the “unseen” predicates, 
for example, related to object permanence.

We developed a perceptual system that extracts patterns of 
spatio-temporal visual properties in order to encode actions in 
terms of these patterns. We re-discovered that action and mean-
ing are not purely perceptual (Carey, 2009), and that additional 
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mentioned above, we demonstrate how grammatical construc-
tions that exploit causal connectives (e.g., because) can allow 
spoken language to enrich the learned set of SAS representa-
tions, by inserting derived predicates into the action definition. 
We also demonstrated how the causal connective “if–then” can be 
employed by the robot to inform the user about the links between 
enabling states and actions, and between actions and resulting 
states. Again, this extends the language–action interface beyond 
veridical action descriptions (or commands) to transmit more 
subtle knowledge about enabling and resulting states of actions, 
how to reach goals etc.

Indeed, in the context of the “hybrid” embodied and teleologi-
cal system, we demonstrated how representations of enabling and 
resulting states provides the system with the knowledge necessary 
to make the link between goals as the resulting states of actions, 
and the intervening actions that are required. This is part of the 
basis of a teleological reasoning capability (Csibra, 2003). In the 
current system, we have not implemented a full blown reasoning 
capability, that can perform forward and backward chaining on 
the states and action representations. This is part of our ongoing 
research.

In Foundations of Language, Jackendoff (2002) indicates that 
while languages may vary in their surface structure, the organiza-
tion of the conceptual structure that they express appears more 
universal (see Fadiga et al., 2009 for a review of common syntac-
tic structure in language, action and music). We extended this 
notion to consider that indeed, the compositional structure of 
syntax is derived from that of the conceptual system (Dominey, 
2003), and Jackendoff (2003) agreed. In this context, one of the 
most promising results of the current research is the continued 
observation that language reflects the structure of conceptual 
representations. We have previously demonstrated this in situa-
tions where multiple actions are linked by shared states, resulting 
in descriptions such as “Larry took the toy that Robert uncovered 
with the box” (Dominey and Boucher, 2005). The current work 
extends this to include functional and causal links between ele-
ments in the SAS representations (e.g., the if–then constructions 
in Tables 3 and 4).

The experiments described here have focused on perception 
of events. We realize that action is crucial to event understand-
ing, and we are currently working to integrate this S

E
AS

R
 frame-

work into our existing cooperative action framework (Dominey 
et  al., 2009b; Dominey and Warneken, in press). We will first 
demonstrate that the mechanism presented here for learning 

properties related to object permanence and physical possession 
also form part of the meaning of action. Based on studies indicating 
that language can be used by toddlers to accelerate the acquisition of 
such knowledge (Bonawitz et al., 2009), when our cognitive system 
encounters unexpected results from an action, it interrogates the 
user, much like a developing child (Hood et al., 1979). This allows 
the user to explain, for example, that when the block covers the 
star, the star is not visible (but still there) because the block is on 
the star. We refer to these additional predicates (on, has) as derived 
predicates. This demonstrates that language can play an essential 
role in refining the representation of the meaning of action which 
is first approximated purely from the perceptual stream, by intro-
ducing derived predicates that become part of the meaning of the 
action. These predicates are encoded in the state changes that are 
to be introduced whenever the action is recognized. Thus, when 
the give and take actions are recognized, the derived predicate has 
(indicating possession) will be appropriately updated.

We believe that this is a fundamental development in the link 
between language and action, because it goes beyond a pure iden-
tity mapping between sentences and meaning, and instead uses 
language to change and enrich forever the meaning of action as 
part of a developmental/learning process. In this way, the use of 
language by the iCub to transfer knowledge to new trials is simi-
lar to the causal learning of toddlers observed by Bonawitz et al. 
(2009), as in both cases language is a symbolic processing tool for 
memory and cognition. This is consistent with theories of language 
in which words are not only considered as markers for referents in 
the world, but also as tools that allow us to reason and operate in 
the world (Borghi and Cimatti, 2009; Mirolli and Parisi, in press) as 
well as current ideas of how language evolved in humans through 
sensory-motor and social interaction, as well as possible simula-
tions of these ideas in artificial systems (see Parisi, 2006; Parisi and 
Mirolli, 2006). These theories explain that language is used not only 
within the individual for reasoning and memory but also within 
a broader social network for communicative purposes. Therefore, 
our ongoing research on cooperative action (Dominey et al., 2009b; 
Dominey and Warneken, in press) is an important step in better 
understanding how language acts as a tool to facilitate goal-directed 
action between two or more agents.

A crucial component of the new system is the representation 
of actions which includes the link to initial enabling states, and 
final resulting states. The resulting system produces a Knowledge 
Base that encodes the representation of action meanings, and 
a World State that encodes the current state of the world. As 

Table 4 | Interaction fragment where the robot performs basic goal-based reasoning about how to solve the task of getting the star when it is 

covered by the block, and then uses it to cover the sign.

18:03:50 Robot : Recognized cover star with block

18:04:05 User : What are the conditions to cover the sign with star

18:04:07 Robot : If you want to cover the sign with the star then

18:04:09 Robot : sign needs to be visible

18:04:11 Robot : star needs to be visible

The sign is visible, but the star is covered with the block, so the user asks the robot how to make the sign visible:

18:04:18 User : How can I see the star

18:04:23 Robot : You can uncover the star

The user can now uncover the star by removing the block, and then achieve the final goal which is to cover the sign with the star
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