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Development of a nomogram 
model for predicting acute stroke 
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analysis of carotid intraplaque 
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Objective: To evaluate the predictive value of dual-energy CT angiography 
(DECTA) parameters of carotid intraplaque and perivascular adipose tissue 
(PVAT) in acute stroke events.

Methods: A retrospective analysis was conducted using clinical, laboratory, and 
imaging data from patients who underwent dual-energy carotid CTA and cranial 
MRI. Acute cerebral infarctions occurring in the ipsilateral anterior circulation 
were classified as the symptomatic group (STA group), while other cases were 
categorized as the asymptomatic group (ATA group). LASSO regression was 
employed to identify key predictors. These predictors were used to develop 
three models: the intraplaque model (IP_Model), the perivascular adipose tissue 
model (PA_Model), and the nomogram model (Nomo_Model). The predictive 
accuracy of the models was evaluated using receiver operating characteristic 
(ROC) analysis, calibration curves, and decision curve analysis. Statistical 
significance was defined as p < 0.05.

Results: Seventy-five patients (mean age: 68.7 ± 8.7 years) were analyzed. 
LASSO regression identified seven significant variables (IP_Zeff, IP_40KH, IP_K, 
PA_FF, PA_VNC, PA_Rho, PA_K) for model construction. The Nomo_Model 
demonstrated superior predictive performance compared to the IP_Model and 
PA_Model, achieving an area under the curve (AUC) of 0.962, with a sensitivity 
of 95.8%, specificity of 82.4%, precision of 82.6%, an F1 score of 0.809, and 
an accuracy of 88.0%. The clinical decision curve analysis further validated the 
Nomo_Model’s significant clinical utility.

Conclusion: DECTA imaging parameters revealed significant differences in 
carotid intraplaque and PVAT characteristics between the STA and ATA groups. 
Integrating these parameters into the nomogram (Nomo_Model) resulted in a 
highly accurate and clinically relevant tool for predicting acute stroke risk.
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Introduction

Stroke remains the leading cause of cardiovascular disease-related 
mortality in China (1). Among the numerous risk factors, vulnerable 
carotid artery plaques on the ipsilateral side are key contributors to 
acute stroke incidents (2). Studies have shown that active 
inflammation, the presence of a large lipid-rich necrotic core (LRNC), 
and intraplaque hemorrhage (IPH) are central in promoting plaque 
instability (3). Moreover, perivascular adipose tissue (PVAT) plays a 
significant role in enhancing plaque vulnerability by secreting 
pro-inflammatory cytokines that accelerate atherosclerosis (4, 5).

The vulnerability of carotid plaques has been extensively evaluated 
using high-resolution MRI, which provides significant value (6–8). 
However, MRI is constrained by long scan times, high costs, and 
patient compliance issues. Consequently, researchers have increasingly 
turned to CT angiography (CTA) to investigate the relationship 
between carotid plaques and acute stroke, yielding promising results 
(9, 10). Traditional CTA struggles to differentiate plaque types, 
limiting its ability to assess plaque vulnerability accurately. In contrast, 
dual-energy CT (DECT), which utilizes X-rays at varying energies, 
offers an innovative approach. Compared to MRI, DECT provides a 
faster, more affordable alternative with comparable or superior 
diagnostic capabilities, particularly for assessing carotid plaques and 
perivascular adipose tissue. Additionally, DECT enhances tissue 
characterization, enabling more precise identification of plaque 
components and improving stroke risk prediction.

Through advanced post-processing, DECT generates virtual 
non-contrast (VNC) images, fat fraction (FF), iodine concentration 
(IC), electron density (Rho), effective atomic number (Zeff), and the 
slope of the energy spectrum curve (K). Each of these parameters 
provides insights into material composition changes to varying extents 
(11–13). While some research has applied DECT to detect 
symptomatic carotid plaques (14, 15), its potential to predict acute 
stroke events by assessing fat content within and surrounding carotid 
plaques remains to be fully understood.

Thus, this study aims to evaluate the predictive value of dual-
energy CTA (DECTA) parameters of carotid intraplaque and PVAT 
for the occurrence of acute stroke events.

Methods

Patients

This retrospective study has been approved by the Medical Ethics 
Committee of the Affiliated Hospital of Xuzhou Medical University, 
and the Institutional Review Board of this institution has waived the 
requirement for informed consent. All methods are in compliance 
with relevant ethical and regulatory requirements and adhere to the 
principles outlined in the Declaration of Helsinki.

This study enrolled 75 consecutive patients between January 2023 
and August 2024, all of whom presented with neurological symptoms 
and/or exhibited positive findings during physical examinations. Each 
participant underwent dual-energy carotid CTA and cranial MRI.

Patients were eligible for inclusion based on the following criteria: 
(1) the interval between carotid CTA and cranial MRI did not exceed 
three days; (2) the presence of measurable carotid plaques (either 
unilateral or bilateral); (3) identifiable PVAT (either unilateral or 

bilateral); and (4) the absence of measurable atherosclerotic plaques 
in the ipsilateral anterior or middle cerebral arteries.

Patients were excluded for the following reasons: (1) poor image 
quality of CTA or MRI due to significant artifacts that would preclude 
post-processing analysis; (2) evidence of intracranial large vessel 
disease in the anterior circulation (e.g., stenosis or dissection); (3) 
underlying autoimmune vasculitis or intracranial vascular 
malformations; or (4) changes following stenting of the common 
carotid, internal carotid, or intracranial large arteries.

DECTA scanning protocol

Dual-energy head and neck CTA scans were conducted using a 
Siemens third-generation dual-source CT scanner (SOMATOM 
Driver), covering the range from the aortic arch to the vertex of the 
skull. The scanning parameters included tube voltages of 80 kV and 
140 kV; tube currents of 200 mAs and 100 mAs; a pitch of 1.1; a 
reconstruction layer thickness of 0.6 mm; an interval of 0.6 mm; a 
convolution kernel of Br40; and a rotation time of 0.5 s.

The contrast agent utilized was a non-ionic iodine medium, 
Iohexol (produced by Nanjing Zhengda Tianqing Pharmaceutical; 
trade name: Qinglidai; concentration: 100 mg/mL). A high-pressure 
injector (Medrad Stellant, Bayer AG) administered the contrast agent 
at a dosage of 1.0–1.2 mL/kg body weight, at an injection rate of 
4.0 mL/s, followed by a 30 mL saline flush.

Cranial MRI scanning protocol

Cranial MRI scans were performed using a GE 3.0 T magnetic 
resonance scanner (SIGNA Architect) and a Toshiba 1.5 T scanner 
(Vantage Elan). For the GE 3.0 T diffusion-weighted imaging (DWI) 
sequence, the scanning parameters were as follows: repetition time 
(TR) of 3,966 ms; echo time (TE) of 75.9 ms; slice thickness of 5 mm; 
spacing of 1.5 mm; field of view (FOV) of 240 mm × 240 mm; and a 
b-value of 1,000 s/mm2. For the Toshiba 1.5 T DWI sequence, 
parameters included: TR of 3,291 ms; TE of 100 ms; slice thickness of 
6 mm; spacing of 1 mm; FOV of 240 mm × 240 mm; and a b-value of 
800 s/mm2.

Dual-energy carotid CTA image analysis

Two senior radiologists, each with over 15 years of experience in 
CTA post-processing, conducted the analysis of head and neck CTA 
images using a Siemens workstation (Syngo. Via VB40B). Regions of 
interest (ROIs) were strategically placed in the most prominent slices 
of the carotid plaques and PVAT gaps under the Liver VNC, Rho/Z, 
and Mono E modes.

One ROI was positioned within the plaque to encompass the 
entire structure in a single slice, ensuring the exclusion of high-density 
contrast medium effects. Two additional ROIs were placed in the 
PVAT gaps, ensuring each was located more than 1 mm from the edge 
of the carotid artery and surrounding tissues, in accordance with the 
measurement methodology proposed by Baradaran et al. (9), while 
avoiding surrounding soft tissues or small penetrating vessels. The 
average values from the two ROIs were subsequently utilized for 
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statistical analysis. In cases of disagreement, the radiologists consulted 
to achieve consensus.

To resolve any disagreements between the two senior radiologists, 
a consensus-based approach was adopted. Both radiologists 
independently reviewed the images and identified the ROIs of the 
carotid plaques and PVAT gaps. If discrepancies in their measurements 
or interpretations arose, they engaged in direct consultation to reach 
a final decision. This collaborative process, leveraging both 
radiologists’ extensive experience, ensured that any conflicting views 
were thoroughly discussed and resolved. This approach ensured that 
both radiologists were aligned on the criteria for image analysis, 
improving the reliability and reproducibility of the measurements.

The DECTA parameters for the carotid plaque (Intraplaque, IP_) 
and perivascular adipose tissue (PA_) encompassed fat fraction (FF), 
virtual non-contrast (VNC) values, iodine concentration (IC), 
electron density (Rho), effective atomic number (Zeff), energy 
spectrum curve, and corresponding CT values for 40 keV (40KH) and 
90 keV (90KH), as well as the slope of the intraplaque energy spectrum 
curve K. The formula employed is K HU/keV = (90KH–40KH) / 50 keV 
(Supplementary Figure S1). FF refers to the proportion of fat tissue 
within the plaque or surrounding perivascular adipose tissue, offering 
insights into the composition and stability of the plaque.

Assessment of the acute cerebrovascular 
events

MRI images of patients’ brains were evaluated by two senior 
radiologists specialized in neuroimaging, using a Picture Archiving 
and Communication System (PACS). According to established 
guidelines, lesions exhibiting significantly high signals on diffusion-
weighted imaging (DWI) and significantly low signals on the apparent 
diffusion coefficient (ADC) sequence are defined as acute 
cerebrovascular events (16).

Acute cerebral infarctions occurring in the anterior circulation 
supply area on the same side are classified as the symptomatic group 
(STA group), while those without acute infarction in the same-side 
anterior circulation supply area are classified as the asymptomatic 
group (ATA group) (Figure 1).

Clinical data collection

Clinical data were meticulously retrieved from the case 
management system by a radiologist (C.S) specializing in 
cardiovascular imaging. We  retrospectively gathered 
comprehensive data, including gender, age, body mass index 
(BMI), history of hypertension, diabetes, transient ischemic attack 
(TIA), smoking history, alcohol consumption, and serum 
biomarker levels (total cholesterol, triglycerides, high-density 
lipoprotein, low-density lipoprotein). The interval between the 
collection of clinical laboratory data and CTA examinations did 
not exceed one week.

Statistic

Data processing was conducted using SPSS version 23.0 and R 
software packages, including pROC, rms, glmnet, regplot and ggplot2. 
The normality of continuous variables was assessed using the 
Kolmogorov–Smirnov test. Continuous variables that followed a 
normal distribution were presented as (x ± s), while those with a 
non-normal distribution were expressed as M (Q1, Q3). Categorical 
variables were represented as percentages (%).

Comparisons of qualitative data between groups were performed 
using the χ2 test, whereas the t-test was applied for continuous data. 
For non-normally distributed data, the Mann–Whitney U test was 
used. Univariate variables with p < 0.05 were included in LASSO 
analysis, and selected variables were incorporated to construct the 
intraplaque model (IP_Model), the perivascular adipose tissue model 
(PA_Model) and the nomogram model (Nomo-Model). The models 
performance were evaluated using ROC analysis, calibration curve, 
clinical decision curve analysis and compared with the DeLong test. 
A p value of <0.05 was considered statistically significant.

Data availability

The datasets used and/or analysed during the current study are 
available from the corresponding author on reasonable request.

FIGURE 1

A 65-year-old female, showing a non-calcified plaque (yellow arrow) at the starting point of the left internal carotid artery on DECTA, with a narrowing 
degree of approximately 45% (a). MRI examination reveals patchy high signals (yellow arrow) in the contralateral basal ganglia region on the DWI 
sequence (b). The ADC map shows low signals (yellow arrow) in the lesion, with an ADC value of approximately 0.549 × 10–3 mm2/s, diagnosed as 
acute cerebral infarction and classified into the STA group (c).
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Results

Comparison of clinical characteristics 
between the STA and ATA groups

No statistically significant differences were observed in clinical 
characteristics between the STA and ATA groups (all p values >0.05) 
(Table 1).

Comparison of DECTA parameters for 
intraplaque between the STA and ATA 
groups

For DECTA parameters of intraplaque, in the STA group, the 
iodine concentration (IP_IC), effective atomic number (IP_Zeff), and 
CT values corresponding to the 40 keV energy spectrum curve 
(IP_40KH) were all greater than those in the ATA group.

The average value of the energy spectrum curve slope (IP_K) was 
lower in the STA group than in the ATA group, with all differences 
being statistically significant (p values <0.05) (Table 2).

Comparison of DECTA parameters for PVAT 
between the STA and ATA groups

The PVAT fat fraction (PA_FF) in the STA group was less than 
that in the ATA group (p < 0.001). In the STA group, the virtual 
non-contrast CT value (PA_VNC), electron density (PA_Rho), and 
CT values at 40 keV of the energy spectrum curve (PA_40KH) were 
all higher than those in the ATA group, while the slope of the energy 
spectrum curve (PA_K) was lower in the STA group than in the ATA 
group, with all differences being statistically significant (Table 3).

LASSO regression analysis and variable 
selection

Nine univariate variables with p < 0.05 from group comparisons 
were included in the LASSO regression analysis. The optimal 
regularization parameter λ was determined using 10-fold cross-
validation (Supplementary Figure S2). At the point of minimum cross-
validation error, seven variables (IP_Zeff, IP_40KH, IP_K, PA_FF, 
PA_VNC, PA_Rho, PA_K) were selected for further model 

TABLE 1 Clinical data for STA and ATA groups (N = 75).

Clinical data STA (n = 24) (%) ATA (n = 51) (%) P value

Male 16 (66.70) 36 (70.60) 0.731

Age (years) 68 (61.00, 74.50) 71 (64.50, 76.00) 0.481

BMI (kg/m2) 23.82 ± 2.89 25.18 ± 3.41 0.960

History of hypertension 0.370

Yes 16 (66.70) 39 (76.50)

No 8 (33.30) 12 (23.50)

History of diabetes 0.057

Yes 3 (12.50) 17 (33.30)

No 21 (87.50) 34 (66.70)

History of coronary heart disease 0.884

Yes 3 (12.50) 7 (13.70)

No 21 (87.50) 44 (86.30)

History of TIA 0.316

Yes 7 (29.20) 21 (41.20)

No 17 (70.80) 30 (58.80)

History of smoking 0.600

Yes 9 (37.50) 16 (31.40)

No 15 (62.50) 35 (68.60)

History of alcohol consumption 0.110

Yes 3 (12.50) 15 (29.40)

No 21 (87.50) 36 (70.60)

Total cholesterol (mmol/L) 4.41 ± 1.16 4.41 ± 1.22 0.999

Triglycerides (mmol/L) 1.05 (0.75, 1.65) 1.36 (1.06, 1.72) 0.113

HDL (mmol/L) 1.21 ± 0.32 1.11 ± 0.23 0.109

LDL (mmol/L) 2.57 ± 0.92 2.69 ± 1.01 0.604

BMI, body mass index; TIA, transient ischemic attack; HDL, high-density lipoprotein; LDL, low-density lipoprotein. Age and triglycerides do not follow a normal distribution and are 
expressed as M (Q1, Q3). TIA means transient ischemic attacks.
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construction (Supplementary Figure S3). The regression coefficients 
for these variables were presented in Supplementary Table S1.

The logistic regression equation is as follows:

( )Logit P 1.913 1.414 IP _ Zeff 0.023 IP _ 40KH
0.517 IP _ K 0.081 PA _ FF 0.054

PA _ VNC 0.011 PA _ Rho 1.531 PA _ K

= + × + ×
+ − × + − × +
× + × + − ×

Construction of the nomogram model for 
predicting SAT

The seven variables identified through LASSO regression were 
incorporated into a logistic regression analysis to construct a dynamic 
nomogram model (Nomo_Model) for predicting the risk of acute 
stroke. The dynamic nomogram is accessible online at: https://dual-
energy-carotid-cta.shinyapps.io/dynnomapp-1/ (Figure 2).

Predictive performance of DECTA models

The Nomo_Model demonstrated superior predictive 
performance compared to the intraplaque (IP_Model) and 
perivascular adipose tissue (PA_Model) models. The Nomo_Model 
achieved an area under the curve (AUC) of 0.962, with a sensitivity 
of 95.8%, specificity of 82.4%, and an accuracy of 88.0% (Table 4; 
Supplementary Figure S4; Figure 3).

The results of the DeLong test confirmed that the predictive efficacy 
of the Nomo_Model was significantly higher than that of all univariate 
variables, as well as the IP_Model and PA_Model (p < 0.05).

Calibration and clinical decision curve 
analysis

The calibration curve, generated through 1,000 bootstrap iterations, 
demonstrated strong agreement between the Nomo_Model’s predicted 
probabilities and observed outcomes (Supplementary Figure S5).

The clinical decision curve analysis indicated that the Nomo_Model 
provides substantial clinical benefit, particularly at intermediate and 
higher threshold probabilities (Figure 4).

Discussion

In this study, we employed LASSO regression to select significant 
variables from dual-energy CTA-derived carotid plaque and PVAT 
parameters, aiming to reduce multicollinearity and prevent overfitting. 
These selected variables were then incorporated into a logistic regression 
nomogram model to predict SAT. The model demonstrated high 
predictive capability and clinical benefit.

Prior research has established that PVAT significantly influences 
atherosclerotic plaque progression. It does so by secreting 
inflammatory factors and active mediators that exacerbate vascular 
oxidation and inflammation, thereby increasing plaque vulnerability. 
Additionally, PVAT sequesters peroxides through an “inside-out” 
mechanism, which upregulates adiponectin gene expression and 
facilitates lipolysis. Conversely, inflammatory factors hinder the 
maturation of adipocyte precursors, resulting in decreased PVAT 
volume and heightened risk of acute cerebrovascular events (17–19). 
Therefore, unlike previous studies that have focused exclusively on 
PVAT (20), our approach integrates the dual-energy characteristics 
of both intraplaque and PVAT, providing a more comprehensive 
assessment of plaque vulnerability and enhancing predictive 
capabilities for acute stroke event.

In comparison to earlier investigations linking mixed-energy CTA 
with acute cerebrovascular events, our findings demonstrate superior 
predictive efficacy using dual-energy parameters. This enhancement may 
be attributed to the contamination of PVAT by high-density iodine 
contrast agents during CTA, which can compromise measurement 
accuracy. In contrast, virtual non-contrast images obtained from dual-
energy computed tomography effectively separate iodine contrast, 
yielding clearer imaging (14). Moreover, low-density materials—such as 
loose connective tissue, fibrous tissue, lipid-rich necrotic cores, and 
adipose tissue—exhibit pronounced attenuation differences at low 
kiloelectron volts (keV), thereby improving the predictive efficacy of 
dual-energy CTA (21). Our results indicate that, whether in plaques or 

TABLE 2 DECTA parameters for plaque between STA and ATA groups 
(N = 75).

DECTA 
parameters

STA (n = 24) ATA (n = 51) P value

IP_FF 22.90 ± 18.28 18.72 ± 19.62 0.382

IP_IC 0.39 ± 0.94 −0.18 ± 1.01 0.022*

IP_VNC 24.09 ± 22.09 24.35 ± 18.69 0.958

IP_Rho 24.55 ± 15.64 27.08 ± 17.63 0.551

IP_Zeff 7.675 (7.42, 7.84) 7.35 (7.16, 7.60) 0.003*

IP_40KH 58.63 ± 51.87 7.96 ± 39.47 <0.001*

IP_90KH 30.14 ± 15.94 28.33 ± 17.86 0.673

IP_K −0.57 ± 0.98 0.41 ± 0.87 <0.001*

IP_, Intraplaque; FF, fat fraction; IC, iodine concentration; VNC, virtual non-contrast; Rho, 
electron density; Zeff, effective atomic number; 40KH, CT values at 40 keV; 90KH, CT values 
at 90 keV; K, the slope of the energy spectrum curve. IP_Zeff is expressed as M (Q1, Q3) due 
to non-normal distribution. * p < 0.05.

TABLE 3 DECTA parameters for PVAT between STA and ATA groups 
(N = 75).

DECTA 
parameters

STA (n = 24) ATA (n = 51) P value

PA_FF 75.41 ± 13.07 90.49 ± 16.38 <0.001*

PA_IC

−0.125 (−0.50, 

0.00) 0 (0.00, 0.03) 0.075

PA_VNC

−79.25 (−92.75, 

−59.75)

−101 (−113.00, 

−90.65) <0.001*

PA_Rho −57.46 ± 21.52 −72.76 ± 15.33 <0.001*

PA_Zeff 6.775 (6.57, 7.01) 6.65 (6.40, 6.97) 0.233

PA_40KH −94.93 ± 45.79 −168.39 ± 57.57 <0.001*

PA_90KH −71.14 ± 28.03 −74.63 ± 22.98 0.570

PA_K 0.48 ± 0.83 1.88 ± 1.25 <0.001*

PA_, Perivascular Fat; FF, fat fraction; IC, iodine concentration; VNC, virtual non-contrast; 
Rho, electron density; Zeff, effective atomic number; 40KH, CT values at 40 keV; 90KH, CT 
values at 90 keV; K, the slope of the energy spectrum curve. PA_IC, PA_VNC, and PA_Zeff 
is expressed as M (Q1, Q3) due to non-normal distribution. * p < 0.05.
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TABLE 4 Predictive performance of DECTA parameters for SAT.

DECTA 
parameters

AUC (95%CI) Sensitivity 
(%)

Specificity 
(%)

IntraPlaque (IP-)

IP_Zeff 0.713 (0.578, 0.848) 70.8 70.6

IP_40KH 0.797 (0.674, 0.919) 66.7 88.2

IP_K 0.795 (0.676, 0.915) 75.0 82.4

IP_Model 0.805 (0.683, 0.926) 66.7 88.2

Perivascular fat (PA-)

PA_FF 0.777 (0.670, 0.883) 91.7 62.7

PA_VNC 0.811 (0.711, 0.912) 75.0 72.5

PA_Rho 0.725 (0.594, 0.855) 70.8 74.5

PA_K 0.839 (0.745, 0.932) 83.3 76.5

PA_Model 0.913 (0.845, 0.980) 83.3 86.3

Overall combined variables

Nomo_Model 0.962 (0.925, 1.000) 95.8 82.4

FF, fat fraction; IC, iodine concentration; VNC, virtual non-contrast; Rho, electron density; 
Zeff, effective atomic number; 40KH, CT values at 40 keV; 90KH, CT values at 90 keV; K, the 
slope of the energy spectrum curve; IP_Model, the plaque model; PA_Model, perivascular 
adipose tissue model; Nomo_Model, nomogram model.

PVAT, 40 keV Hounsfield units (40KH) serve as the most reliable 
indicator for STA, underscoring the advantages of employing lower keV 
to distinguish low-density materials.

Furthermore, neovascularization within plaques is intricately linked 
to increased plaque activity, contributing to a heightened risk of 
neovascular rupture, bleeding, and inflammation (22). Several studies 
have documented a correlation between plaque enhancement and the 
extent of neovascularization (23). Specifically, in our analysis, the STA 
group exhibited a higher iodine concentration (IP_IC) compared to the 
ATA group, suggesting maybe greater neovascularization within 
STA plaques.

The effective atomic number (Zeff), which reflects the average 
atomic number of materials within a ROI, provides insights into tissue 
composition (11). Notably, higher density materials lead to a reduced 
slope of the energy spectrum curve and relatively elevated 40KH values 
(13). Our observations reveal that the slope of the energy spectrum curve 
(IP_K) in the STA group was lower than in the ATA group, while 
IP_40KH was higher, indicating the presence of denser components in 
the STA plaques. In support of this, international studies have 
demonstrated a robust correlation between IPH and acute 
cerebrovascular events (24, 25). Thus, we speculate that the STA group 
may harbor a higher proportion of IPH, necessitating further verification 
through high-resolution MRI.

Traditional CTA lacks the sensitivity required to assess tissue 
composition within the PVAT, limiting its ability to provide detailed 
information on plaque vulnerability. In contrast, DECTA enables 
precise measurements of iodine concentration and fat fraction in 
PVAT, offering critical insights into tissue characteristics associated 

FIGURE 2

Dynamic nomogram illustrating DECTA parameters used for predicting SAT risk.
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FIGURE 3

ROC curve analysis of three different DECTA models for predicting SAT.

FIGURE 4

Clinical decision curve illustrating the net benefit of the Nomo_Model.
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with stroke risk. This capability facilitates a comprehensive evaluation 
of plaque stability and inflammation, both of which are key factors in 
stroke prediction.

The study underscores the value of DECTA imaging in identifying 
imaging biomarkers that enhance risk prediction for acute stroke. The 
significant differences in intraplaque and PVAT parameters between STA 
and ATA groups demonstrate the importance of combining both tissue-
specific and vascular imaging in clinical assessments. The dynamic 
nomogram provides a practical and accessible tool for clinicians to 
estimate individual stroke risk. By incorporating multiple DECTA 
parameters, the model improves predictive accuracy and facilitates 
personalized treatment planning. Traditional clinical characteristics often 
fail to differentiate between STA and ATA groups. The integration of 
DECTA-derived parameters offers a non-invasive and precise method to 
evaluate plaque vulnerability and perivascular tissue characteristics, 
ultimately improving diagnostic outcomes.

The nomogram model provides a valuable non-invasive tool for 
screening patients at high risk of acute stroke. By incorporating 
DECTA parameters from carotid plaques and PVAT, it helps identify 
vulnerable plaques, allowing clinicians to prioritize high-risk patients 
for intensive monitoring and intervention. The model also aids in risk 
stratification, guiding decisions on whether additional diagnostic 
tests, such as MRI or cerebral angiography, are necessary. For low-risk 
patients, the nomogram helps optimize resource allocation and avoid 
unnecessary testing. Ultimately, it supports personalized treatment 
strategies, such as aggressive risk factor management or surgical 
intervention for high-risk individuals. Integrating the model into 
clinical decision support systems could enhance routine practice and 
streamline workflows in stroke centers.

While this study focused on DECTA, future research could 
enhance the nomogram by incorporating additional imaging 
techniques. High-resolution MRI could offer further details on plaque 
composition, such as LRNC and IPH, improving stroke risk prediction. 
Carotid ultrasound combined with elastography could assess plaque 
stiffness, providing complementary data. Including biomarkers, like 
lipid profiles and inflammatory markers, could also add valuable 
insights into the biological processes driving plaque instability. Finally, 
prospective validation in larger, multi-center cohorts is essential to test 
the model’s accuracy and generalizability across diverse clinical 
settings. These steps would refine the model and increase its clinical 
utility in patient risk assessment and management.

While DECTA offers advantages in distinguishing low-density 
tissues and assessing plaque vulnerability, factors such as radiation 
dosage, scanning parameters, and iodine contrast effects on 
surrounding tissues can influence its effectiveness. Excessive 
radiation or inconsistent parameters may introduce artifacts or 
variations in fat fraction and iodine concentration, compromising the 
accuracy of plaque and PVAT evaluations. Future studies should 
focus on standardizing scanning protocols to minimize these effects 
and ensure reproducibility. Additionally, high-resolution MRI is 
essential for validating DECTA findings, particularly for the accurate 
assessment of plaque and PVAT characteristics.

This study has several limitations: (1) the sample size is relatively 
small; we plan to expand this research by conducting a multi-center 
study with a larger cohort of patients from diverse clinical settings; (2) as 
a single-center retrospective clinical investigation, it lacks external 
validation. We intend to collaborate with other medical institutions to 
validate our nomogram model in independent cohorts, using 

standardized DECTA imaging protocols to minimize variability and 
enhance reproducibility; and (3) the assessment of plaques requires 
further validation through high-resolution MRI.

Conclusion

DECTA imaging parameters revealed significant differences 
in carotid intraplaque and PVAT characteristics between the STA 
and ATA groups. Integrating these parameters into the nomogram 
(Nomo_Model) resulted in a highly accurate and clinically 
relevant tool for predicting acute stroke risk. However, the small 
sample size and lack of external validation limit the model’s  
generalizability.
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SUPPLEMENTARY FIGURE S1

In the Siemens workstation's liver VNC mode (a) and Rho/Z mode (b), 
ROIs were placed at the most prominent areas of the plaque (yellow 
circles). In the Mono E mode, the slope of the energy spectrum curve 
(IP_K) was acquired (white line) (c). In the Siemens workstation's Liver 
VNC mode (d) and Rho/Z mode (e), two ROIs were placed in the 
thickest PVAT gaps around the plaque (yellow circles). In the Mono E 
mode, the slope of the energy spectrum curve (PA_K) was calculated 
(white line) (f).

SUPPLEMENTARY FIGURE S2

Selection of the optimal regularization parameter λ using 10-fold cross-
validation. The dashed lines represent two λ values: one minimizing cross-
validation error, and the other representing one standard error.

SUPPLEMENTARY FIGURE S3

Coefficient paths for variables in LASSO regression model. The dashed line 
represents the optimal value of λ. The asterisk (*) indicates the variables 
retained after selection.

SUPPLEMENTARY FIGURE S4

Confusion matrix heatmap of the Nomo_Model.

SUPPLEMENTARY FIGURE S5

Calibration curve showing the alignment between predicted and observed 
probabilities for the Nomo_Model.
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Glossary

LRNC - large lipid-rich necrotic core

IPH - intraplaque hemorrhage

PVAT - perivascular adipose tissue

CTA - CT angiography

DECT - Dual-energy CT

VNC - virtual non-contrast

FF - fat fraction

IC - iodine concentration

Rho - electron density

Zeff - effective atomic number

K - the slope of the energy spectrum curve

40KH - the CT value corresponding to 40 keV on the energy 
spectrum curve

90KH - the CT value corresponding to 90 keV on the energy 
spectrum curve

TR - repetition time

TE - echo time

FOV - field of view

ROI - Regions of interest

PACS - Picture Archiving and Communication System

DWI - diffusion-weighted imaging

ADC - apparent diffusion coefficient

ICA - internal carotid artery

BMI - body mass index

TIA - transient ischemic attack

ROC - receiver operating characteristic

keV - kiloelectron volts

DCA - decision curve analysis
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