
Frontiers in Neurology 01 frontiersin.org

Energy metabolism disorders in 
migraine: triggers, pathways, and 
therapeutic repurposing
Wen-xiu Sun 1, Ting-yan Chen 1, Mao-mei Song 1, Ying-jie Gao 1 
and Sui-yi Xu 1,2*
1 Department of Neurology, Headache Center, The First Hospital of Shanxi Medical University, Taiyuan, 
Shanxi, China, 2 Department of Neurology, Headache Center, Tianjin First Central Hospital, Tianjin, 
China

Many migraine triggers, such as stress, sleep deprivation, fatigue, strenuous exercise, 
and fasting, are potentially linked to disturbances in brain energy metabolism, 
mitochondrial function, and oxidative stress. Alongside efforts to avoid modifiable 
factors, prophylactic migraine treatments that target brain energy metabolism 
have garnered increasing attention. However, the current evidence supporting 
the use of energy-modulating drugs in migraine treatment guidelines remains 
weak. This narrative review explores the relationship between energy metabolism 
and cortical spreading depression susceptibility, metabolic alterations in migraine 
(including glucose and insulin metabolism, insulin resistance, lipid metabolism, and 
energy metabolism imaging markers), oxidative stress and antioxidant defenses, 
mitochondrial dysfunction, and the role of energy metabolism-targeted medications 
in migraine management. Nutrients may help improve mitochondrial function, 
thereby alleviating brain energy metabolism deficits and oxidative stress in migraine.
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Introduction

Among 369 diseases analyzed across 204 countries, headache disorders ranked 14th in 
disability-adjusted life years (DALYs) for the general population and were positioned as the 
second leading cause of DALYs in females aged 15–49 years (1). Migraine constitutes the 
second leading cause of health loss measured by years lived with disability (YLD) among all 
diseases in the general population, surpassing the aggregate burden of all other neurological 
disorders combined   (2). Of note, migraine has been the leading cause of DALYs among youths 
and young adults in East Asia over the past 30 years (3). Numerous external environmental 
and internal factors are known to trigger migraine. External factors include temperature 
fluctuations, bright lights, loud noises, and strong odors, while internal triggers encompass 
anxiety, emotional stress, insomnia, specific foods, and inadequate blood glucose supply (4). 
A growing body of evidence points to a significant link between migraine and disruptions in 
brain energy metabolism (5). Many migraine triggers, such as stress, sleep deprivation, fatigue, 
strenuous exercise, and fasting, are potentially related to disturbances in brain energy 
metabolism, mitochondrial function, and oxidative stress (6). Clinical studies have also 
identified elevated levels of inflammatory markers and oxidative stress biomarkers in 
individuals with migraine (7). It has been suggested that the brain energy deficit-
mitochondrial-oxidative stress axis may represent a key pathway in migraine pathogenesis (8). 
As a result, prophylactic treatments for migraine that target brain energy metabolism, 
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including riboflavin, coenzyme Q10, alpha-lipoic acid (ALA), and 
ketogenic diet (KD), have gained increasing attention (Table 1).

Energy metabolism and cortical 
spreading depression susceptibility

Cortical spreading depression (CSD) is a neurophysiological 
phenomenon characterized by the strong depolarization of regional 
neurons or glial cells, spreading along the cortex to neighboring 
regions at a rate of 3–5 mm/min, ultimately leading to inhibition of 
neural activity (9). CSD is closely associated with migraine aura but is 

also observed in cerebral ischemia, epilepsy, and traumatic brain 
injury (10). The mechanisms underlying CSD involve an imbalance in 
the brain’s ionic homeostasis and disruptions in energy metabolism. 
Noninvasive detection of CSD in rats using near-infrared spectroscopy 
suggests that O₂ transport from blood to mitochondria is restricted, 
leading to reduced oxygen utilization during CSD (11). In addition to 
migraine-related CSD, brief needling of the frontal cortex has been 
shown to induce CSD, resulting in a sustained increase in cerebral 
metabolic rate of oxygen and a decrease in basal cerebral blood flow 
(12). CSD is associated with significant cerebral vasoconstriction (13), 
which triggers neuronal swelling and activation of meningeal 
trigeminal nerve endings and the trigeminal vascular system, 

TABLE 1 Prophylactic treatments for migraine target brain energy metabolism.

Author/date PMID Dose/Duration Patient/Model Outcome

Riboflavin

Schoenen et al. (76) 9,484,373 400 mg/day, 3 months Adults with migraine (n = 55) ↓ Migraine frequency and attack 

duration

Bruijn et al. (84) 20,974,610 50 mg/day, 40 weeks Children with migraine (n = 42) No significant difference in migraine 

attack frequency

Nazıroğlu et al. (81) 25,492,827 100 mg/day, 10 days Migraine rat model (n = 30) Reduced oxidative damage and 

protected against glyceryl trinitrate-

induced headaches

Das and Qubty (82) 33,189,027 100 or 200 mg/day, 3 months Children and adolescents (n = 42) ↓ Migraine frequency, intensity and 

duration

Coenzyme Q10

Rozen et al. (93) 11,972,582 150 mg/day, 3 months Adults with migraine (n = 32) ↓ Migraine frequency and headache-

days

Sándor et al. (92) 15,728,298 300 mg/day, 3 months Adults with migraine (n = 42) ↓ Migraine frequency, headache-days 

and days-with-nausea

Slater et al. (96) 21,586,650 100 mg/day, 12 weeks Children and adolescents (n = 120) No difference in outcomes between 

the CoQ10 and placebo groups

Gaul et al. (86) 25,916,335 150 mg/day, 3 months Adults with migraine (n = 130) ↓ Migraine frequency and intensity

Shoeibi et al. (94) 27,670,440 100 mg/day, 3 months Adults with migraine (n = 80) ↓ Migraine frequency, duration and 

severity

ALA

Cavestro et al. (105) 28,976,801 800 mg/day, 6 months Patients with migraine (n = 32) ↓ Migraine frequency and treatment-

days

Rezaei Kelishadi et al. (104) 34,105,866 600 mg/day, 3 months Women with episodic migraine 

(n = 92)

↓ Oxidative stress and inflammatory 

markers

Kelishadi et al. (103) 34,997,178 600 mg/day, 12 weeks Women with episodic migraine 

(n = 92)

↓ Migraine frequency, duration and 

severity

Puliappadamb et al. (106) 37,563,914 300 mg/day, 12 weeks Adolescents with migraine (n = 60) ↓ Migraine frequency, duration and 

severity

KD

Di Lorenzo et al. (111) 25,156,013 KD or SD, 6 months Overweight female migraineurs 

(n = 96)

↓ Migraine frequency and headache-

days

Merlino et al. (116) 37,209,426 KD, 3 months Adults with migraine (n = 70) ↓ Migraine frequency and ↑sleep 

quality

Tereshko et al. (119) 37,501,109 KD, 3 months High-frequency episodic and 

chronic migraine (n = 60)

↓ Migraine frequency and severity

PMID, PubMed unique identifier; ALA, Alpha-lipoic acid; KD, Ketogenic diet; SD, Standard low-calorie diet.
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ultimately contributing to migraine development (14–16). Cerebral 
glycogen deficiency or sleep deprivation leads to elevated extracellular 
potassium and glutamate concentrations (17), lowering the threshold 
for CSD. In summary, an inadequate energy supply increases 
susceptibility to CSD (18).

Metabolic flux changes in migraine

Glucose/insulin metabolism and insulin 
resistance

The brain relies on glucose as its primary energy substrate. Key 
pathways for energy production closely related to migraine include 
the synthesis of adenosine triphosphate (ATP) through glycolysis, 
the tricarboxylic acid cycle, and oxidative phosphorylation 
(Figure  1). Investigating cerebral glucose uptake using 
18FDG-positron emission tomography (PET) and visual evoked 
potentials between patients with interictal migraine without aura 
and healthy volunteers (19) has identified areas of increased neuronal 
activation-resting glucose uptake ratios in the optic cortex. Elevated 
plasma glucose levels have been observed in patients with migraine 
during attacks (20). Disruption of cerebral metabolic homeostasis is 
thought to be a cornerstone of migraine pathophysiology (19, 21). 
Migraine has been linked to glycolysis, gluconeogenesis, and 
riboflavin metabolic pathways through proteomic and metabolomic 
study (22). Insulin resistance may be  a critical metabolic link 
between migraine and its comorbidities (23), as insulin regulates 
mitochondrial signaling pathways (24). Chronic migraine has been 
associated with diabetes mellitus, insulin resistance, and metabolic 
syndrome (25). Case–control studies have demonstrated the 
presence of insulin resistance in individuals with migraine, a 
condition comparable to pre-diabetes (26, 27). Triglyceride-glucose, 
an index used to assess insulin resistance, has been shown to have a 
linear association with migraine (28). Furthermore, a recent study 
revealed significant genetic correlations between fasting insulin, 
glycosylated hemoglobin, and migraine (29), offering new insights 
into its pathogenesis at the genomic level. A blood biomarker study 
also found that triglyceride-glucose, C-reactive protein and 
phosphorus could guide treatment and preventive interventions for 
metabolic migraine (5).

Lipid metabolism

Lipids serve as a major form of energy storage and as 
precursors for molecules involved in inflammation and pain 
signaling. However, the mechanisms through which lipid 
metabolism contributes to migraine pathology remain incomplete. 
Some findings suggest that migraine is associated with alterations 
in the metabolism of high-density lipoprotein isoforms rather than 
with general dyslipidemia (30). Changes in the activity of fatty acid 
elongation enzymes in plasma and cerebrospinal fluid may play an 
important role in the development of chronic migraine. 
Preliminary studies indicate that abnormal lipid metabolism in 
chronic migraine correlates with disruptions in energy 
homeostasis (31).

Neuroimaging markers of energy 
metabolism

Neuroimaging studies suggest that patients with migraine exhibit 
abnormal brain energy metabolism and altered functional connectivity 
(32). Magnetic resonance spectroscopy (MRS) is a non-invasive 
method used to study in vivo tissue metabolism by measuring certain 
atomic nuclei, primarily hydrogen (1H). A study utilized 1H-MRS and 
resting-state functional magnetic resonance imaging to investigate 
metabolic changes throughout the migraine cycle and their 
relationship to functional connectivity. This study found that 
N-acetylaspartate (NAA)/total creatine (tCr) and choline (Cho)/tCr 
levels changed in a time-phase-dependent manner in migraine (33). 
PET studies suggest dysfunction in the thalamocortical pathways in 
patients with chronic migraine, potentially contributing to migraine 
chronicity (34). Patients with Migraine showed increased 
concentrations of lactate, taurine, tCr, and glycine, as well as decreased 
levels of NAA and total choline, as measured by 1H-MRS (35). 
Migraine attacks are associated with neuronal mitochondrial 
dysfunction and abnormal levels of glutamate and gamma-
aminobutyric acid (GABA). The decrease in NAA may be  a 
consequence of mitochondrial dysfunction and abnormal energy 
metabolism (36).

Oxidative stress and antioxidant defense in 
migraine

A study using a migraine rat model revealed increased 
malondialdehyde levels in the cortex and trigeminal ganglion, 
along with pro-injurious effects of reactive oxygen species (ROS) 
on the brain via transient receptor potential A1 (16). Clinical 
studies examining oxidative stress biomarkers in individuals with 
migraine have found that the number of monthly headache days 
was negatively correlated with serum concentrations of two 
antioxidant enzymes, catalase and superoxide dismutase, and total 
antioxidant capacity while being positively correlated with serum 
levels of glutathione peroxidase 1, nitric oxide, and 
malondialdehyde (37–39). Serum analysis of 32 patients with high-
frequency migraine revealed abnormally low levels of alpha-lipoic 
acid (ALA) and lactate, along with abnormally high levels of 
peroxides in 46.9% of the patients, further supporting the role of 
oxidative stress and metabolic alterations in the pathophysiology 
of migraine (40).

Oxidative stress primarily refers to the process of oxidative 
damage resulting from an imbalance between oxidative and 
antioxidant systems in cells and tissues, leading to the accumulation 
of free radicals and ROS (41). Oxidative damage to lipids, amino acids, 
and proteins impairs mitochondrial function, triggering a vicious 
cycle of ROS generation and cellular damage (42). Clinical studies 
have shown elevated serum lipid peroxide levels in patients with 
migraine (43). Individuals with chronic migraine tend to have lower 
antioxidant capacity and higher oxidative stress levels (44). 
Pharmacological studies suggest that alleviating migraine nociceptive 
sensitization may be  achieved through enhancing endogenous 
antioxidant defense systems and targeting anti-inflammatory 
pathways (45, 46).
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Mitochondrial dysfunction in migraine

The mitochondrial oxidative phosphorylation system is central to 
cellular metabolism. The respiratory chain within the inner 
mitochondrial membrane consists of enzyme complexes (I, II, III, IV, 
and V), which form a major structural and functional component of 
mitochondria (47). The electron transport chain catalyzes the 
phosphorylation of ADP to ATP. Under abnormal metabolic 
conditions, such as hypoxia, ROS are primarily produced by 
complexes I  and III. The generated ROS, in turn, induces 
mitochondrial DNA damage, contributing to oxidative stress (42, 48). 
31P-MRS is a reliable, non-invasive tool for the in vivo assessment of 
mitochondrial function. Significantly lower levels of high-energy 
phosphates, such as ATP and PCr, as well as reduced oxidative 
phosphorylation, have been observed in patients with migraine and 
are closely linked to insufficient mitochondrial energy reserves (49, 
50). Individuals with migraine exhibit significantly higher blood 
lactate levels and lower levels of NAA, along with decreased activities 
of nicotinamide adenine dinucleotide dehydrogenase, citrate synthase, 
and cytochrome c oxidase, suggesting a systemic impairment of 
mitochondrial function (51–53). Additionally, mitochondria are 
connected to the endoplasmic reticulum and co-regulate oxidative 
stress and mitochondrial autophagy (41). The PINK1/parkin pathway 

is a key mediator of mitophagy (54), effectively removing damaged 
mitochondria and avoiding excessive ROS production (55–58). 
Alterations in autophagic flux have been shown to modulate oxidative 
stress and ROS formation (57). Mitophagy plays a critical role in 
conditions such as stroke, cerebral ischemia–reperfusion injury, and 
neurodegenerative diseases (59–62). Autophagy dysfunction has been 
linked to central sensitization in a nitroglycerin-induced chronic 
migraine model in mice (63). However, the relationship between 
mitophagy and migraine remains incompletely understood, and 
further investigation is needed to clarify how mitochondrial quality 
control interacts with oxidative stress in migraine.

Animal studies have shown that migraine is associated with 
mitochondrial dysfunction. ATP levels and basal oxygen consumption 
rates were reduced in the fasting group, and adenylate-activated 
protein kinase phosphorylation levels were decreased (64). Case 
studies suggest that 61% of patients with mitochondrial disease 
experience migraine-like headaches (65). Similarly, online 
questionnaires have found a high prevalence of migraine-like 
headaches among patients with mitochondrial disease (66). 31P-MRS 
has revealed defective energy metabolism in the brain and muscles of 
individuals with familial hemiplegic migraine, further suggesting 
mitochondrial dysfunction in this genetic group (67). In addition, 
muscle mitochondrial DNA deletions have been reported in patients 

FIGURE 1

Brain metabolic disorders and migraine. ATP generation from glucose is the primary process of brain energy production and involves three key steps: 
glycolysis, the Krebs cycle, and oxidative phosphorylation. Disruptions in glucose-insulin metabolism, lipid metabolism, and oxidative phosphorylation 
impair mitochondrial function, leading to the development of migraine. MCT, monocarboxylate transporter; GLUT, glucose transporter; ATP, adenosine 
triphosphate; Lac, lactate; Tau, taurine; Gly, glycine; NAA, N-acetylaspartate; Cho, choline.
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with migraine, marking the first instance of mitochondrial DNA 
deletion linked to migraine. Most mitochondrial proteins are involved 
in ATP synthesis and the Krebs cycle. Mitochondrial proteomic 
analysis has demonstrated that the m.8296A > G variant results in 
differential expression of nuclear-encoded proteins involved in energy 
metabolism, suggesting a connection between mitochondrial 
dysfunction and energy metabolic diseases (68). Nutrients may help 
improve mitochondrial function, thereby alleviating brain energy 
metabolism deficits and oxidative stress in migraine (69). 
Mitochondrial DNA methylation plays a crucial role in the regulation 
of mitochondrial genes, and directed changes in the mitochondrial 
genome and DNA may influence cellular energy dynamics (24). A 
study using a migraine rat model revealed that alterations in 
mitochondrial dynamics inhibit mitochondrial biosynthetic signaling 
in trigeminal ganglion neurons (70). In a nitroglycerin-induced 
migraine rat model, sodium valproate demonstrated protective effects 
on mitochondrial energy metabolism and biosynthesis (71). A recent 
study found that mitochondrial damage occurs in the thalamus of 
mice with chronic migraine and may be  implicated in central 
sensitization (72). Serum analysis of patients with high-frequency 
migraine demonstrated significant abnormalities in most markers of 
mitochondrial function (40). However, existing animal models of 
migraine primarily mimic secondary migraine-like headaches. 
Understanding the correlation between biomarkers of energy 
metabolism disorders and headache severity is critical for translating 
basic research into clinical practice.

Energy metabolism therapy in migraine

Oxidative stress and brain energy metabolism disorders play a 
crucial role in the pathogenesis of migraine (73). Antioxidant drugs 
and nutrients hold promise as potential prophylactic treatments for 
migraine (44). Current migraine prophylaxis targeting mitochondrial 
function and energy metabolism includes riboflavin, coenzyme Q10, 
lipoic acid, and ketogenic ketones. However the level of evidence-
based medicine supporting these treatments remains limited.

Riboflavin, a water-soluble member of the vitamin B family, plays 
an important role in combating oxidative stress and maintaining 
mitochondrial function (74). It is recommended by the Canadian 
Headache Society for migraine prophylaxis (75). High doses of 
riboflavin (400 mg) have demonstrated potential effectiveness for 
adult migraine prevention (76). Riboflavin promotes energy 
production, protects the brain from oxidative stress (77), and has been 
shown to be effective in clinical trials for migraine prevention (69). It 
is involved in key metabolic pathways, including the tricarboxylic acid 
cycle, oxidative phosphorylation, and the metabolism of amino acids, 
fatty acids, and nucleotides (78, 79). Riboflavin transporters and flavin 
adenine dinucleotide-forming enzymes form a coordinated network 
to ensure cellular homeostasis (79). Riboflavin’s therapeutic potential 
has been demonstrated in both experimental and clinical migraine 
studies (80). A migraine rat model study found that selenium and 
riboflavin support the protective effects of the brain’s antioxidant 
system, and their combined use may offer enhanced protection (81). 
Studies on the efficacy of riboflavin in preventing migraine in children 
and adolescents indicate a reduction in migraine attacks; however, 
further research is needed to understand the relationship between 
dose, duration of administration, and the frequency and duration of 

migraine attacks (82–85). In adults, riboflavin’s efficacy in preventing 
migraine is classified as Level B evidence (86, 87). However, recent 
cross-sectional surveys have not established a clear relationship 
between riboflavin intake and the prevalence of migraine in adults 
(69, 88).

Coenzyme Q10, also known as ubiquinone, is involved in the 
electron transport chain and aerobic respiration in the mitochondria 
of eukaryotic cells, playing an essential role in proton translocation 
and electron transport (89). Coenzyme Q10 acts as an activator of 
cellular respiratory metabolism, an antioxidant, and a non-specific 
immune enhancer. It is involved in mitochondrial oxidative 
phosphorylation, indirectly regulates extra-mitochondrial metabolic 
pathways, and protects cells against excessive ROS generation (90). 
Coenzyme Q10 also exhibits anti-inflammatory effects, reducing 
serum calcitonin gene-related peptide (CGRP) and tumor necrosis 
factor-α levels (91). Given its anti-inflammatory, antioxidant, and 
bioenergetic properties, coenzyme Q10 plays a key role in energy 
production pathways in the brain, and its deficiency can impair 
mitochondrial function (73). Coenzyme Q10 supplementation has 
been recommended as a safe and effective preventive therapy for 
migraine (74). Clinical trials have demonstrated that supplementation 
with coenzyme Q10 reduces the severity, frequency, and duration of 
migraine attacks, with effects typically observed within 4 weeks (92–
94). It has shown favorable prophylactic effects in children aged 
5–10 years with migraine and is well tolerated, with few side effects 
and no serious adverse events reported during long-term use (95, 96). 
However, while systematic reviews and meta-analyses affirm the role 
of coenzyme Q10 in reducing the frequency of migraine attacks, some 
controversy remains regarding its effects on headache severity and 
duration (97, 98). The combination of energy-modulating drugs is 
also of interest, with coenzyme Q10 combined with riboflavin or 
levocarnitine showing greater efficacy in alleviating migraine attacks 
(86, 99, 100). A prospective observational study suggested that the 
concomitant use of coenzyme Q10, magnesium, and feverfew may 
offer additional benefits for migraine management (101). These 
findings indicate that multi-targeted drug combinations focused on 
mitochondrial energy metabolism may be a promising direction for 
migraine prophylaxis.

ALA is an amphiphilic antioxidant that acts as a cofactor for 
pyruvate dehydrogenase and glycine decarboxylase. ALA directly or 
indirectly reduces oxidative stress in mitochondrial oxidative 
metabolism through its interaction with coenzymes such as triphenyl 
nitrate and nicotinamide adenine dinucleotide (102). Abnormally low 
levels of lactate have been observed in the serum of patients with 
migraine, suggesting that lactate could serve as a potential migraine 
biomarker (40, 103). ALA supplementation significantly reduces 
serum lactate levels and vascular cell adhesion molecule in female 
patients with migraine, suggesting that prophylactic ALA treatment 
may be beneficial for managing migraine (103). Additionally, ALA 
possesses anti-inflammatory and antioxidant properties. A clinical 
trial demonstrated that 3 months of ALA supplementation effectively 
improved oxidative, inflammatory, and emotional status in patients 
with migraine (104). A 6-month exploratory study also showed that 
ALA significantly reduced migraine days in patients with insulin 
resistance (99, 105). Beyond its effects in adult migraine, ALA was 
found to significantly reduce the frequency and severity of acute 
attacks in adolescent patients, along with lowering their serum CGRP 
levels (106). In conclusion, ALA supplementation may be considered 
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a potential adjunctive treatment for patients with migraine (103, 107). 
Future clinical trials should further investigate its optimal dosage and 
administration schedule for migraine prophylaxis.

The ketogenic diet (KD) is a regimen that severely restricts 
carbohydrates and induces lipid metabolism and ketone body (KB) 
synthesis by mimicking a fasting state (108). KD has shown 
therapeutic potential in a variety of diseases, including obesity, 
epilepsy, metabolic syndrome, and Alzheimer’s disease (109). KBs 
serve as an alternative fuel source for the brain and may influence 
migraine pathophysiological mechanisms, such as mitochondrial 
function, oxidative stress, brain energy metabolism, and glutamate 
homeostasis (110–113). The effects of KBs on the central nervous 
system correlate with clinical improvements in migraine. KD has been 
found to improve migraine symptoms while significantly affecting 
cortical function-related potentials (114). KD plays an important role 
in reducing the frequency and severity of migraine attacks in both 
adolescents and adults (115), and it has also been shown to improve 
sleep disorders (116). As a result, KB supplementation may represent 
a potential prophylactic treatment strategy for migraine (117). A 

randomized controlled trial is currently investigating the safety and 
efficacy of exogenous KB salts, specifically 3-hydroxybutyric acid, for 
migraine prophylaxis (118). Additionally, recent studies suggest that 
both a 2:1 KD and a low-glycemic index diet may offer benefits for 
migraine treatment (119). However, future clinical studies are needed 
to monitor KB levels during KD and to explore the relationship 
between KB concentration and therapeutic efficacy.

Conclusion

Many migraine triggers are related to brain energy metabolism 
disorders. Inadequate energy supply increases susceptibility to CSD, 
and the brain energy deficit-mitochondrial-oxidative stress axis may 
represent a key pathway in migraine pathogenesis (Figure  2). 
Conditions such as diabetes mellitus, insulin resistance, high-density 
lipoprotein isoform alterations, fatty acid elongation enzyme activity, 
and metabolic syndrome have been associated with migraine. 
Additionally, metabolic changes in NAA/tCr, Cho/tCr, lactate, taurine, 

FIGURE 2

Migraine prophylactic targets for mitochondrial dysfunction. Nutrients play a protective role against migraine by modulating the mitochondria-energy 
production-oxidative stress pathway. These interventions help prevent excessive ROS production, thereby reducing oxidative stress and ameliorating 
energy deficits in the brain. TCA, tricarboxylic acid; ATP, adenosine triphosphate; NADH, nicotinamide adenine dinucleotide; ETC, electron transfer 
chain; GSH, glutathione; SOD, superoxide dismutase; CAT, catalase; MDA, malondialdehyde; ROS, reactive oxygen species.
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glutamate, GABA, and glycine levels have been observed in individuals 
with migraine. Patients with migraine also present with elevated 
oxidative stress and weakened antioxidant defenses. Nutrients may 
help improve mitochondrial function, thereby alleviating brain energy 
metabolism deficits and oxidative stress in migraine. Current 
prophylactic treatments targeting mitochondrial function and energy 
metabolism include riboflavin, coenzyme Q10, alpha-lipoic acid, and 
ketogenic ketones. However, the level of evidence supporting these 
treatments remains limited.
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