
TYPE Opinion

PUBLISHED 24 March 2025

DOI 10.3389/fneur.2025.1560787

OPEN ACCESS

EDITED BY

Mathieu Beraneck,

Université Paris Cité, France

REVIEWED BY

Viviana Mucci,

Western Sydney University, Australia

Colin Grove,

Emory University, United States

*CORRESPONDENCE

Jun Maruta

jun.maruta@mssm.edu

RECEIVED 14 January 2025

ACCEPTED 07 March 2025

PUBLISHED 24 March 2025

CITATION

Maruta J (2025) The utility of artificial

vestibular stimulation in decoding the

pathophysiology of mal de débarquement

syndrome. Front. Neurol. 16:1560787.

doi: 10.3389/fneur.2025.1560787

COPYRIGHT

© 2025 Maruta. This is an open-access article

distributed under the terms of the Creative

Commons Attribution License (CC BY). The

use, distribution or reproduction in other

forums is permitted, provided the original

author(s) and the copyright owner(s) are

credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted

which does not comply with these terms.

The utility of artificial vestibular
stimulation in decoding the
pathophysiology of mal de
débarquement syndrome

Jun Maruta1,2*

1Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States,
2Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai,

New York, NY, United States

KEYWORDS

bone conducted vibration, galvanic vestibular stimulation (GVS), irregular vestibular

a�erents,motion adaptation, nystagmus, spatial orientation, velocity storage, vestibulo-

ocular reflex (VOR)

Mal de débarquement syndrome

Mal de débarquement syndrome (MdDS) is an under-recognized and poorly

understood illness. Typically triggered by prolonged exposure to passive motion during

a voyage on a cruise ship or airplane, MdDS is primarily characterized by a continuous

phantom perception of oscillatory self-motion such as rocking, swaying, or bobbing,

or a sensation of gravitational pull (collectively identified as non-spinning vertigo)

and associated sensations of imbalance (1–3). The self-motion symptoms of MdDS

are generally accompanied by somatic complaints (e.g., headaches and visually induced

dizziness), reduced cognitive functions (e.g., decreased attention and short-termmemory),

and affective problems (e.g., depression and anxiety). These symptoms can be severe

enough to often lead to long-term disability (4–6) and for some patients to develop suicidal

thoughts (7, 8).

Transient mal de débarquement (commonly known as “sea legs”), representing

the common after-sensation that mimics the exposed physical motion and associated

postural instability, has been recognized for centuries (9, 10). Although MdDS, a chronic

manifestation of mal de débarquement, has gained increasing recognition following the

1987 publication of a six-patient case series (1), the illness has yet to permeate the awareness

of clinicians and is often misdiagnosed as a mental disorder, vestibular migraine, or

dizziness caused by peripheral vestibular dysfunction. Patients are said to typically make

2–5 visits to healthcare professionals before their MdDS diagnosis, but those who undergo

20 or more such visits are not uncommon (2, 4, 5, 11). As such, the actual prevalence of

the illness cannot be determined presently, but at least a small percentage of patients seen

at large clinical centers specializing in balance and dizziness are identified as having MdDS

(12, 13) and∼80% of reported cases are women (4, 6, 14, 15).

The pathogenesis of MdDS is poorly understood, but the experience of mal de

débarquement suggests some form of motion-induced entrainment in the central

vestibular pathways (16–19). MdDS is not associated with an injury or overt structural

change in the peripheral or central nervous system, but is rather thought to be a

disorder generated from synaptic changes that can be reversed (14, 19–22). Most people

spontaneously recover from transient mal de débarquement within hours to several

days (16, 21). Why the condition persists into a chronic form in some people, or how

accompanying symptoms develop is not clear.
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The likelihood of spontaneous remission is said to decrease

with time (2, 23). Further, once diagnosed with MdDS, patients

face limited treatment options. Although MdDS is believed to

hinge on central vestibular processing, conventional vestibular

physical therapy generally offers little benefit (6, 19, 24). Some

patients experience partial symptom relief from benzodiazepines,

a class of GABA-A agonists (6, 19, 21), but the site of their

pharmacological action is not understood, and harmful effects

including dependence must be considered (25, 26). Other patients

may experience improved quality of life with vestibular migraine

medications, but symptom improvement appears domain-specific,

and patients’ sensitivity tomedicationsmay require a greater degree

of dose management than typical (27, 28).

It was against this backdrop that a possible link was discovered

between MdDS and the velocity storage mechanism of the central

vestibular system (20, 29). This discovery opened opportunities for

positive long-term outcomes of MdDS through approaches that

target the neural malleability of velocity storage, thereby addressing

the root cause of the illness (14, 20, 30–32).

Velocity storage

Velocity storage is closely associated with the vestibulo-ocular

reflex (VOR) as it was first examined as a stored eye movement

drive that generally prolongs the vestibular and optokinetic

responses beyond the input activity through slow charging and

discharging (33–36), but it can also be activated by proprioceptive

cues for continuous rotation (37–39). Indeed, velocity storage is

a center of multimodal sensory integration. In addition to ocular

reflexes, velocity storage is thought to contribute to postural control

(31, 40) and the perception of self-motion (34, 35, 37, 41, 42).

Ocular, postural, and perceptual responses are often conceptualized

as the sum of the outputs of the velocity storage and non-velocity

storage pathways, with the latter directly relaying peripheral

sensory activity (Figure 1) (31, 33–35, 40, 42). Sectioning vestibular

commissural fibers caudal to the abducens nucleus selectively

abolishes the sluggish VOR components attributed to velocity

storage while sparing fast direct responses, supporting the presence

of the separate neural pathways (43, 44).

Velocity storage does not merely prolong the signals received

from peripheral sensors, but actively reconstructs and dynamically

reshapes information about self-motion, embodying a more

dynamic working-memory like quality than short-term memory

(45). For example, off-vertical axis rotation (OVAR) in darkness

induces continuous compensatory nystagmus by activating the

otolith organs, which are not rotation sensors in a normal sense

(46). Similarly, stepping in place on a circular treadmill in darkness

induces nystagmus that compensates for the apparent circling

(38, 39). Further, per-rotatory nystagmus in response to off-center

rotation while facing in or away from the direction of motion

develops an out-of-plane, vertical component as the centripetal

acceleration tilts the gravito-inertial field sideways (47). Critically,

Abbreviations: BCV, bone conducted vibration; GVS, galvanic vestibular

stimulation; MdDS, mal de débarquement syndrome; OVAR, o�-vertical axis

rotation; PPPD, persistent postural perceptual dizziness; SVIN, skull vibration-

induced nystagmus; VOR, vestibulo-ocular reflex.

in order for velocity storage to interpret the incoming information

and perform coordinate transformations in these manners, it

needs to maintain its own referential representation of three-

dimensional space.

Studies of the ocular and postural reflexes have revealed

that sensorimotor transformation in the brain may be facilitated

by the use of a common coordinate frame consistent with

the orthogonal arrangement of the semicircular canals (48–52).

Such transformation is aided by external cues related to the

constant presence of gravity in the terrestrial environment (46, 53–

56). However, this arrangement is established through motion

exposure-dependent neuroplasticity and can undergo changes in an

unusual acceleration environment (29, 52, 55, 57, 58). Damage to

the cerebellar caudal vermis (nodulus and uvula) compromises the

ability to generate nystagmus during OVAR or reorient eye velocity

to the gravito-inertial field (59–62). Therefore, the coordinate

transformations in the indirect (velocity storage) pathway are

shaped through brainstem-cerebellar interactions and are also

subject to the flexibility of the internal reference frame. In contrast,

the direct pathway appears to operate on a fixed coordinate system

whose outcome is determined by gain calibration and vector

summation of separate channels (Figure 1) (63–65).

MdDS is thought to result from a failure in velocity storage

to readapt to a normal acceleration environment after adapting to

passive motion (29, 58). A treatment approach designed to correct

the presumably maladapted spatial properties of velocity storage

with a combination of visual and vestibular stimuli has significantly

improved the overall outcomes of MdDS, with a success rate of

∼80% and ∼50% in short and long terms, respectively (14, 15, 20,

30–32, 66–70). Still, substantially many patients do not benefit from

the treatment, and the neural basis of the illness is far from clear.

Transient symptom improvement by
passive motion

Physical signs associated with MdDS such as postural

imbalance and direction-changing nystagmus are not present

in all patients nor unique to MdDS, nor do they indicate the

subjective severity of the illness (3, 20). Instead, the diagnosis of

MdDS is based solely on clinical history and subjective reports

(3, 71). The symptoms of MdDS greatly overlap with those of

another chronic vestibular disorder known as persistent postural

perceptual dizziness (PPPD) (72), which with MdDSmay represent

a large spectrum of non-spinning vertigo (3, 6). However, exposure

to passive motion typically worsens symptoms of PPPD while

temporarily alleviates those of MdDS (2, 3, 71). Thus, the effect

of passive motion may be a critical difference between MdDS and

PPPD (3).

The effect of passive motion also reveals the ability of inner-ear-

driven signals to modulate symptoms of MdDS. The mechanism

for this phenomenon is not known. However, in experimental

animals, some neurons in the vestibulo-olivo-cerebellar pathway

of the caudal vermis were found with oscillatory entrainment

in their spontaneous activity after exposure to minutes of cyclic

tilting motion, but this oscillatory activity was transiently reset by,

rather than superimpose with, vestibular signals consisting of other

frequencies, only to resume when the stimulus stopped (73). The
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FIGURE 1

Central vestibular processing conceptualized with parallel direct and indirect pathways. In the VOR, the direct pathway corresponds to the

three-neuron arc of the reflex and interacts with the cerebellar flocculus to calibrate its output. The indirect (velocity storage) pathway involves

multiple sensory integration and interacts with the cerebellar nodulus and uvula to support a unified sense of self-motion and stability. Type I and

type II hair cells in the vestibular organs are respectively synapsed by calyceal and bouton endings of a�erent fibers, which in turn are associated with

irregular and regular patterns of signaling. Phylogenetically, velocity storage and type II vestibular hair cells antecede type I vestibular hair cells. As it is

hypothesized that irregular fibers bypass velocity storage, the di�erence in the responsiveness of regular and irregular fibers to vibration or galvanic

stimuli may be utilized to elucidate pathological vestibular conditions, including MdDS.

direct relevance of this finding to MdDS is not clear, but caudal

vermal representation of adaptation to a moving environment as

well as transient cessation of such activity by new motion exposure

seem significant given the area’s close relevance to velocity storage.

Artificial vestibular stimulation

Galvanic vestibular stimulation (GVS) affords stimulation of

vestibular primary afferents without moving the head, by instead

passing low electrical current through the skin over the mastoids.

GVS is becoming widely applied to both experimental and

clinical testing of balance functions in health and neurological

conditions (74, 75), but not yet in MdDS. GVS is also used to

generate head motion cues during interactions in virtual/simulated

environments (76–78).

Cathodal and anodal current respectively activates and silences

vestibular afferent fibers, with lower threshold for irregular

than regular afferents (74, 75, 79–81). By vector summation,

directionally different responses can be elicited. For example,

bilateral bipolar stimulation with the anode on the right side

induces a rightward postural sway (or an overall illusory

leftward rotational perception in immobilized subjects), and

bilateral monopolar anodal stimulation with a distant reference

electrode induces a backward postural response (74, 77, 78).

Under certain conditions, blindfolded human subjects can be

steered by remotely-controlled GVS while walking (82). Bilateral

bipolar injection of noise current increases the activity of

afferent fibers in a stochastic manner (75) to induce a non-

specific self-motion perception in normal subjects, reported as

“weird” but generally more comfortable and less irritating or

nauseating than GVS with square-wave pulses of equivalent current

amplitude (83).

Bone conducted vibration (BCV) applied to the skull at

∼100Hz is another means to stimulate vestibular primary afferents

without moving the head, other than the vibration motion itself,

typically with an amplitude of 1mm or less at an intensity of a

body massager (84–86). BCV reportedly highly selectively activates

irregular afferents (87–89), but is otherwise a global vestibular

stimulus because skull vibration stimulates afferent nerves from

both ears. Normally, the effects of bilaterally activated vestibular

nerves are said to be negated centrally because of the push-

pull organization of the vestibular system; however, unilateral

dysfunction creates a response asymmetry, forming the basis of the

skull vibration-induced nystagmus (SVIN) test (84, 86). The safety

and sensitivity of the SVIN test are well established (84, 85).

SVIN in individuals with unilateral vestibular loss appears

and disappears abruptly at the onset and cessation of BCV,

respectively, without a progressive buildup in intensity or slow-

decaying after-nystagmus (90, 91). This characteristic is different

from the charging and discharging behavior of velocity storage with

a time constant of at least several seconds even with unilateral

vestibular loss (92, 93). Further, interference by BCV to the

nystagmic response to cold caloric stimulation to the intact ear is

similarly abrupt and in accordance with the amplitude and duration

of SVIN, indicating separately sustained velocity storage activity

during BCV (91). Therefore, a possible “tilt dump” effect (94) from

the concurrent stimulation of otolithic afferents during BCV may

be ruled out as an explanation for the lack of after-nystagmus

associated with SVIN.
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From such unique characteristics and mechanism underlying

SVIN, it is hypothesized that irregular afferents bypass the

velocity storage mechanism (Figure 1) (95, 96). By contrast, regular

afferents’ contribution to velocity storage is supported by the

existing knowledge. Vestibular type I and type II hair cells,

respectively contact calyceal and bouton endings of afferent fibers,

which are roughly associated with irregular and regular firing

patterns (96, 97). Vestibular type I hair cells are phylogenetically

new, as anamniotes (fishes and amphibians) only have type II

vestibular hair cells, but some such species demonstrate well-

functioning velocity storage (98–101). Further, the VOR during

sinusoidal rotation or OVAR in genetically manipulated mice

with deficient type I hair cell development does not suggest

impaired velocity storage (97). A note of possible significance,

however, is that GVS and BCV may have different selectivity for

irregular afferents, as modest after-nystagmus has been observed

to accompany GVS-induced nystagmus (102, 103). Indeed, the

intensity of GVS, thus the level of recruitment of more regular

afferent fibers, that is required to induce eye movement is known to

be higher than that for inducing postural or perceptual responses

(74, 80, 81, 104).

Although the neurological etiology and factors that contribute

to the development of MdDS are not clear, several mechanisms

have been postulated, including maladaptation of velocity storage

(20, 29), entrainment in the cerebral networks (105), vestibular

migraine (27, 28), and hormonal dysregulation (106, 107). Since

MdDS is not associated with peripheral damage, the SVIN test may

at first glance seem to have little to inform the pathophysiology

of the illness. However, it is not yet known if patients with MdDS

will experience temporary alleviation of their symptoms with BCV

or low-intensity GVS. As these stimuli selectively or preferentially

activate irregular afferents, a negative result would indicate a

specific role of regular afferents in modulating symptoms of MdDS

during passive motion as well as indirectly support the velocity

storage-basis of MdDS pathogenesis. A positive result may indicate

a different pathogenic mechanism and necessitate a revision to

the current understanding of MdDS, but would also indicate the

potential utility of these stimuli in the diagnosis or treatment of

the illness. The velocity storage mechanism may still be accessed

with high-intensity GVS, which may find its own utility. Lastly,

premorbid asymmetry in the vestibular sensitivity may contribute

to the activation of velocity storage while naturally interacting in

the environment, possibly making the individual more susceptible

toMdDS during exposure to passive motion (58). BCV or GVSmay

also be useful in probing such a possibility.

Conclusion

MdDS is a debilitating vestibular disorder whose

pathophysiology is presently little understood. An animal-

based model of MdDS would be useful but has not been established

yet (29, 58, 108). BCV and GVS are well-studied artificial vestibular

stimuli that may be safely tested on patients. Since these stimuli

selectively or preferentially activate irregular vestibular afferents

and may, perhaps to a different degree, bypass the velocity storage

mechanism, studying their effects may fill a piece of the puzzle of

MdDS pathophysiology.
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