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Introduction

Anti-retroviral treatment (ART) has transformed HIV infection into a manageable

chronic disease. It restores immune functionality and eliminates or reduces many AIDS-

defining co-morbidities. In particular, the severity of HIV-associated neurocognitive

disorders (HAND) has been greatly reduced, significantly decreasing the prevalence of

HIV-associated dementia (1). However, the overall prevalence of milder forms of HAND

remains comparable to the pre-ART era (2–4). Neurocognitive impairment affects nearly

50% of people living withHIV (PLWH), yet theHIV-specific factors responsible for this co-

morbidity remain poorly understood. A role for viral proteins such as gp120, Tat, and Nef

has been suggested (5–9). Two recent articles have provided evidence that Nef is the key

HIV protein responsible for neuroinflammation, myelin impairment, and neuronal injury.

Summary of studies

Both studies underscore the detrimental effects of Nef on the CNS, particularly in

the context of HIV-1 infection. The first study (10) demonstrates the Nef ’s key role in

neuroinflammation and myelin damage in the context of mouse brain infection with

EcoHIV, a hybrid virus carryingHIV core and envelope ofmurine leukemia virus (11). This

model is consistent with ART-suppressed HIV infection in people, as EcoHIV establishes

latent infection of the murine brain (12). Considering brain inflammation, expression

of inflammatory cytokines in mice infected with Nef-deficient EcoHIV was between

the levels observed in mock-infected mice and mice infected with Nef-positive EcoHIV,

and significantly differed from both (10), indicating that other HIV factors besides Nef

contributed to neuroinflammation. This conclusion is in line with proposed role of Tat

in neuroinflammation (8, 9). Interestingly, the effects of Nef and the other HIV factors

(presumably Tat) on neuroinflammation appear additive, suggesting that they may work

throw different mechanisms. Indeed, Tat was suggested to disrupt the BBB and activate

NF-kB on monocytes and microglia, promoting migration of activated cells into the brain

and production of inflammatory cytokines (13, 14), whereas Nef induces inflammation in

myeloid cells by affecting cholesterol homeostasis and lipid rafts (15).

While Nef appears to cooperate with other HIV factors to promote inflammation, the

observed effects on myelin impairment and neuronal injury in this model were attributed

exclusively to Nef, as no such defects were detected in mice infected with Nef-deficient
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EcoHIV (10). However, this conclusion may be influenced by the

relatively short post-infection observation period in this study

(2–3 weeks), as chronic inflammation is expected to contribute

to neuronal damage over time. Consequently, the potential

contribution of other HIV proteins, such as Tat, to neurotoxicity

via the induction of neuroinflammationmay have been overlooked.

These findings also argue against the direct acute cytotoxicity of

Tat proposed in previous studies (16). This discrepancy may arise

because the Tat concentrations required to induce cytotoxicity

in vitro [∼400 nM (17)] are likely not achieved in the EcoHIV

model, although Tat concentrations in the brain have not been

directly measured in this context. Notably, Tat concentrations

in the cerebrospinal fluid (CSF) of ART-treated PLWH range

from 0.5 to 6.5 ng/mL (36–465 pM) (18), which is significantly

lower than the neurotoxic concentrations used in in vitro studies.

Collectively, these results suggest that Nef is a primary driver

of acute neuroinflammation, myelin impairment and neuronal

damage in the EcoHIVmodel of HAND. Further studies are needed

to explore the potential long-term contributions of other HIV

proteins, such as Tat, to neuropathogenesis in this model.

The second study (19) provides a more in-depth analysis

of Nef-mediated brain damage and introduces the concept of

Nef-containing EVs as key mediators of myelin impairment and

oligodendrocyte injury. Instead of injecting HIV directly, in this

study mice were injected in the brain with Nef EVs, a strategy

informed by growing evidence of EVs’ roles in neurological diseases

(20). Nef is efficiently incorporated into EVs, and these vesicles have

been detected in the blood of PLWH with undetectable HIV loads

(21). Since EVs can routinely cross the blood-brain barrier (22),

they may serve as a vehicle for Nef to reach and affect the central

nervous system. Furthermore, Nef has been identified in the brains

of ART-treated PLWH (23) and SIV-infected monkeys (24), and it

can be taken up by neighboring cells, including neurons, leading to

neuronal damage (25). This mechanism is particularly significant

because it offers a novel explanation for how Nef may propagate

neurotoxic effects throughout the brain without requiring direct

viral infection of every affected cell. Importantly, even when HIV

replication is suppressed to undetectable levels by ART, Nef EVs

continue to be produced (26) and remain capable of exerting

neurotoxic effects.

This study demonstrated that Nef-containing EVs disrupted

myelin sheaths and inflicted damage upon glial cells, in particular

oligodendrocytes, within the murine CNS. The damage to

oligodendrocytes was partially prevented by agents that blocked

Nef-mediated inhibition of the activity of cellular cholesterol

transporter, ABCA1, suggesting that the effects of Nef EVs

on myelination were mediated by alterations in cholesterol

homeostasis, a known feature of Nef EVs (15). In addition, Nef EVs

promoted inflammatory responses by significantly increasing the

number of activated microglial cells at the sites of injection.

Both studies identified similar neurotoxic effects of Nef,

including pro-inflammatory activity and myelin impairment. Since

Nef EVs were not detected in the EcoHIV study, it remains

unclear whether the observed effects were driven solely by

EcoHIV infection of microglial cells or by a combination of

direct infection and EV-mediated toxicity. A more likely scenario

is that both mechanisms contribute, with infected microglia

triggering inflammation while Nef EVs induce demyelination. This

is supported by the low levels of myelin impairment observed in

that study (10), which are consistent with Nef EV levels falling

below the limit of detection.

When related to HIV infection and HAND, the findings

from these two studies support the following model: Under

ART treatment, HIV persists in brain-resident cells, particularly

microglia and astrocytes, which produce Nef EVs. Additionally,

Nef EVs originating from peripheral sources enter the brain via

the bloodstream. HIV-infectedmicroglia adopt a pro-inflammatory

phenotype, releasing inflammatory cytokines, while Nef EVs

further exacerbate inflammation and disrupt myelin integrity.

Together, these effects contribute to neuronal damage and impaired

synaptic communication, ultimately leading to cognitive deficits.

The two studies reviewed here have several limitations. They

did not specifically assess Nef ’s direct neurotoxicity, though prior

research suggests Nef may induce neuronal injury via caspase

activation and free radical production (27). However, neuronal

death is not a defining feature of the mild forms of HAND

that are most prevalent in the ART era (28). Beyond its role

in neuroinflammation and myelin impairment, Nef may also

disrupt the blood-brain barrier (29), potentially exacerbating the

pathogenic mechanisms discussed in this review. Additionally,

Nef-driven inflammation could be amplified by its stimulation of

CCL5 in microglia (30), creating a feedback loop that sustains

neuroinflammatory damage. These aspects, along with the role of

Nef EVs in the EcoHIV model, remain unexamined.

Clarifying Nef ’s role in HAND pathogenesis not only

deepens our understanding of the disease but also identifies

promising therapeutic targets for preventing neurocognitive

decline in PLWH.

Relevance to HAND in PLWH

The relevance of the EcoHIV model to HAND in PLWH

remains incompletely understood. A key limitation of this

model is the absence of gp120, a viral protein implicated in

neuropathogenesis, which restricts investigations into its role and

likely reduces the overall pathological impact. Additionally, unlike

HIV-1, which enters cells via CD4/CCR5 or CD4/CXCR4, EcoHIV

utilizes mCAT-1, a receptor broadly expressed across various

mouse tissues, including the brain. Despite this difference, EcoHIV

primarily infects CD4+ T cells and monocytes/macrophages in

the periphery (11), while in the brain, it predominantly resides in

myeloid cells (31, 32).

Notably, EcoHIV-infected mice develop neurocognitive

impairment (NCI) resembling that seen in ART-treated HIV-

infected individuals (32, 33). In these mice, infected microglia

play a central role in NCI pathogenesis, mirroring findings

in HIV-infected humans (34). Specifically, hippocampus- and

amygdala-dependent deficits in memory consolidation and

recall observed in EcoHIV-infected mice (32) closely parallel

cognitive impairments in ART-treated PLWH (35). Additionally,

the selective loss of dopaminergic neurons—without significant

damage to non-dopaminergic neurons—in the substantia nigra

and subventricular zones of EcoHIV-infected mice (36) mirrors

aspects of HIV-associated neurotoxicity (37). Crucially, NCI

in EcoHIV-infected mice depends on the persistent replication
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of the virus within brain microglia, which continues despite

immune responses and ART (32), resembling the persistence of

HIV in the brains of PLWH with mild forms of HAND (38).

While differences exist between HIV infection in the human

brain and EcoHIV infection in the mouse brain, the resulting

neurological impairments share striking similarities. Given these

parallels, it is reasonable to infer that the underlying mechanisms

of neuropathology in both infections are also closely related.

Neuroinflammation is a hallmark of HAND and is widely

recognized as a primary driver of neuronal injury and cognitive

decline (39–42). The pro-inflammatory effects of Nef on human

myeloid cells (15, 43, 44), along with its presence in post-mortem

brain tissues of individuals (23) and monkeys (24) with HAND,

highlight its potential role in driving neuroinflammation.

Beyond Nef, other HIV proteins, including Tat and gp120,

have also been shown to exert pro-inflammatory effects (45, 46).

Additionally, systemic inflammation resulting from the leakage of

bacterial products through the gut due to incomplete restoration

of the gut mucosa (“leaky gut”) has been implicated as a

contributing factor (47). The relative contributions of these factors

to neuroinflammation in PLWH remain unclear and require

further investigation.

Less is known about Nef ’s role in myelin impairment. However,

myelin loss and disruption are consistently observed in the brains

of individuals with HAND (28, 48) and SIV-infected monkeys

(49, 50). Notably, Nef has been detected in brain regions critical for

cognition andmotor function, where demyelination is evident (48).

Together with previous findings demonstrating Nef ’s pathogenic

effects on oligodendrocytes (51) and the attenuation of these

effects in monkeys infected with Nef-attenuated SIV (52), these

studies reinforce the significance of Nef-dependent demyelination

observed in our research. The damaging impact of Nef on

oligodendrocytes and myelin may contribute to the motor deficits

and cognitive impairments that characterize HAND.

Therapeutic implications

The reviewed studies suggest several potential therapeutic

strategies for mitigating the neurotoxic effects of Nef and

improving the management of HAND. Beyond directly

targeting Nef with small-molecule inhibitors (53), blocking

Nef ’s interference with cholesterol efflux presents a promising

approach to protecting oligodendrocytes (19) and preserving

myelin integrity. This can be achieved through inducers of

expression of ABCA1, the main cellular effector of cholesterol

efflux, by such agents as LXR agonists (54), or inhibitors that

disrupt the interaction between Nef and calnexin, thereby

preventing Nef-mediated impairment of ABCA1 maturation

(55). Notably, this strategy may also help reduce Nef-driven

inflammation (5).

Furthermore, the recent discovery that Nef is exposed on

Nef EVs (56) opens the possibility of specifically targeting these

pathogenic entities using monoclonal antibodies. Monoclonal

antibody therapies have revolutionized the treatment of various

diseases by providing precise and effective interventions. Examples

include autoimmune diseases such as rheumatoid arthritis, treated

with anti-TNF antibodies (57); infectious diseases like COVID-

19, managed with SARS-CoV-2 spike protein-targeting antibodies

(58); and cancers treated with anti-PD-1 antibodies (59). To apply

this approach to neutralizing Nef EVs, it will be essential to

identify a high-affinity antibody targeting a conserved region of

Nef, ensuring broad efficacy against all Nef variants.

Conclusions

The current studies contribute to the growing body of evidence

supporting Nef ’s central role in the pathogenesis of HAND. Its

involvement in neuroinflammation, oligodendrocyte damage, and

myelin impairment highlights Nef as a promising therapeutic

target in HIV-1 infection. The identification of extracellular

vesicles carrying Nef as mediators of neuronal injury further

reinforces the potential of targeting Nef EVs for intervention.

A key novel insight from these studies is the demyelination

effect of Nef EVs, offering a potential explanation for myelin

impairment in HAND. Future research should focus on delineating

the precise molecular pathways through which Nef exerts its

neurotoxic effects, as well as exploring therapeutic strategies to

block these mechanisms and prevent or reverse CNS damage. A

critical priority will be distinguishing the respective contributions

of HIV-infected brain cells and the Nef EVs they produce

to neurocognitive impairment. Additionally, the mechanisms

underlying Nef-mediated myelin damage remain to be fully

elucidated. Advancing our understanding in these areas will be

crucial for accelerating the development of effective treatments

targeting Nef-driven neurotoxicity. Given the persistent challenges

in managing HAND, targeted interventions that neutralize Nef ’s

neurotoxic effects could provide a much-needed strategy to

improve neurological outcomes in individuals living with HIV.
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